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 Digital entertainment 
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 Triangle mesh 
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 Meta-data 

 Texture 
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 Meta-data 

 Animation skeleton 
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 Meta-data 

 Deformation cages 
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 Optimize the production and  

editing chain of 3D content 
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 Definitions 
Polygonal mesh 
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 Triangle mesh 
Geometry 

 

 

 

Connectivity    

        

     

 

 

 

 
 

 



 Triangle mesh 
Connectivity  
Seen as a graph 
Graph embedding  
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 Definitions 
Topology 

Genus 
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 Definitions 
Orientability 

 

 

 

 

    

        

                [3]   

 

 

 

 
 

 



 Definitions 
Orientability 
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 Definitions 
Simplicial complex 

Triangulation 
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 Triangle mesh 
Attributes 

Color                                       Normals 

 

 

 

 

 

                               Texture 

 



 Consistent bijective mapping 
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 Consistent bijective mapping 
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 Simplify 
g, Φ1, Φ2 =? 
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Scientific issues 

g, Φ1, Φ2 =? 

Generality 

Diff param dom 
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Scientific issues 

g, Φ1, Φ2 =? 

Generality 

Topology 
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Scientific issues 

g, Φ1, Φ2 =? 

Generality 

Topology 

 

         

       

        

 
      

 

 



            
Scientific issues 

g, Φ1, Φ2 =?    Accuracy 

Generality 

Accuracy  

Timing 
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Developable surfaces  
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Non-unique parameterization      

       

        

 

 
                [5] 

 
 

 



 Harmonic maps 
∆𝑢 = 0, ∆𝑣 = 0 
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 Conformal maps 

 𝛻𝑢 = 𝛻𝑣 , 

𝛻𝑢 ∗ 𝛻𝑣 = 0 

                                                                      stereographic proj 
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 Equiareal maps  

 

 

 

 

 

 
 

 
           [17 The equal-area Mollweide projection] 

      

        

 

 

 
 

 



 SVD decomposition of the map  

 

 

 
 

 

        

  
                                                 [5] 
 As a consequence, any circle of radius r around u will be mapped to an ellipse with 

semi-axes of length rσ1 and rσ2 around p and the orthonormal frame [V1, V2] is mapped 

to the orthogonal frame [σ1U1, σ2U2]. 

 
 

 



 Fixed boundary vs Free boundary 
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 LSCM 
Description: 

Minimize the violation of Riemann’s conditions in a least 
squares sense 

 

Minimize a distortion energy. 

 

 

 

 

 

Combine the conformality condition and the linearity of the 
mapping (inside a triangle) in a least squares sense. 

 

 

 

 



 Absorb distortion 

 Cut the mesh 
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 Gaussian curvature 

 Angle deficit 

 Gauss-Bonnet theorem 
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 Key References 
CFCPMS 

 

 
◦ Poisson eq  
◦ Least-squares 
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 Key References 
CETM 

 

◦ Non-linear convex energy 
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 Key References 
ABF++ 

◦ Non-linear optimization problem  

◦ Slow 
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 Key References 
MIPS 

◦ Non-linear optimization problem  

◦ Slow 
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 LSCM  
Improvement:  

Add rotational terms to the distortion 

   energy. 

Detect the angle of a cone singularity (from applying CFCPMS) 

 Round it to the nearest value  

    multiple of pi/2 

 Constrain that angle to the new value 

Translation, rotation, translation 

 

 

 

 



 LSCM  
With rotation equations added, the 2 sides of the cut can fit 

seamlessly  

 

                LSCM 

 

 

 

 

               LSCM+rot 

 

 

 



 Mesh “Planck” – 23525V, 46930F 

 Manually placed cones  

 
                 

 

 

 

 

 

 



 LSCM [2] and rotational equations 

 Resulted flattening 

  LSCM     LSCM+rot 
                 

 

 

 

 

 

 



 Try cross-map between near isometric meshes 
                                                                  Mesh head2q 

       10857V 

       21656F 

 

 

 

 

 

               Mesh head3q 

   9429V 

          18792F 

 



Planck, head2q, head3q – manually placed cones 

Visualize the meshes unfolded with the new alg (LSCM+rot) 

 

 

 

 

 

 

 

 

 

Head2q                       Head3q                               Planck 



 Try cross-map between near isometric meshes 
First unfold head2q with the new algorithm (LSCM+rot) 

Pin the boundary vertices of head3q and Planck to match 
the boundary vertices of head2q  

 

 

 

 

 

 

 

 

      Head2q               Head3q_to_2q            Planck_to_2q 

    OBS: known cones corresp -> known              
      corresp cut-paths 

 



 Same texture applied to the 3 meshes constrained 
to the boundary of Head2q 

 

 

 

 

 

 

 

 

 

 

        Head2q             Head3q_to_2q          Planck_to_2q 

     

 



 Same texture applied to the 3 meshes constrained 
to the boundary of Head2q 

 

 

 

 

 

 

 

 

 

 

     Head2q                 Head3q_to_2q           Planck_to_2q 

     

 



 Same texture applied to the 3 meshes constrained 
to the boundary of Head2q 

 

 

 

 

 

 

 

 

 

 

      Head2q                 Head3q_to_2q           Planck_to_2q 

     

 



 Same texture applied to the 3 meshes constrained 
to the boundary of Head2q 

 

 

 

 

 

 

 

 

 

 

     Head2q                Head3q_to_2q            Planck_to_2q 

     

 



 Try cross-map between near isometric meshes 
Since for both meshes head3q and Planck, the cut2 are in 

similar locations, do a cross-map between them 

Map Planck to head3q, color by faces’ normals 

 

 

 

 

 

 

 

 

 

                                                                

 

 

 

 

 

 

 

 



 Try cross-map between near isometric meshes 
Map Planck to head3q, color by faces’ normals 

 

 

 

 

 

 

 

 

 

                                                                

 

 

 

 

 

 

 

 



 Try cross-map between near isometric meshes 
Map Planck to head3q, color by faces’ normals 

 

 

 

 

 

 

 

 

 

                                                                

 

 

 

 

 

 

 

 



 Try cross-map between near isometric meshes 
Map Planck to head3q, color by faces’ normals 

 

 

 

 

 

 

 

 

 

                                                                

 

 

 

 

 

 

 

 



 Try cross-map between near isometric meshes 
Apply the same texture to all 3 flattenings;  visualize 3D 

 

 

 

 

 

 

 

 

 

                                                                

 

 

 

 

 

 

 

 



 Quasi-conformal factor 
Ratio of the larger to the smaller eigenvalue of the 

Jacobian matrix –> ideal = 1 

 

 

 

 

 

 

                                                              

 

 

 

 

 

 

 

 

           Map 
Mesh 

LSCM LSCM+rot LSCM+pinne
d bdry 

Cross-map 

Head2q 1.0024 1.0028 1.0028 1.3030 

1.5268 

Head3q 1.0034 1.0034 1.1002 

1.3131 

Planck 1.0002 
 

1.0002 
 

1.0350 

1.3030 



 Timings [s] 
 

 

 

 

 

 

 

 

 

                                                                

 

  

   * pinned bry verts to head2q flattening 

 

 

 

 

 

 

       Mapping 
 
Mesh 

LSCM LSCM+rot LSCM+pinne
d bdry* 

Cross-map 

Head2q 
10857V, 
21656F 

1.942444 2.305175 - 1705.965937 

670.079407 

Head3q 
9429V,          
18792F 

1.547186 1.833591 
 

4.261377 
 

1517.296428 

Planck 
23525V, 
46930F 

7.944052 9.237458 15.169150 
 

1705.965937 



 
 Initial user-driven cross-map for simple 

configurations 
User-supplied corresponding cone singularities 

 

 Good performance 
 

 Good timings for the 2D parameterization 
 

 Existence of solutions to speed up the cross-
map 

 



 More general alg to support arbitrary cut 
networks/ arbitrary singularity layouts 

 Automatic -> pairs of corresponding cone 
singularities and consistent cuts on two 
models 

 Post-process procedure for the planar 
optimization 
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