Mixed-signal applications are among the fastest growing market segments in the electronics and semiconductor industry. This is driven by the growth opportunities in mobile communication, networking, power management, automotive, medical, imaging, and security applications, which all require analog and mixed-signal (AMS) content. One bottleneck exists if the designs include analog components together with digital ones. Digital design has a well-defined, top-down design methodology, but AMS design has traditionally been an ad hoc custom design process, it is more time-consuming interactive process and fully based on designerâs expertise. The major difficulty is how to model the impact of circuit non-idealities and technology process variations on system- level performances.
In this thesis, we present an unified modeling, design and verification platform with a fast sizing and biasing methodology. The proposed methodology propagates the circuit-level non-idealities into system-level simulations in a very natural way. The methodology synchronizes SystemC-AMS TDF MoC and electrical circuit simulator (SPICE), which enables to mix non- conservative system-level model with conservative nonlinear circuit netlist. Besides, we explain how UVM-SystemC-AMS developed in the FP7 Verdi project, provides an unified methodology for the verification of systems having interconnected AMS, HW/SW. In order to explore the effectiveness of the proposed methodology, two case studies are investigated: a 3-stage 6-bit ADC pipeline and a voltage regulator for an implantable telemetric system. The problem of hierarchical design is illustrated in the 3-stage 6-bit ADC pipeline while the problem of system architecture with feedback loop is illustrated in the implantable telemetric system.