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Introduction

� Number of cores in computing ICs is exploding

� Applications use more and more memory 

amount

� Cores need a fast access to the memory

=> Memory Wall
Intel Terascale Architecture

(source wikipedia)
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Introduction

� Memory bandwidth per core in Nvidia GPUs over time:
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source: http://denalimemoryreport.com



Outline
� Context and motivations

� The cube law

� 3D technologies

� TSAR manycore architecture

� Architecture

� Cache Coherency

� Adaptive distributed 3D cache
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� TSAR 3D L3

� Adaptivity

� Architecture

� Results

� Tile allocation

� Fault tolerance

� Hardware implementation
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Context and Motivations - Cube Law

� The cache miss rate is a Sx function where S is the size 

of the cache (see [1])

� x is between 0.36 and 0.62 on commercial workloads

=> Mean of 0.5
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Context and Motivations - Cube Law

� With no sharing between processors: memory 

accesses are multiplied by the number of cores

� To keep constant the external memory bandwidth 

when the number of cores is multiplied by N, the 

total cache size must be multiplied by N3
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total cache size must be multiplied by N

� With 16% of data sharing (mean for PARSEC 

benchmarks [1]):

=> (1-0.16)3*N3 =  0.6*N3 (with N big)

� Manycores need very big caches and/or fast memory

=> Go to 3D caches



Context and Motivations - 3D Stack

� Memory on top of processors

� Multiple layers of logic => Through Silicon Vias (TSV)

� Example of stacking:
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Source: Denis Dutoit; LETI
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Context and Motivations - 3D TSV

� Different TSV technologies (lined / filled)

AR 1 

Ø80x80µm

SiO2 flanc

métal RDL BCB

bulle air sous BCB

6
0

µ
m
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AR 10,  

Ø10x100µm

Trench AR 20,  

5x100µm

AR= Aspect Ratio Source: Patrick Leduc; LETI

| 9



Context and Motivations - 3D Bumps

Cu pillars

SnAg Solder

Top chip

Bottom chip
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Classic Flip chip 
(Ball or stud bump)

Pitch

Solder-free µinserts Cu-Cu Direct bonding

Si

Si

Cu

SiO2

Si

Si

Cu

SiO2

Nickel Microinsertion Need very flat surface
Cleaning

µtubes

> 100 µm 100-30 µm range Down to 5 µm30-10 µm range

Microinsertion

Source: Patrick Leduc; LETI
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Context and Motivations - Conclusion

⇒ Use dense 3D on-chip memory to build a n+1 level 

cache

� 3D memory distributed amongst the circuit with 

many 3D links
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many 3D links

=> High bandwidth and fault tolerance

� Goal: stackable and reusable architecture to adapt 

memory quantity to the application needs, including 

fault tolerance
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MP²SOC with a 2D-mesh NoC (DSPIN) => GALS

TSAR Manycore [2] - Architecture
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Cluster 01

Cluster 10Cluster 00

Cluster 11 0xC00…

0xFF…

0x800…

MEM
L2 Cache

ICU, 
DMA, …

TSAR Manycore - Architecture

© CEA. All rights reserved

Adaptive 3D Cache Architecture for Manycores – GDR SOCSIP – Eric Guthmuller | 15 November 2012 | 15

Cluster 10Cluster 00

0x000…

0x400…

� The physical memory space is statically 
distributed amongst the clusters

� TSAR is a Non-Uniform Memory Access 
architecture (NUMA)

=> The OS has to take NUMA effect into account 
when it places tasks and memory objects

Unified Memory Map



TSAR Manycore - Cache Coherency

� Thanks to the scalable bandwidth provided by the NoC 

technology, the TSAR architecture use a write-through policy 

between L1 and L2 caches 

⇒ the L1 cache architecture and the coherency protocol are 

simplified

⇒ the cache coherency is ensured by the L2 cache (Home 
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⇒ the cache coherency is ensured by the L2 cache (Home 

Agent)

� As snooping does not scale with a large number of cores, TSAR 

relies on a L2 cache directory-based approach

⇒ Each L2 cache tracks all the copies stored in the L1 caches 

in order to update them



TSAR Manycore - Cache Coherency

� TSAR implements the DHCCP protocol (Distributed Hybrid 

Cache Coherence Protocol): 

� multicast / update when the number of copies is smaller than a 

predefined threshold

� broadcast / invalidate when the number of copies is larger than a 

predefined threshold
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� The DHCCP has been analyzed, from the point of view of dead-

lock prevention. Three types of traffic have been identified:

� Direct read/write transactions (L1 caches => L2 caches)

� Coherency transactions (L2 caches <=> L1 caches)

� External memory accesses ( L2 caches => Ext. RAM)

� 6 communication channels



TSAR Manycore - Cache Coherency

� Write-through: 
� Simple coherency protocol

� Simple hardware

� BUT more network traffic

� Caches need to be inclusive
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� Write-back:
� Network traffic reduced

� Automatic replication and distribution

� Cache storage better exploited

� BUT complex protocol

� Problem of false sharing
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External  RAM  ctrl

3D DSPIN micro network

3D Cache - TSAR 3D L3
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External  RAM  ctrl

3D DSPIN micro network

L3
Tile

L3
Tile

L3
Tile

3D DSPIN micro network

Our proposal:
L3

Cache

3D Cache - TSAR 3D L3
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Impact of the 

external memory 

bandwidth on 

performances

~x20

Do We Need a L3 cache? Which cache?

E
xe

cu
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Number of tiles (4 to 256 cores)

Optimal cache line size depends 

on the available external 

memory bandwidth

256 bytes 
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� An architecture built around 3 NoCs

Ext Mem
Controller

PU

PU 2D 
NoC

Address-
based routing

3D
Cache 
NoC

ID-based 
routing

3D
ExtMem

NoC
ID-based 

Cache
tile 1

Cache
tile 2

Cache
access 

control 1

Cache
Access

control 2

L2
Cache

L2 
Cache

3D Cache - TSAR 3D L3
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3D Cache - TSAR 3D L3

� Proposed 3D architecture: regular 3D mesh

Hypothesis: 1:1 Proc tile/Cache tile

3D
Cache tile

3D

Last Level Cache 
(tier 1 to N)
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3D Cache - TSAR 3D L3

� Proposed 3D architecture: regular 3D mesh

Hypothesis: 1:1 Proc tile/Cache tile

3D
Cache tile

3D

Last Level Cache 
(tier 1 to N)

MISS

Stackable

Fully fonctional 
caches

Private/Shared
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Cache Access Control 3D NOC

DDR

Controller(s)

3D
Cache tile

3D
Cache tile

3D
Cache tile

Manycore  
(tier 0)Distributed control:

Scalable+adaptable



3D Cache - Adaptivity

Cache 
Controller 0

Cache access control

3,0 3,1 3,2 3,3

2,0 2,1 2,2 2;3

Cache tiles@ 
0x000…

Memory

Segment 0

Segment 1

3,0 3,1

2,0 2,1

� Allocation of cache tiles to memory segments
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3D Cache - Adaptivity
� Allocation of cache tiles to memory segments

Cache 
Controller 0

Cache 
Controller 1

Cache access control

3,0 3,1 3,2 3,3
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First mapping:
Mapping of cache 
access controllers 
in memory space

@ 
0xFFF… Second mapping:

Allocation of cache 
tiles to cache access 

controllers

� Conclusion: 2 levels of adaptability:

� Programmable by the soft (OS) at runtime

� Very dynamic when cache tiles are shared

� 3D: low latency to neighborhood

� Different cache quantities for different memory segments

� Shared cache tiles: the most accessed memory segment takes the most part of 

the cache tile



� Cache controllers integrated in the 

computing tier

� Selects the tile coordinates and its cache set to use

3D Cache - Architecture 

Ln-1 cache 3D Cache
distribution 

function

Req
address

Cache set
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� Cache controllers integrated in the 

computing tier

� Selects the tile coordinates and its cache set to use

3D Cache - Architecture 

Ln-1 cache 3D Cache
distribution 

function

Req
address

Cache set
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� Four 3D 64 bits DSPIN NoC channels: 
L2->L3 (req+rsp) + L3->Ext Mem (req + rsp)

3D Cache - Architecture 

dec

network 
links

North

North

South

network
links

output
arbiters

input
FIFOs

output
FIFOs

3D DSPIN Routermesochronous
FIFOs

bisynchronous
FIFOs
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3D Cache - Architecture

� Low frequency high throughput tile

� 1 MB cache tile

1MB Data Directory
16 ways

ser/des FIFOs

3D 7x7 router
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� Adaptive distributed 3D cache
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Results: Benchmark platform 
16 tiles/tier

64 
processors

PU 0 PU 1 PU 2

3D
Cache tile

PU 3 L2 cache

3D Cache Ctrl

3D
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� SystemC Cycle and Bit Accurate models

� SoClib [4]

� 16 tiles of 4 cores

� 16x1MB 3D cache tiles per memory tier

� L3 tiles frequency == Processor frequency

PU 0 PU 1 PU 2 PU 3 L2 cache

L1
Caches

MIPS32

L1
Caches

MIPS32

NIC

x4



� Bandwidth to External Memory: we emulate an 

equivalent 1024 cores circuit

� Splash 2 multithreaded benchmarks on MutekH [5] OS:

� Radix: a radix sorting algorithm

� FFT: a distributed FFT

Results: Benchmark platform
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� FFT: a distributed FFT

� LU: a matrix factorization algorithm

� Ocean: a sea current solver



First case: Private caches

L3
Cache tile

L3
Cache tile

L3
Cache tile

L3
Cache tile Private

cache tiles
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� Two applications, 32 cores each:

� Memory intensive (red)

� Computational (grey)

� 1st case: private 3D cache tiles 

EXPLOIT NUMA

ALLOCATION !

Comp Mem Comp MemComp Mem Comp Mem



L3
Cache tile

L3
Cache tile

Second case: Shared caches

L3
Cache tile

L3
Cache tile

Shared
cache tiles
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Comp Mem Comp Mem

� 2nd case: shared 3D cache tiles

� Competition between the two applications on cache 

utilization

=> The most demanding application will occupy more 

cache space

Comp Mem Comp Mem

cache tiles



Results: Tiles Allocation
Execution Time with shared caches  

0
0,2
0,4
0,6
0,8

1
1,2

App Set
1

App Set
2

App Set
3

App Set
4

App Set
5

App Set
6

R
ed

u
ct

io
n

 w
rt

. 
p

ri
va

te
 

ca
ch

es

Memory Intensive App Computational App

� We study execution time for shared

caches wrt. private caches

� Mix of Splash FFT and Splash LU 

applications for test cases

The most memory intensive 

application performs better with 

shared caches

=> Quality of Service vs Best Effort 
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Total traffic to memory with shared caches
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=> Quality of Service vs Best Effort 

The overall traffic to the 
external memory is 
reduced by up to 55%



Results: Tiles allocation

App Set
Memory 

Intensive App

Computational 

App
L3 cache

1 FFT 218 FFT 214 1 tier (16MB)

2 FFT 220 FFT 218 4 tiers (64MB)
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3 LU 1024 LU 512 1 tier (16MB)

4 FFT 218 LU 512 1 tier (16 MB)

5 FFT 218 LU 1024 1 tier (16 MB)

6 FFT 220 LU 512 4 tiers (64MB)



� We consider only faulty cache tiles

� A list of faulty tiles in each cache access controller and a 

decision algorithm

� Two possible algorithms if we select a faulty tile

Results: Fault Tolerance
V Faulty Good

1 (xf,yf,zf) (xg,yg,zg)

. … …

First order algorithm Second order algorithm
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(X,Y,Z)

Tier 0 Tier 1

faulty

First order algorithm Second order algorithm



� We compare the two algorithms while we introduce 

faults

� 1 tier 3D cache (16 tiles) with FFT 218

⇒ 1 faulty tile: 13.5% execution time increase for 

first order algo versus 2.9% for second order

Results: Fault Tolerance
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first order algo versus 2.9% for second order

� 4 tiers 3D cache (64 tiles) with FFT 220

⇒ 1 faulty tile: 1.8% execution time increase for first 

order algo versus 0% for second order

⇒ 4 faulty tiles: 9.3% execution time increase for 

first order algo versus 2.7% for second order
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� Adaptive distributed 3D cache
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� Synthesis of a 1MB cache tile in 65nm with SRAM 

memories
⇒ Extrapolation to 32nm and eDRAM

� 3 TSV sizes : 10µm (WideIO), 5µm and 2µm

Hardware Implementation - Synthesis 
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� Power TSVs: according to the Wide IO example
⇒ 68 TSVs, 10µm diam. (272 for 5µm and 1700 for 2µm)

� Signal TSVs: 284 for the 3D NoCs (worst case tile)

� L2/L3 NoC

� L3/ExtMem NoC



Hardware Implementation - Synthesis 

65nm SRAM 65nm eDRAM 32nm eDRAM

� Synthesis of a 1MB cache tile in 65nm with the two 3D NoCs

� TSV arrays:

� 3D NoC signals

� Memory tier 

power supply ~80% memory 
density
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� Control:

� Directory

� Logic

� NoC routers

� Data:

� Cached data

density



Conclusion

� How many cores in a manycore architecture without 

saturating memory access ?
� TSAR, NUMA cache coherent manycore

� 4 x 2133 MHz DDR3 interfaces

� Constant computing density (GFLOPS/mm²)

� HPC application
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� HPC application

1-64 cores 64-128 cores 128-256+ cores

2D 3D - 1 tier 3D - 4 tiers



Conclusion

� The memory bandwidth is the limiting factor for 

manycore architectures

� 3D big caches are a solution 

� Even if they have only a S0.5 impact on memory accesses
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� We propose a low power and high performance 3D 

cache architecture with
� Adaptivity

� Fault tolerance

� A 28nm hardware implementation has been 

performed with low 3D overhead
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