BUFFONI David

Docteur
Équipe : MLIA
Date de départ : 31/07/2013
http://www-connex.lip6.fr/~buffoni/
Direction de recherche : Patrick GALLINARI
Co-encadrement : USUNIER Nicolas

Fonctions de pertes auxiliaires consistantes pour l'ordonnancement dans des tâches de Recherche d'Information

Dans l'ère technologique actuelle, gérer, contrôler et rechercher l'information est devenue une composante importante de notre vie quotidienne tout en étant un challenge crucial pour les chercheurs. Dans cette thèse, nous abordons le problème de la recherche d'objets parmi une plus grande collection, domaine appelé Recherche d'Information. Nous l'étudierons dans le contexte d'Apprentissage Statistique de Fonctions d'Ordonnancement où le but est d'apprendre une fonction de score tout en cherchant à minimiser un risque reflétant la qualité de la liste d'ordonnancement. Ce risque non-optimisable en pratique est alors substitué par un risque auxiliaire suivant la propriété de la consistance. Basés sur cette théorie, nous montrons une façon de dériver deux fonctions de coût auxiliaires consistantes et qui seront validées expérimentalement.
Ces considérations théoriques ne peuvent cependant pas être directement appliquées puisque les algorithmes d'apprentissage sont très sensibles à la qualité des données. Pour y remédier, nous nous focalisons sur les pretraitements nécessaires pour rendre les algorithmes d'apprentissage d'ordonnancement efficaces sur deux cas d'études : les problèmes de Recherche d'Information XML et de Recherche d'Information Texte-Image. Dans les deux cas, les algorithmes d'apprentissage sont dépendants de la qualité de la supervision, de l'échantillonnage des exemples d'entrainement et des caractéristiques de description extraites. Pour clore ces études, nous décrivons les expériences où nous améliorons les performances par rapport aux autres méthodes de l'état-de-l'art.
Soutenance : 04/10/2012 - 11h - Site Jussieu - Salle Jean-Louis Laurière - 25-26/101
Membres du jury :
Mohand Boughanem -- Université Paul Sabatier -- Rapporteur
Patrick Gallinari -- Université Pierre et Marie Curie -- Directeur
Patrice Perny -- Université Pierre et Marie Curie -- Examinateur
Liva Ralaivola -- Université Aix-Marseille -- Rapporteur
Nicolas Usunier -- Université Pierre et Marie Curie -- Co-directeur
Nicolas Vayatis -- Ecole Normale Supérieure de Cachan -- Examinateur

Publications 2008-2015

 Mentions légales
Carte du site |