Influencer marketing has become a thriving industry with a global market value expected to reach 15 billion dollars by 2022. The advertising problem that such agencies face is the following: given a monetary budget find a set of appropriate influencers that can create and publish posts of various types (e.g. text, image, video) for the promotion of a target product. The campaign's objective is to maximize across one or multiple online social platforms some impact metric of interest, e.g. number of impressions, sales (ROI), or audience reach. In this thesis, we create original continuous formulations of the budgeted influence marketing problem by two frameworks, a static and a dynamic one, based on the advertiser's knowledge, and the nature of the advertiser's decisions over a time horizon.