LIP6 CNRS Sorbonne Université Tremplin Carnot Interfaces
Direct Link LIP6 » Tin tức » Nghiên cứu sinh

BOURIGAULT Simon

Tiến sĩ
Nhóm nghiên cứu : MLIA
Ngày đi : 10-11-2016
Ban lãnh đạo nghiên cứu : Patrick GALLINARI
Đồng hướng dẫn : LAMPRIER Sylvain

Apprentissage de la dynamique de propagation d'info dans les réseaux sociaux

In this thesis, we study information diffusion in online social networks. Websites like Facebook or Twitter have indeed become information medias, on which users create and share a lot of data. Most existing models of the information diffusion phenomenon relies on strong hypothesis about the structure and dynamics of diffusion. In this document, we study the problem of diffusion prediction in the context where the social graph is unknown and only user actions are observed.
  • We propose a learning algorithm for the independant cascades model that does not take time into account. Experimental results show that this approach obtains better results than time-based learning schemes.
  • We then propose several representations learning methods for this task of diffusion prediction. This let us define more compact and faster models.
  • Finally, we apply our representation learning approach to the source detection task, where it obtains much better results than graph-based approaches.
Bảo vệ luận án : 10-11-2016 - 14h - Site Jussieu 25-26/105
Hội đồng giám khảo :
M. Fabrice Rossi, Paris 1 Panthéon Sorbonne [Rapporteur]
M. Julien Velcin, Université Lumière Lyon 2 [Rapporteur]
Mme. Christine Largeron, Université Jean Monnet
M. Christophe Marsala, Université Pierre et Marie Curie
M. Sylvain Lamprier, Université Pierre et Marie Curie
M. Patrick Gallinari , Université Pierre et Marie Curie

Bài báo khoa học 2014-2017

 Mentions légales
Sơ đồ site |