RAPONI Elena
function showhidediv(id) {
if (document.getElementById) { // DOM3 = IE5, NS6
if (document.getElementById(id).style.display == 'none') document.getElementById(id).style.display = 'block'; else document.getElementById(id).style.display = 'none';
}
else {
if (document.layers) { // Netscape 4
if (document.id.display == 'none') document.id.display = 'block'; else document.id.display = 'none';
}
else { // IE 4
if (document.all.id.style.display == 'none') document.all.id.style.display = 'block'; else document.all.id.style.display = 'none';
}
}
}
// https://csp.withgoogle.com/docs/adopting-csp.html
document.addEventListener('DOMContentLoaded', function () {
document.getElementById('show_doctors')
.addEventListener('click', function doThings() {
showhidediv("docteurs");
});
});
2020-2023 Publications
-
2023
- M. Santoni, E. Raponi, R. De Leone, C. Doerr : “Comparison of Bayesian Optimization Algorithms for BBOB Problems in Dimensions 10 and 60”, GECCO '23 Companion: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, Lisbon, Portugal, pp. 2390-2393, (ACM), (ISBN: 979-8-4007-0120-7) (2023)
- C. Benjamins, E. Raponi, A. Janković, C. Doerr, M. Lindauer : “Towards Self-Adjusting Weighted Expected Improvement for Bayesian Optimization”, GECCO '23 Companion: Companion Conference on Genetic and Evolutionary Computation, Lisbon, Portugal, pp. 483-486, (ACM) (2023)
-
2022
- C. Benjamins, E. Raponi, A. Janković, K. Van der Blom, M. Santoni, M. Lindauer, C. Doerr : “PI is back! Switching Acquisition Functions in Bayesian Optimization”, 2022 NeurIPS Workshop on Gaussian Processes, Spatiotemporal Modeling, and Decision-making Systems, New Orleans, United States (2022)
- C. Benjamins, A. Janković, E. Raponi, K. Van der Blom, M. Lindauer, C. Doerr : “Towards Automated Design of Bayesian Optimization via Exploratory Landscape Analysis”, 6th Workshop on Meta-Learning at NeurIPS 2022, New Orleans, United States (2022)
- K. Antonov, E. Raponi, H. Wang, C. Doerr : “High Dimensional Bayesian Optimization with Kernel Principal Component Analysis”, 17th Proceedings of Parallel Problem Solving from Nature - (PPSN) 2022, Dortmund, Germany, pp. 118-131 (2022)
-
2020
- E. Raponi, H. Wang, M. Bujny, S. Boria, C. Doerr : “High Dimensional Bayesian Optimization Assisted by Principal Component Analysis”, Parallel Problem Solving from Nature – PPSN XVI, vol. 12269, Lecture Notes in Computer Science, Leiden, Netherlands, pp. 169-183, (Springer) (2020)