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Applications

Drug design (docking)
Materials research

Crystalline structures
Elastic constants, dislocations
Spectroscopy
Thermal, electrical conduction



Importance of electronic structure computations
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Mathematicians and electronic structure

Collaboration between chemists/physicists and
mathematicians is important

1 For us (need to understand relevant current models)
2 For them (numerical methods, HPC)

Strong collaboration between mathematicians and chemists at
UPMC (people : E. Cancès, L. Lagardère, F. Lipparini, Y.
Maday, B. Menucci, J-P. Piquemal, B. Stamm)

1 2013 : Domain decomposition for solvation models (solve
subproblems analytically, parallelization)

2 2014 : Polarizable force fields (use CG instead of Jacobi,
parallelization)

3 ...

This talk:
Joint work with Marc Torrent, condensed matter lab, CEA/DAM
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Quantum mechanics in one slide

Matter at the atomic level is described by quantum mechanics
Main equation : time-independent Schrödinger equation

Hψ = Eψ

Eigenvalue equation for the self-adjoint operator H on a
Hilbert space H
ψ ∈ H is the complex wavefunction
Entanglement: if subsystems A and B are represented by HA
and HB, then A ∪ B is represented by HA ⊗HB (contrast
with classical HA ⊕HB)
For N electrons, H ⊂ L2(R3N) (compare with classical
H ⊂ R6N)
If using 10 d.o.f. per electron, H ⊂ R103N : much too big!



The Schrödinger equation
N electrons in a potential V . H is the total energy (kinetic +
electron-nuclei + electron-electron)

(Hψ)(x) =
N∑

i=1

((
−1
2∆iψ

)
(x) + V (xi )ψ(x)

)
+

∑
1≤i<j≤N

1
|xi − xj |

ψ(x),

with x ∈ R3N = (xi )1≤i≤N .

The electron-electron term couples (entangles) the N
electrons
Direct simulation impossible (3N-dimensional PDE)



The Kohn-Sham equations

Approximate the Schrödinger equation by a system of N
non-interacting electrons satisfying

−1
2∆ψi + Veff[ρ]ψi = λiψi

Effective potential

Veff[ρ] = Vext + VHartree[ρ] + VXC [ρ]

depending only on the electronic density ρ(y) =
∑N

i=1 |ψi |2(y)

Vext is the electron-nuclei interaction potential
Mean-field potential

VHartree[ρ](x) =

∫
y∈R3

ρ(y)

|x − y |

Exchange-correlation potential VXC [ρ](x) approximated using
various schemes (LDA, GGA ...) from the density ρ



The Self-Consistent Field (SCF) cycle

Initialize ρ Form Veff[ρ]
Diagonalize
−1

2∆ + Veff[ρ]

Diagonalize
−1

2∆ + Veff[ρ]

Build ρ′ from
the N lowest
eigenvectors

ρ′ − ρ small?

Update ρ
from ρ′

Done

no

yes

Many important complications not discussed here
1 Types of systems: crystals, metals ...
2 More accurate physics: spin, XC functional, relativistic effects,

perturbation theory ...
3 Implementation: discretization, pseudopotentials ...
4 Derived properties: geometry optimization, molecular

dynamics, optical and mechanical constants, excited states ...

Computational bottleneck: get the N lowest eigenvectors (bands)
of −1

2∆ + Veff[ρ]
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Overview of Abinit

“Finds the total energy, charge density, and electronic structure of
systems made of electrons and nuclei, using pseudopotentials and a

plane-wave basis.”

Solves the Kohn-Sham equations discretized in a plane-wave
basis (spectral method)
Represent core electrons (chemically inert) by an effective
pseudopotential
International collaboration led by Université Catholique de
Louvain, Belgium, with an important group at CEA/DAM
Free software (GNU GPL), http://www.abinit.org

Widely used in condensed matter physics, lots of features
HPC in Abinit: parallel FFT (Goedecker, Boulet, Deutsch,
2003), block eigenvalue solvers (Bottin, Leroux, Knyazev,
Zerah, 2006), OpenMP/GPU (ongoing)

http://www.abinit.org


The eigenproblem in Abinit

λ1 λNband λNpw

Innermost loop : at ρ fixed, find the Nband lowest eigenvectors of
the Galerkin projection of

H = −1
2∆ + Veff[ρ].

on

HNpw = Span{eiξn·x}1≤n≤Npw

Target medium-size applications : Nband ≈ 1, 000,
Npw ≈ 100, 000
H too big and dense: don’t compute H explicitly, use its
action on vectors



Hamiltonian operator

The Hamiltonian

H = −1
2∆ + Vloc[ρ] + Vnonloc[ρ]

The Laplacian is diagonal in our plane-wave basis
Vloc[ρ] is a real-space multiplication : computed with FFTs
Nonlocal terms come from pseudopotentials (not discussed in
details here), and involve a Npw × Nprojs set of projectors P,
Nprojs ≈ Nband

Vnonloc[ρ] = PVproj[ρ]PT

Cost of applying H: O(Npw logNpw + NpwNprojs)

FFT (even 3D) is hard to parallelize beyond 100 cores

Have to find other levels of parallelism (matvecs in parallel)
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What is the ideal eigensolver?

We can compute matvecs efficiently but the Hamiltonian is
not sparse: need “matrix-free” algorithms
The linear solver is not an island, but is embedded in multiple
loops (k-points, SCF, molecular dynamics, geometry
optimization ...) : reuse available information (approximate
eigenvectors)
Must be able to stop early: there’s no point in optimizing the
wavefunctions to 10−16 if the potential is not converged
−1

2∆ + V well approximated by −1
2∆ in the high-frequency

regime : cheap and efficient preconditionner available
Eigenvector-level parallelism: prefer fixed basis than
growing-basis algorithms, allow concurrent update of
approximate eigenvectors, limit communications

Rules out “standard” algorithms (forget Lanczos)



Rayleigh-Ritz(-Galerkin)

Variational formulation for Hψ = λψ, H symmetric

ψn = argmin
ψ∈H,〈ψi ,ψ〉=δi,n, i=1,...,n

〈ψ,Hψ〉

Important tool for eigenvalue problems: Rayleigh-Ritz
(“variational principle”, “subspace rotation”, “block
diagonalization” ...), using a set of trial vectors (ψ̃i )1≤i≤Nt :

ψn = argmin
ψ∈Span{(ψ̃i )1≤i≤Nt },
〈ψi ,ψ〉=δi,n, i=1,...,n

〈ψ,Hψ〉

Solve the eigenvalue problem in Span{(ψ̃i )1≤i≤Nt}

1: Form H̃ =
〈
ψ̃i ,Hψ̃j

〉
, S̃ =

〈
ψ̃i , ψ̃j

〉
2: Solve H̃Xi = λi S̃Xi for the lowest eigenvalues
3: ψi =

∑Nt
j=1 ψ̃jXji

Implementation: manual distributed matrix-multiply +
ScaLAPACK



Historic eigensolver : conjugate gradient

Tetter, Allan, Payne (’89) : “band-by-band conjugate
gradient”
Idea : minimize the Rayleigh quotient 〈ψi ,Hψi〉 subject to
〈ψi , ψj〉 = δij , j ≤ i
Minimise Rayleigh quotient by conjugate gradients, while
maintaining orthogonality by Gram-Schmidt
Precondition conjugate gradients by diagonal matrix (scale
high frequencies by 1/|ξ|2)
Implemented in most plane-wave DFT codes
© Good convergence, robust, easy to implement, good
support for locking (not iterating on converged vectors)
§ Many orthogonalizations, not parallel

How do we run this on 100k cores?
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Block algorithms : LOBPCG

Locally Optimal Block Preconditionned Conjugate Gradient
(Knyazev ’01)
Iteratively update all the eigenvectors at the same time
Use a single Rayleigh-Ritz procedure on the
3Nband-dimensional space {ψn−1

i , ψn
i ,P−1Hψn

i }i=1,...,Nband

© Better convergence than CG, can compute Hψn
i in parallel!

§ Higher costs for the Rayleigh-Ritz procedure
Split in blocks to avoid the Rayleigh-Ritz costs
Acceptable parallel scaling up to 500-1k cores for large
problems
1k cores is still not enough (target computers at CEA/DAM :
100k cores, much more in the future)

Can we do better ?
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Filtering algorithm

Goal: avoid frequent communications (orthogonalizations,
Rayleigh-Ritz)
Some global communication between eigenvectors is
unavoidable (otherwise it’s an interior eigenvalue problem -
danger)

1: while not converged do
2: for each band i do
3: ψi ←???
4: end for
5: Apply the Rayleigh-Ritz procedure to the ψi
6: end while

The Rayleigh-Ritz step liberates us from the need to converge
every eigenvector separately
We only need to filter out the unwanted eigencomponents

Filtering algorithms
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Choice of L

L must approximate the spectral projector on the first Nband
eigenvectors
If H = QΛQT , then f (H) = Qf (Λ)QT : find a computable
matrix function f that approximates χ[λ1,λN ]

Computable functions of matrices? Polynomials
Hard to approximate a discontinuous function with
polynomials. Rational functions better but require inversion
(too expensive in our case) : focus on polynomials
p must be large on [λ1, λNband ], small on [λNband+1, λNpw ]

What is the smallest polynomial of a given degree on
[λNband+1, λNpw ]?

Chebyshev polynomials
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Choice of L
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Chebyshev filtering

Old ideas (Rutishauser, 1969), applied to DFT by Zhou, Saad,
Tiago, Chelikowsky (2006), gaining popularity in DFT

1: while not converged do
2: for each band i do
3: ψi ← Tn(ψi )
4: end for
5: Apply the Rayleigh-Ritz procedure to the ψi
6: end while

where Tn is the Chebyshev polynomial on [λNband+1, λNpw ].

Need approximation of λNband+1, λNpw , easily done
Very good parallel properties (much less Rayleigh-Ritz than in
LOBPCG)



Choice of degree

If n is too small, too many communications
If n is too large, every ψi converges to the first eigenvector!
How large is too large? Amplification factor:

Tn(λ1) ∼n�1

(
1 +
√

f
1−
√

f

)n

,

f =
λN − λ1
λNb − λ1

fraction of the spectrum to compute.

Heuristic: Tn(λ1)� 1016

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20
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30

x

16/log
10
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x

Not an issue in practice



Convergence analysis

Remember convergence theory for CG

‖en‖A = min
e∈e0+Kn(Ae0)

‖e‖A

= min
P∈Pn,P(0)=1

max
λ∈Λ(A)

P(λ) ‖e0‖A

≤ max
λ∈Λ(A)

Tn(λ) ‖e0‖A

≤
(
2
√
κ− 1√
κ+ 1

)n

‖e0‖A ,

where Tn is a suitably rescaled Chebyshev polynomial
Same applies for LOBPCG: Chebyshev acts as LOBPCG’s
worst case
Crucial difference: LOBPCG uses preconditioning, Chebyshev
cannot

Is the additional scalability worth it? Only one way to find out ...
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Parallelism

Npw

Nbands

1

2D MPI grid
Vertical communication for Hamiltonian application,
horizontal communication for Rayleigh-Ritz
Load balancing problem (extremal eigenvectors converge
faster): use cyclic distribution
Scalability essentially limited by the Rayleigh-Ritz step
(diagonalizing a 1000× 1000 dense matrix stops scaling
around 100 processors, even with state-of-the-art libraries)



Wonders of BLAS

Important part of the computation: operations like PT Ψ, with
P a Npw × Nprojs matrix of projectors, and Ψ a Npw × Nband
matrix of wavefunctions
Previous implementation in Abinit:

1: for iband=1,nband do
2: for ia=1,natom do
3: for ilmn=1,nlmn do
4: for ipw=1,npw do
5: ...
6: end for
7: end for
8: end for
9: end for

Replaced by BLAS3: up to x5 speedup (but more memory)
Physicists still have a “count the FLOPS” culture
Progress = physicists + mathematicians + HPC experts
working together



Strong scaling
Speedup for 512 atoms of Ti, Curie. 4k bands, 170k plane waves

512 1024 2048 4096 8192 16384

512

1024

2048

4096

8192

16384

Processors

Sp
ee

du
p

Ideal
Chebyshev
LOBPCG

1



SCF Convergence
SCF (nonlinear) convergence, 256 Titanium atoms
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Cheb, nline 4

Cheb, nline 8

LOBPCG, M = 32, nline = 4

LOBPCG, M = 32, nline  = 8

Chebyshev sensibly identical to LOBPCG. Choice of nline is not
trivial
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Convergence acceleration

Initialize ρ Form Veff[ρ]
Diagonalize
−1

2∆ + Veff[ρ]

Build ρ′ from
the N lowest
eigenvectors

ρ′ − ρ small
enough?

Update ρ
from ρ′

Done

no

yes

Task: find the fixed point of the mapping ρ→ ρ′

General setting: find a fixed point of g(x), ie a solution of
f (x) = g(x)− x = 0
We can compute g at a cost of O(N3), but not its derivatives:
no Newton
Can we do better than xn+1 = g(xn)?



Anderson acceleration

Anderson, ’65 :

xn+1 =
n∑

i=n−m
αig(xi ),

with
∑n

i=n−m αi = 1
α chosen to minimize the linearized residual of

∑n
i=n−m αixi :

α = argmin
α∈Rm+1,

∑
i αi =1

∥∥∥∥∥∥
n∑

i=n−m
αi (g(xi )− xi )

∥∥∥∥∥∥
Requires the solution of a N ×m linear least square problem,
can be implemented efficiently (incremental QR factorisation,
each step is O(Nm), usually negligible compared to the cost
of computing g)
Usually m fixed, around 10 (keep 10 last iterations)
Used systematically in the electronic structure community, but
not much use outside



Numerical analysis

Known as DIIS (Pulay, ’82) among chemists
Related but not equivalent to convergence acceleration
methods studied by numerical analysts (Reduced-Rank
Extrapolation, Minimal Polynomial Extrapolation ...). Which
is better?
Studied only recently by mathematicians

1 Fang-Saad ’08: equivalent to a multisecant method
2 Walker-Ni ’11: equivalent to GMRES in the linear case when

m =∞
3 Toth-Kelley ’13: convergence in the nonlinear case, when g is

a contraction and the α remain bounded



Ongoing work (joint with B. Stamm and Y. Maday)

Empirically, even when the convergence is linear, the
convergence rate depends on initial conditions: analysis
complicated, similar to restarted GMRES
In the linear case g(x) = Ax + b, convergence no worse than
||A||n (compare with ρ(A)n for the fixed point iteration)
Explicit examples for symmetric 2D matrices with m = 1
where ρ(A)n is sharp → no acceleration
Explicit examples for non-symmetric 2D matrices with m = 1
where ||A||n is sharp → worse than fixed point!
Work in progress
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The Future Of Plane-Wave DFT

Present capabilities: 10k electrons, 0.1 Petaflops, 10k procs
If we want to do 100k electrons (and we do), need 0.1 exaflop,
10m procs (in a supercomputer near you by 2020-2025?)
Towards exascale: compute individual parts of spectrum in
parallel?
Can we solve an interior eigenvalue problem without
inversions?
Use “windowing” polynomials, but need very high degree
(Schofield, Chelikowsky, Saad, 2011)
Use iterative methods to invert shifted systems? Would need
a better preconditionner.



Conclusion: mathematical open problems

Analysis of CG? LOBPCG?
Rigorous numerical analysis of the stability of ChebFi
Optimal basis size M (cost model to balance increased cost
and accelerated convergence)
Optimal degree?
What is the polynomial/rational/Padé filter that optimizes the
convergence rate?
Is there a way incorporate preconditioning in non-optimisation
based eigenvalue solvers?
Conventional wisdom in numerical analysis: Krylov good,
Chebyshev bad. But Krylov methods need orthogonality =
global communications. Time to dust off old textbooks?



Opportunities for math/chemistry/CS collaborations

Software engineering
Accuracy, stability? (CADNA?)
Reproducibility?
Automatic differentiation?

High performance computing
Dense linear algebra
Heterogeneous computing units

What to do with simulations output?
Visualization
Fitting

Machine learning: learn the function that maps atomic
configuration to energies?



Thank you!
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