Understanding and Improving
Device Access

Michael Swift
(with Asim Kadav and Matt Renzelmann)
University of Wisconsin-Madison

Devices enrich computers

* Keyboard
* Sound

* Printer

* Network
* Storage

* Keyboard

* Flash storage
* Graphics

* WIFI

* Headphones
* SD card

* Camera

* Accelerometers
* GPS

* Touch display
* NFC

Huge growth in number of devices

New /O devices:
accelerometers, GPUS, GPS,
touch

Many buses: USB, PCl-e,
thunderbolt

Heterogeneous OS support:
|0G ethernet vs card readers

Device drivers: OS interface to devices

g diversity :

applications

OS

Expose device
abstractions and hide

: : device complexity
Expose kernel device drivers
abstractions and hide

OS complexity
bus;
devices E

< = = >
diversity

Allow diverse set of applications and OS services to

access diverse set of devices

Evolution of devices hurts device access

Low

Simplicrty ey

Efficient dejice Cost
Reyagpoityin “effective

Growth in number Run in challenging
and diversity environments

*

Complex
firmware and
cenfiguration

Hardware failures
(like CMOS
issues)

Goal: Address software and hardware complexity

* Understand and improve device access in the
face of rising hardware and software complexity

Increasing hardware
complexity

Increasing hardware
complexity

Reliability against Low latency
hardware failures device availability 2

Increasing software Better understanding

complexity of driver code

Outline

SOSP ’09

First research consideration of | |
hardware failures in drivers Tolerate device failures

ASPLOS ’12

Largest study Qf dmver; e Understand drivers and
understand their behavior and otertial obportUnities
verify research assumptions P PP

ASPLOS I3

Introduce checkpoint/restore Iin .
. Transactional approach for
drivers for low latency
low latency recovery
fault tolerance

What happens when devices misbehave?

* Drivers make it better
* Drivers make it worse

Early example: Apolio 11 1969

* Hardware design bug almost
aborted the landing

* Assumptions about antenna in
driver led to extra CPU

* Scientists on-board had to
manually prioritize critical
tasks

Current state of OS-hardware interaction

2013

* Many device drivers often assume device perfection
- Common Linux network driver: 3¢59x.c

while (ioreadl6(ioaddr + Wn7 MasterStatus))
& 0x8000);

Hardware dependence bug: Device malfunction
can crash the system

Sources of hardware misbehavior

* Sources of hardware
misbehavior

* Firmware/Design bugs

* Device wear-out, insufficient
burn-in

* Bridging faults

* Electromagnetic
interference, radiation, heat

‘-----------

~)

é
— &
Firmware)@

Electrical

Sources of hardware misbehavior

* Sources of hardware
misbehavior

* Results of misbehavior

* Corrupted/stuck-at inputs
* Timing errors

* Interrupt storms/missing
interrupts

* Incorrect memory access

11

»
An evidence: ‘3
Windows Server

: : (o)
Transient hardware failures caused 8 /) of all crashes and

o
9/) of all unplanned reboots [|]

* Systems work fine after reboots
* Vendors report returned device was faultless

Existing solution is hand-coded hardened drivers

(o
* Crashes reduce from SA to 3%

[1] Fault resilient drivers for Longhorn server, May 2004.
Microsoft Corp.

How do hardware dependence bugs manifest?

. Pr|vers use device printk(“%s”, msg[inb(regA)]);
data in critical control and data paths

if (inb(regA)!= 5) {

Drivers do not report device return; //do nothing

malfunction to system log }

3 if (inb(regA)!= 5) {

Drivers do not detect or recover from

. : panic();
device failures }

13

Vendor recommendations for driver developers

Recommendation Summary Recommended by
Sun MS Linux

Input validation

Read once& CRC data

iming Infinite polling

®

O ®

DMA protection ® ®
o ®

®

Stuck interrupt

Lost request

Avoid excess delay in OS

Unexpected events o

Reporting Report all failures ®

Recovery Handle all failures ®

Goal: Automatically implement as many recommendations
as possible in commodity drivers

Carburizer [3©5P 09]

Goal: Tolerate hardware device failures in software through
hardware failure detection and recovery

Static analysis component Runtime component

* Detect and fix hardware * Detect interrupt failures
dependence bugs
* Provide automatic
* Detect and generate missing | recovery
error reporting information

Carburizer architecture

Bug detection and Recovery and interrupt
automatic fix generation ! watchdog

OS Kernel

. i Kernel Interface
Carburizer ¥

Compiler pmg Carburizer

¥ Hardened Runtime
S Driver Binary

Faulty Hardware

Hardening drivers

* Goal: Remove hardware dependence bugs

uses data from device

* Carburizer detects and fixes hardware bugs:

Unsafe Unsafe System
array pointer panic
reference reference calls

Infinite
polling

Finding sensitive code

* First pass: ldentify tainted variables that contain
data from device

Tainted Variables

int tes'r s of device 1/0 -
g

= readl();
Port I/b inbDriw
Memor?-mlﬁpped 1/0 : readl/readw
DMA buffers

Pata fromuﬁgg packets

int set() {
= test();

} network card

18

Detecting risky uses of tainted variables

* Second pass: ldentify rislky uses of tainted variables

Example: Infinite polling
Driver waiting for device to enter particular state
Solution: Detect loops where all terminating conditions depend on
tainted variables
Extra analyses to existing timeouts

Infinite polling

* Infinite polling of devices can cause system lockups

static int amd81l1le read phy(.....
{

reg_val = readl(mmio + PHY_ACCESS);
while (reg_val & PHY_CMD_ACTIVE)

reg_val = readl(mmio + PHY_ACCESS);

AMD 8111le network driver(amd8llle.c)

20

Hardware data used in array reference

* Tainted variables used as array indexes
* Detect existing range/not NULL checks

static void _ init attach _pas _card(...)

{
if ((pas_model = pas_read(@xFF88)))

{

sprintf(temp, “%s rev %d”,

pas_model names[(int) pas model], pas_read(0x2789));

Pro Audio Sound driver (pas2_card.c)

21

Hardware data used to de-reference pointers

* Tainted variables used as pointer dereference

void hptitop_iop request callback(...)

arg= readl(...);

if (readl(&reqg->result) == IOP_SUCCESS) {

arg->result = HPT_IOCTL_OK;

}
¥

Highpoint SCSI driver(hptiop.c)

*Code simplified for presentation purposes

22

Analysis results over the Linux kernel

Driver class Infinite polling Staticarray =~ Dynamic array Panic calls
net |17 2 21 2

scsi 298 31 22 121
Seuie Lightweight and usable technique to find L
video hardware dependence bugs

other 381 9 57 32
Total 860 43 89 179

* Analyzed/Built 6300 driver files (2.8 million LOC) in 37 min
* Found hardware dependence bugs in driver code

* False positive rate: 7.4% (manual sampling of 190 bugs)

23

Repairing drivers

Call recovery service

t g)

Timeout aybounds Not null

checks check checks

Unsafe Unsafe System
array pointer panic
reference reference calls

Infinite
polling

Runtime fault recovery : Shadow drivers

[Driver-Kernel

Interface
« Carburizer calls generic recovery 4
service if check fails =
* Low cost transparent recovery Shadovv —\ S
Driver
V.
Device
Driver
* No isolation required (like Nooks) I
~ Device

Swift [OSDI ’04]

25

Carburizer automatically fixes infinite loops

timeout = rdtscll(start) + (cpu/khz/HZ)*2;
reg_val = readl(mmio + PHY_ACCESS);
while (reg val & PHY _CMD_ACTIVE) {

reg_val = readl(mmio + PHY_ACCESS);

if (_cur < timeout)
rdtscll(_cur);
else

__recover_driver(); Timeout code
added

AMD 8111le network driver(amd8llle.c)

*Code simplified for presentation purposes

26

Carburizer automatically adds bounds checks

static void _ init attach _pas card(...) Array bounds

{ detected and

if ((pas_model = pas_read(©xFF88))) check added
{

if ((pas_model< 0)) || (pas_model>= 5))
__recover_driver();

sprintf(temp, “%s rev %d”,
pas_model names[(int) pas_model], pas_read(0x2789));

Pro Audio Sound driver (pas2_card.c)

*Code simplified for presentation purposes

27

Fault injection and performance

* Synthetic fault injection on network drivers

Device/Driver Original Driver Carburizer

Behavior Detection Behavior Detection Recovery

3COM 3C905 |CRASH None RUNNING |Yes Yes
DEC DC 21x4x|CRASH None RUNNING |Yes Yes

* < 0.5% throughput overhead and no CPU overhead with
network drivers

Carburizer failure detection and transparent recovery
works and has very low overhead

28

Summary

Recommendation Summary Recommended by Carburizer
Intel Sun MS Linux Ensures
Validation Input validation ® ® o
Read once& CRC data o ® ®
DMA protection o ®
Timing Infinite polling ® o ®
Stuck interrupt ®
Lost request ®
Avoid excess delay in OS o
Unexpected events ® ®
Reporting Report all failures ® @ O

Carburizer improves system reliability by automatically ensuring
that hardware failures are tolerated in software

| |Wrap 17O memoryaccessl | | @ | 9 | @ | |

Impact

Linux Plumbers Conference [Sep ‘I |]

LWN Article with paper & list of bugs [Feb ‘12]

Released patches to the Linux kernel

Tool + source available for download at:

http://bit.ly/carburizer

30

Outline

Tolerate device failures

Understand drivers and
potential opportunities

Overview
Recovery-specific results

Transactional approach for
cheap recovery

31

Recovery performance: device initialization is slow

* Multi-second device probe
* |dentify device
* Cold boot device
* Setup device/driver structures

* Configuration/Self-test

@ Module registration

Allocate device structures

|

Map BAR and /O ports

|

Register device operations

|

Detect chipset capabilities

|

Cold boot the device

|

Verify EEPROM checksum

Device ready
for requests
‘ Configure device i

Allocate driver structures

*

Set chipset specific ops

Self test on boot
Self test?

* What does slow device re-initialization hurt?

* Fault tolerance: Driver recovery

* Virtualization: Live migration, cloning

* OS functions: Boot, upgrade, checkpoints

\

32

Recovery functionality: assumes drivers follow class behavior

Driver-Kernel

, * Kernel exports standard entry points for
entrybpoints

. every class (like “packet send” for network
class)
Shadow STaps
Driver * Shadow drivers records state by interposing
class defined entry points

\4

%eylce * Recovery = Restart and replay of captured
rf/er state
. * Do drivers have additional state?
Device

How many drivers obey class behavior?

Our view of drivers is narrow

Drivers
6.7 million LOC in Linux

Driver
Research (avg.
2.2 drivers/ Bugs
system)

34

Understanding Modern Device Drivers!ASPLos 2012]

Study source of all Linux drivers for x86 W
(~3200 drivers)

Driver Driver Driver

properties interaction similarity

* Code properties * Driver kernel & * 7 million lines of
* Verify research device interaction code needed?
assumptions * Driver architecture

3

Study methodology

* Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

* Identify driver entry points, kernel
Driver and bus callouts

properties * Device class, sub-class, chipsets

* Bus properties & other properties
(like module params)

* Driver functions registered as
entry points (purpose)

Driver entry points

#inolude <m=b

unsigned main() |

{

write : Bello all; ‘

write : I know !;

write : not real; |

write : :p ; ‘

retarn all; ‘

} !

open

For every

obe

driver i xXmit
2
‘ r close

) @

Study methodology

* Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

* Reverse propagate information to
aggregate bus, device and kernel
Driver behavior

interactions

Driver entry points

X)

{

write @ | 1;
write : I 13
write : T real;
write : :p ;
return all;

e | open

xmi probe
, = .k ;2 cljﬁx ,%‘)

kmalloc

Study methodology

* Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

Driver * Use statistical clustering techniques and
similarity static analysis to identify similar code

38

Contributions/Outline

Tolerate device failures

Understand drivers and Overview
potential opportunities Recovery specific results

Transactional approach for
cheap recovery

39

char drivers

block drivers

net drivers

acpi
bluetooth
cdrom
char
crypto
edac
firewire
gpio
gpu
hid
hwmon
input
isdn
leds
media
message
misc
parport
platform
pnp
serial
sound
tty
video
watchdog
ata
block
ide
md
mtd
SCSi
atm
infinibang
net
uwb

m— Driver Code
— . o
| __ Characteristics
1]
% Initialization/cleanup — 36%
* Core I/O & interrupts — 23%
* Device configuration — 15%
- * Power management — 7.4%
* Device ioctl — 6.2%
| L Percent-
J — age of LOC
| I
I o
[
] 10
[- o
Initialization code dominates driver LOC
and adds to complexity

init

1 1 1 1 [1 1 N
cleanup ioctl config power error proc core intr

40

Problem (a): Drivers do behave outside class definitions

* Non-class behavior in device drivers:

- procfs/sysfs interactions, unique ioctls, module params

L
DW1520 Wireless-N WLAN Half-Mini Card Properties 2% |

General: Advanced :Driver I Details I Power Managemerﬂ

The following properties are available for this network adapter. Click
the property you want to change on the left, and then select its value
on the right.

Property: Value:

*. Disable Upon Wired Connect - [USA vJ
Fragmentation Threshold

IBSS 54gfm) Protection Mode 1 $ echo 1 > /sys/class/sound/mixer/
IBSS Mode

Locali' Administered MAC Address ‘ d eVi ce / ena b 1 e
Location

Minimum Power Consumption
PLCP Header

Priority & VLAN

Rate (802.113)

i Rate (802.11b/a)

m

Windows WLAN card
config via private ioctls

Linux sound card config via sysfs

Do drivers belong to classes!?

* Non-class behavior stems from:

- Load time parameters, procfs and sysfs interactions, unique ioctls

Results as measured by our analyses:
* 36% of drivers use load time parameters
* | 6% of drivers use proc /sysfs support

* | 6% of drivers use ioctl that may include non-standard behavior

Overall, 44% of drivers do not conform to class behavior and
recovery will not work correctly for these drivers

Problem (b): Too many classes

game port

| digital video broadcasting |

media (10.5%)

isdn (3.4%)

5 Jl crypto

sound (10%)
| thermal F 2%)
fire wire
. :
display Linux

video (5.2%) | Device Drivers
back light

char (

| driver libraries .\xenllguest

bus drivers

w
—
floppy mtd (1 5%) | (9.6%)

Class-specific driver recovery leads to a large
kernel recovery subsystem

network RAID

*x “Understanding Modern Device Drivers?” ASPLOS 2012

Driver

properties

Few other results

* Many assumptions made by driver research
does not hold:
* 44% of drivers do not obey class behavior
* 15% drivers perform significant processing
* 28% drivers support multiple chipsets

Driver
interactions

* USB bus offers efficient access (as
compared to PCI, Xen)
* Supports high # devices/driver
(standardized code)
* Coarse-grained access

Driver
similarity

* 400, 000 lines of code similar to code
elsewhere and ripe for improvement via:
* Procedural abstractions
* Better multiple chipset support
* Table driver programming

* More results in “Understanding Modern Device Drivers” ASPLOS 2012

4k

Outline

Tolerate device failures

Understand drivers and
potential opportunities

Checkpoint/restore
FGFT
Future work and conclude

Transactional approach for
cheap recovery

45

Limitations of restart/replay recovery

[Driver-Kernel

Device save/restore limited to restart/ Interface
replay 4
* Slow: Device initialization is complex T
(multiple seconds) Shadow —f P
* Incomplete: Unique device semantics Driver
not captured
v
* : i :
Hard Nee.d to be written for every Davae
class of drivers .
Driver
* Large changes: Introduces new, large
kernel subsystem I
Device

Checkpoint/restore of device and driver state removes the
need to reboot device and replay state

46

Checkpointing drivers is hard

% Easy to capture memory state

. checkpoint

e 20

Intuition: Operating systems already capture device
state during power management

] 1 card

* Device state is not captured

* Device configuration space

* Internal device registers and counters

* Memory buffer addresses used for DMA
* Unique for every device

Intuition with power management

* Refactor power management code for device checkpoints
* Correct: Developer captures unique device semantics

* Fast: Avoids probe and latency critical for applications

* Ask developers to export checkpoint/restore in their drivers

48

Device checkpoint/restore from PM code

SheEtpdint

Restanmie

Restore or reset
DMA state

Suspend/resume code provides device
checkpoint functionality

Fine-Grained Fault Toleranceaseios 2013

* Goal: Improve driver recovery with minor changes to drivers

* Solution: Run drivers as transactions using device checkpoints

Device state Driver state Execution model

* Run drivers invocations as
memory transactions

* Developers export * Checkpoint device

checkpoint/restore fn. * Execute driver code as

* Use source transformation to memory transactions
copy parameters and run on

* On failure, rollback and
separate stack

restore device

* Re-use existing device

SFl locks in the driver

<> network
. driver
1

network
driver

Adding transactional support to drivers

1200 LOC :

Obiject tracking

Main driver
module :
. : Marshalin
Source transformation T 5 D ars ah I‘.g/
(adds driver transactions)) > Jemarshaling
: Kernel
Driver with I SFI driver 1dls s
checkpoint support module
User supplied : Communication
annotations : and recovery
: support

SFI = software fault
isolated

Static modifications | Run-time support

Transactional execution of drivers

. c ———"_ 4 Range Table
= netdev->priv->rx_ring J
) @ netdev->priv->tx_ring J oxffffa000 | Read
St A $ 00909090900 0 o= EREREREE e oxffffaoo8 Write
(get rmgpﬂ‘l netdev) E oxffffaooa Read
== =T Froh ’ . SFI
network : Kernel
. H‘ network Log
driver : driver
result J : alloc

e netdev->priv->rx_ring }- -

netdev->priv->tx_ring }

* Detects and recovers from:
* Memory errors like invalid pointer accesses
* Structural errors like malformed structures

* Processor exceptions like divide by zero, stack corruption

FGFT: Failed transactions

X C ———"_ 4 Range Table
Sl Pt
- oxffffaooo Read
St e $ 009090909000 = EREERER e oxffffaoo8 Write
(get I"lngparam‘. netdev J /> E oxffffaooa Read
------- Iy 118 : SFI Kernel
network .
) network Log
driver !)
] dl’lvel’ a"oc
\

R T e 0

FGFT provides transactional
execution of driver entry points

How does this give us transactional execution?

* Atomicity: All or nothing execution
* Driver state: Run code in SFI module

* Device state: Explicitly checkpoint/restore state

* |solation: Serialization to hide incomplete transactions
* Re-use existing device locks to lock driver

* Two phase locking

* Consistency: Only valid (kernel, driver and device) states
* Higher level mechanisms to rollback external actions

* At most once device action guarantee to applications

54

ey Recovery speedup

times
1800.00
1,800ms
| Restart recovery
o | FGFT recovery
,350ms
1030.00
900ms
680.00
450ms 310.00
150.00 120.00 115.00
g lo.o7 .5-°° B oot

8139too el000 pegasus r8169 ensl37] psmouse

FGFT provides significant speedup in driver recovery and
improves system availability

55

Programming effort

LOC Checkpoint/restore effort

LOC Moved LOC Added
813%9too |, 904 26 4
el000 13,973 32 10
r8169 2,993 |7 5
pegasus |, 541 22 5
ens| 371 2,110 |6 6
psmouse 2,448 19 6

FGFT requires limited programmer effort and
needs only 38 lines of new kernel code

Throughput with isolation and recovery

CPU: 2.4% 2.4% 2.9% 3.4%

100 100
100 93 96

Q
£
O
é 75
XX 50 Native
e <
_§§ FGFT-1/O-all
50 25 FGFT-off-1/O
_g B FGFT-1/O-1/2
|_

N

FGFT can isolate and recover high bandwidth devices at low
overhead without adding kernel subsystems

netperf on Intel quad-core machines

Talk summary

SOSP ’09

First research cl:on5|dlerat|lon of Released tool, patches &
hardware failures in drivers informed developers

ASPLOS ’12

Largest study of drivers to , ,
understand their behavior and Measured driver behavior &
, , identified new directions
verify research assumptions

ASPLOS’I13
Introduced checkpoint/restore Iin ,
dr o | aten Fast & correct recovery with
FVERS Torlow atency iIncremental changes to drivers
fault tolerance

58

Questions

Thanks to all my collaborators

Michael Swift
* WWW.CS.Wisc.edu/~swift

Extra slides

