IR AYED Ibrahim
function showhidediv(id) {
if (document.getElementById) { // DOM3 = IE5, NS6
if (document.getElementById(id).style.display == 'none') document.getElementById(id).style.display = 'block'; else document.getElementById(id).style.display = 'none';
}
else {
if (document.layers) { // Netscape 4
if (document.id.display == 'none') document.id.display = 'block'; else document.id.display = 'none';
}
else { // IE 4
if (document.all.id.style.display == 'none') document.all.id.style.display = 'block'; else document.all.id.style.display = 'none';
}
}
}
// https://csp.withgoogle.com/docs/adopting-csp.html
document.addEventListener('DOMContentLoaded', function () {
document.getElementById('show_doctors')
.addEventListener('click', function doThings() {
showhidediv("docteurs");
});
});
2019-2022 Publications
-
2022
- S. Karkar, I. Ayed, E. De Bézenac, P. Gallinari : “Block-wise Training of Residual Networks via the Minimizing Movement Scheme”, 1st International Workshop on Practical Deep Learning in the Wild at 26th AAAI Conference on Artificial Intelligence 2022, 2nd International Workshop on Practical Deep Learning in the Wild, Vancouver, Canada (2022)
- Y. Yin, I. Ayed, E. De Bézenac, N. Baskiotis, P. Gallinari : “LEADS: Learning Dynamical Systems that Generalize Across Environments”, The Thirty-Fifth Annual Conference on Neural Information Processing Systems (NeurIPS 2021), Online, (2022)
-
2021
- Y. Yin, V. Le Guen, J. Donà, E. De Bézenac, I. Ayed, N. Thome, P. Gallinari : “Augmenting physical models with deep networks for complex dynamics forecasting”, Journal of Statistical Mechanics: Theory and Experiment, vol. 2021 (12), pp. 124012, (IOP Publishing) (2021)
- V. Kashtanova, I. Ayed, N. Cedilnik, P. Gallinari, M. Sermesant : “EP-Net 2.0: Out-of-Domain Generalisation for Deep Learning Models of Cardiac Electrophysiology”, Functional Imaging and Modeling of the Heart, vol. 12738, Lecture Notes in Computer Science, Stanford, CA (virtual), United States, pp. 482-492, (Springer International Publishing) (2021)
- Y. Yin, V. Le Guen, J. Donà, I. Ayed, E. De Bézenac, N. Thome, P. Gallinari : “Augmenting physical models with deep networks for complex dynamics forecasting”, Ninth International Conference on Learning Representations ICLR 2021, Vienna (virtual), Austria (2021)
-
2020
- S. Karkar, I. Ayed, E. De Bézenac, P. Gallinari : “A Principle of Least Action for the Training of Neural Networks”, ECML PKDD, Ghent, Belgium (2020)
-
2019
- I. Ayed, E. De Bézenac, A. Pajot, J. Brajard, P. Gallinari : “Learning Dynamical Systems from Partial Observations”, (2019)
- I. Ayed, N. Cedilnik, P. Gallinari, M. Sermesant : “EP-Net: Learning Cardiac Electrophysiology Models for Physiology-based Constraints in Data-Driven Predictions”, FIMH 2019 - 10th International Conference on Functional Imaging of the Hearth, Bordeaux, France, pp. 55-63, (Springer) (2019)