Current teams : | ACASA ALMASTY ALSOC APR BD CIAN ComplexNetworks DECISION DELYS LFI MOCAH MoVe NPA PEQUAN PolSys QI RO SMA SYEL |
Former team : | Phare |
Publications MLIA | 2017 | 2018 | 2019 | 2020 | 2021 | Total |
---|---|---|---|---|---|---|
Books | 0 | 0 | 0 | 0 | 0 | 0 |
Edited books | 0 | 2 | 2 | 0 | 0 | 4 |
Journal articles | 4 | 12 | 10 | 6 | 6 | 38 |
Book chapters | 0 | 0 | 0 | 0 | 0 | 0 |
Conference papers | 23 | 33 | 43 | 26 | 40 | 165 |
Habilitations | 0 | 0 | 0 | 1 | 1 | 2 |
Theses | 7 | 4 | 9 | 9 | 5 | 34 |
- W. Aissa, L. Soulier, L. Denoyer : “Modèle de comprĂ©hension du besoin en information pour la RI conversationnelle”, CORIA 2019 - 16ème COnfĂ©rence en Recherche d’Information et Applications, Lyon, France [Aissa 2019]
- E. Arnaud, A. Dapogny, K. Bailly : “Tree-gated deep regressor ensemble for face alignment in the wild”, 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), Lille, France, pp. 1-7 [Arnaud 2019]
- I. Ayed, N. Cedilnik, P. Gallinari, M. Sermesant : “EP-Net: Learning Cardiac Electrophysiology Models for Physiology-based Constraints in Data-Driven Predictions”, FIMH 2019 - 10th International Conference on Functional Imaging of the Hearth, Bordeaux, France, pp. 55-63, (Springer) [Ayed 2019b]
- N. Baskiotis, L. Becirspahic, R. Brault, S. Duguet, V. Guigue, V. Guiguet, S. Lorin, V. Thouvenot : “A Deep Approach of Affluence Forecasting in Subway Networks”, WCRR 2019 - 12th World Congress on Railway Research, Tokyo, Japan [Baskiotis 2019]
- H. Ben‑younes, R. Cadene, N. Thome, M. Cord : “BLOCK: Bilinear Superdiagonal Fusion for Visual Question Answering and Visual Relationship Detection”, AAAI 2019 - 33rd AAAI Conference on Artificial Intelligence, Honolulu, United States [Ben-younes 2019]
- P. Bordes, É. Zablocki, L. Soulier, B. Piwowarski : “Un modèle multimodal d’apprentissage de reprĂ©sentations de phrases qui prĂ©serve la sĂ©mantique visuelle”, COnfĂ©rence en Recherche d'Informations et Applications, COnfĂ©rence en Recherche d'Informations et Applications - CORIA 2019, 16th French Information Retrieval Conference. Lyon, France, May 25-29, 2019. Proceedings, Lyon, France [Bordes 2019a]
- P. Bordes, É. Zablocki, L. Soulier, B. Piwowarski, P. Gallinari : “Incorporating Visual Semantics into Sentence Representations within a Grounded Space”, 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, pp. 696-707, (Association for Computational Linguistics) [Bordes 2019b]
- D. Brooks, O. Schwander, F. Barbaresco, J.‑Y. Schneider, M. Cord : “A Hermitian Positive Definite neural network for micro-Doppler complex covariance processing”, International Radar Conference, Toulon, France [Brooks 2019a]
- D. Brooks, O. Schwander, F. Barbaresco, J.‑Y. Schneider, M. Cord : “Complex-valued neural networks for fully-temporal micro-Doppler classification”, 2019 20th International Radar Symposium (IRS), 2019 20th International Radar Symposium (IRS), Ulm, Germany, (IEEE) [Brooks 2019b]
- D. Brooks, O. Schwander, F. Barbaresco, J.‑Y. Schneider, M. Cord : “Exploring Complex Time-series Representations for Riemannian Machine Learning of Radar Data”, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, United Kingdom, pp. 3672-3676, (IEEE) [Brooks 2019c]
- D. Brooks, O. Schwander, F. Barbaresco, J.‑Y. Schneider, M. Cord : “Riemannian batch normalization for SPD neural networks”, Thirty-third Annual Conference on Neural Information Processing Systems., Vancouver, Canada [Brooks 2019d]
- D. Brooks, O. Schwander, F. Barbaresco, J.‑Y. Schneider, M. Cord : “Second-order networks in PyTorch”, GSI 2019 - 4th International Conference on Geometric Science of Information, vol. 11712, Lecture Notes in Computer Science, Toulouse, France, pp. 751-758, (Springer) [Brooks 2019e]
- M. Bucher, T.‑H. Vu, M. Cord, P. PĂ©rez : “Zero-Shot Semantic Segmentation”, NeurIPS, vancouver, Canada [bucher 2019]
- R. Cadene, C. Dancette, H. Ben‑younes, M. Cord, D. Parikh : “RUBi: Reducing Unimodal Biases for Visual Question Answering”, Neural Information Processing Systems, vol. 32, Advances in Neural Information Processing Systems, Vancouver, Canada, pp. 841-852, (Curran Associates, Inc.) [Cadene 2019a]
- R. Cadene, H. Ben‑younes, M. Cord, N. Thome : “MUREL: Multimodal Relational Reasoning for Visual Question Answering”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, United States [Cadene 2019b]
- Y. Chen, A. Saporta, A. Dapogny, M. Cord : “Delving Deep into Interpreting Neural Nets with Piece-Wise Affine Representation”, 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, Province of China, pp. 609-613, (IEEE) [Chen 2019]
- M. Chen, Th. Artières, L. Denoyer : “Unsupervised Object Segmentation by Redrawing”, Advances in Neural Information Processing Systems 32 (NIPS 2019), Vancouver, Canada, pp. 12705-12716, (Curran Associates, Inc.) [Chen 2019]
- O. Chuquimia, Th. Garbay, W. Xu, A. Pinna, X. Dray, H. Sahbi, B. Granado : “Study to integrate CNN inside a WCE to realize a screening tool”, JournĂ©es d'Etude sur la TĂ©lĂ©SantĂ©, Paris, France [Chuquimia 2019c]
- Ch. Corbière, N. Thome, A. Bar‑Hen, M. Cord, P. PĂ©rez : “Addressing Failure Prediction by Learning Model Confidence”, Advances in Neural Information Processing Systems 32, Vancouver, Canada, pp. 2898-2909, (Curran Associates, Inc.) [Corbière 2019]
- A. Dapogny, B. Kevin, M. Cord : “DeCaFA: Deep Convolutional Cascade for Face Alignment In The Wild”, The IEEE International Conference on Computer Vision (ICCV), Seoul, Korea, Republic of [Dapogny 2019]
- E. Delasalles, S. Lamprier, L. Denoyer : “Dynamic Neural Language Models”, ICONIP 2019 - 26th International Conference on Neural Information Processing, vol. 11955, Lecture Notes in Computer Science, Sydney, Australia, pp. 282-294 [Delasalles 2019b]
- E. Delasalles, S. Lamprier, L. Denoyer : “Learning Dynamic Author Representations with Temporal Language Models”, 2019 IEEE International Conference on Data Mining (ICDM), Beijing, China, pp. 120-129, (IEEE) [Delasalles 2019c]
- Ch. Dias , V. Guigue, P. Gallinari : “Filtrage collaboratif explicite par analyse de sentiments Ă l’aveugle”, CAp 2019 - 21ème ConfĂ©rence sur l'Apprentissage automatique, Toulouse, France [Dias 2019b]
- M. Engilberge, L. Chevallier, P. PĂ©rez, M. Cord : “SoDeep: a Sorting Deep net to learn ranking loss surrogates”, CVPR 2019 - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, United States [Engilberge 2019]
- J.‑Y. Franceschi, A. Dieuleveut, M. Jaggi : “Unsupervised Scalable Representation Learning for Multivariate Time Series”, Thirty-third Conference on Neural Information Processing Systems, vol. 32, Advances in Neural Information Processing Systems, Vancouver, Canada, pp. 4650-4661, (Curran Associates, Inc.) [Franceschi 2019a]
- Th. Garbay, O. Chuquimia, A. Pinna, H. Sahbi, X. Dray, B. Granado : “Distilling the knowledge in CNN for WCE screening tool”, 2019 Conference on Design and Architectures for Signal and Image Processing (DASIP), Montreal, Canada, pp. 19-22, (IEEE) [Garbay 2019]
- Th. Gerald, N. Baskiotis : “Joint Label/Example Hyperbolic Representation for Extreme Classification”, ConfĂ©rence sur l’Apprentissage automatique 2019, Toulouse, France [Gerald 2019]
- V. Guiguet, P. Cribier‑Delande, N. Baskiotis, V. Guigue : “PrĂ©diction de sĂ©ries temporelles multi-variĂ©es stationnaires: modĂ©lisation du contexte pour l'analyse des donnĂ©es de transports”, GRETSI 2019, Lille, France [Guiguet 2019]
- S. Lamprier : “A Recurrent Neural Cascade-based Model for Continuous-Time Diffusion”, ICML 2019 - 36th International Conference on Machine Learning, vol. 97, Proceedings of Machine Learning Research, Long Beach, CA, United States, pp. 3632-3641, (PMLR) [Lamprier 2019a]
- Ah. Mazari, H. Sahbi : “Deep Temporal Pyramid Design For Action Recognition”, IEEE International Conference on Acoustic, Speech and Signal Processing, ICASSP, Brighton, United Kingdom, pp. 2077-2081, (IEEE) [Mazari 2019a]
- Ah. Mazari, H. Sahbi : “MLGCN: Multi-Laplacian Graph Convolutional Networks for Human Action Recognition”, The British Machine Vision Conference (BMVC), Cardiff, United Kingdom [Mazari 2019b]
- H. Sahbi : “Deep Total Variation Support Vector Networks”, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, Republic of, pp. 3028-3038, (IEEE) [Sahbi 2019a]
- H. Sahbi : “Learning CCA Representations for Misaligned Data”, European Conference on Computer Vision, ECCV - Workshop, vol. 11132, Munich, Germany, pp. 468-485, (Springer) [Sahbi 2019b]
- A. Saporta, Y. Chen, M. Blot, M. Cord : “REVE: Regularizing Deep Learning with Variational Entropy Bound”, 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, Province of China, pp. 1610-1614, (IEEE) [Saporta 2019]
- Th. Scialom, B. Piwowarski, J. Staiano : “Architecture basĂ©e sur les mĂ©canismes d'attention: le cas de la gĂ©nĂ©ration de questions neuronales”, COnfĂ©rence en Recherche d'Informations et Applications - CORIA 2019, 16th French Information Retrieval Conference, COnfĂ©rence en Recherche d'Informations et Applications - CORIA 2019, 16th French Information Retrieval Conference. Lyon, France, May 25-29, 2019. Proceedings, Lyon, France [Scialom 2019a]
- Th. Scialom, B. Piwowarski, J. Staiano : “Self-Attention Architectures for Answer-Agnostic Neural Question Generation”, ACL 2019 - Annual Meeting of the Association for Computational Linguistics, Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, pp. 6027-6032, (Association for Computational Linguistics) [Scialom 2019b]
- Th. Scialom, S. Lamprier, B. Piwowarski, J. Staiano : “Answers Unite! Unsupervised Metrics for Reinforced Summarization Models”, 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), ACL Anthology, Hong Kong, China, pp. 3237-3247, (Association for Computational Linguistics) [Scialom 2019c]
- É. Simon, V. Guigue, B. Piwowarski : “Extraction d'information non supervisĂ©e avec des modèles discriminants”, CAp 2019 - 21ème ConfĂ©rence sur l'Apprentissage automatique, Toulouse, France [Simon 2019a]
- É. Simon, V. Guigue, B. Piwowarski : “Unsupervised Information Extraction: Regularizing Discriminative Approaches with Relation Distribution Losses”, Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, pp. 1378-1387, (Association for Computational Linguistics) [Simon 2019b]
- B. TaillĂ©, V. Guigue, P. Gallinari : “Contextualized Embeddings in Named-Entity Recognition: An Empirical Study on Generalization”, EurNLP, London, United Kingdom [TaillĂ© 2019a]
- B. TaillĂ©, V. Guigue, P. Gallinari : “Une Etude Empirique de la CapacitĂ© de GĂ©nĂ©ralisation des Plongements de Mots Contextuels en Extraction d'EntitĂ©s”, CAp 2019 - 21ème ConfĂ©rence sur l'Apprentissage automatique, Toulouse, France [TaillĂ© 2019b]
- T. VĂ©niat, O. Schwander, L. Denoyer : “STOCHASTIC ADAPTIVE NEURAL ARCHITECTURE SEARCH FOR KEYWORD SPOTTING”, ICASSP 2019 - International Conference on Acoustics, Speech, and Signal Processing, Brighton, United Kingdom [VĂ©niat 2019]
- É. Zablocki, P. Bordes, B. Piwowarski, L. Soulier, P. Gallinari : “Context-Aware Zero-Shot Learning for Object Recognition”, Thirty-sixth International Conference on Machine Learning (ICML), Long Beach, CA, United States [Zablocki 2019]