Nous proposons deux méthodes différentes pour la détection de communautés recouvrantes. La première méthode est appelée optimisation de clique. L'optimisation de clique vise à détecter les nœuds recouvrants granulaires. La méthode de l'optimisation de clique est une approche à grain fin. La seconde méthode est nommée détection floue (fuzzy detection). Cette méthode est à grain plus grossier et vise à identifier les groupes recouvrants. Nous appliquons ces deux méthodes à des réseaux synthétiques et réels. Les résultats obtenus indiquent que les deux méthodes peuvent être utilisées pour caractériser les nœuds recouvrants. Les deux approches apportent des points de vue distincts et complémentaires. Dans le cas des graphes dynamiques, nous donnons une définition sur la relation entre les communautés à deux pas de temps consécutif. Cette technique permet de représenter le changement de la structure en fonction du temps. Pour mettre en évidence cette relation, nous proposons des diagrammes de lignage pour la visualisation de la dynamique des communautés. Ces diagrammes qui connectent des communautés à des pas de temps successifs montrent l’évolution de la structure et l'évolution des groupes recouvrantes., Nous avons également appliquer ces outils à des cas concrets.