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Introduction

Number of cores in computing ICs is exploding

Applications use more and more memory

amount

Cores need a fast access to the memory

=> Memory Wall
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Introduction

Memory bandwidth per core in Nvidia GPUs over time:
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source: http://denalimemoryreport.com
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Outline

Context and motivations
= The cube law
= 3D technologies

TSAR manycore architecture
= Architecture
= Cache Coherency

Adaptive distributed 3D cache
= TSAR3D L3
= Adaptivity
= Architecture

Results

= Tile allocation
= Fault tolerance

Hardware implementation
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Context and Motivations - Cube Law

The cache miss rate is a S* function where S is the size
of the cache (see [1])

X is between 0.36 and 0.62 on commercial workloads
=> Mean of 0.5
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Context and Motivations - Cube Law

With no sharing between processors: memory
accesses are multiplied by the number of cores

To keep constant the external memory bandwidth
when the number of cores is multiplied by N, the
total cache size must be multiplied by N3

With 16% of data sharing (mean for PARSEC
benchmarks [1]):

=>(1-0.16)3*N3 = 0.6*N3 (with N big)

Manycores need very big caches and/or fast memory
=> Go to 3D caches
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Context and Motivations - 3D Stack

Memory on top of processors
Multiple layers of logic => Through Silicon Vias (TSV)

Example of stacking:

Memory tier N

Micro-bumps

Memory tier 1

Micro-bumps

Processor tier

Source: Denis Dutoit; LETI
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Context and Motivations - 3D TSV

Different TSV technologies (lined / filled)

AR 1
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AR= Aspect Ratio Source: Patrick Leduc; LETI
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Context and Motivations - 3D Bumps

Top chip
Bottom chip

memmweny CU Pillars
SnAg Solder

Classic Flip chip
(Ball or stud bump)

utubes'

Microinsertion

Solder-free pinserts Cu-Cu Direct bonding
Nickel Microinsertion Need very flat surface
Cleaning
> 100 pm 100-30 pm range 30-10 pm range Down to 5 pm
Pitch

Source: Patrick Leduc; LETI
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Context and Motivations - Conclusion

Use dense 3D on-chip memory to build a n+1 level
cache

3D memory distributed amongst the circuit with
many 3D links

=> High bandwidth and fault tolerance

Goal: stackable and reusable architecture to adapt
memory quantity to the application needs, including
fault tolerance
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TSAR Manycore [2] - Architecture
MP2SOC with a 2D-mesh NoC (DSPIN) => GALS

DDR Controller
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TSAR Manycore - Architecture

External RAM ctrl
CPU CPU _ i i cpu CPU _
FPU FPU L2 e | FPU FPU L2 e
....... DMA H : CEETT TN DMA
L1 ] L L1 | L1 | | cache icu | i N T 1 L1 |f L1 || cache Icu
I | D I | D : i1 1 ]D I || D
Local Interconnect """" Local Interconnect
JCl = e DSPIN micro- network ¥ ne k= 70
ctrl ctrl
Local Interconnect I Local Interconnect
L1 ] L1 L1 | L1 N AN N L1 | L1
I D I D Timer | : : | D Timer
....... L2 AV . e 11 D L2 A
CPU CPU cache cu | : CPU CPU cache ICU
FPU FPU FPU FPU
External RAM ctrl
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The physical memory space is statically
distributed amongst the clusters 0x400. .

TSAR is a Non-Uniform Memory Access
nified Memory Map

architecture (NUMA) U
=> The OS has to take NUMA effect into account ‘ |
when it places tasks and memory objects 0x000...
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TSAR Manycore - Cache Coherency

Thanks to the scalable bandwidth provided by the NoC
technology, the TSAR architecture use a write-through policy
between L1 and L2 caches

—> the L1 cache architecture and the coherency protocol are
simplified

—> the cache coherency is ensured by the L2 cache (Home
Agent)

As snooping does not scale with a large number of cores, TSAR
relies on a L2 cache directory-based approach

—> Each L2 cache tracks all the copies stored in the L1 caches
in order to update them
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TSAR Manycore - Cache Coherency

TSAR implements the DHCCP protocol (Distributed Hybrid
Cache Coherence Protocol):

= multicast / update when the number of copies is smaller than a
predefined threshold

= broadcast / invalidate when the number of copies is larger than a
predefined threshold

The DHCCP has been analyzed, from the point of view of dead-
lock prevention. Three types of traffic have been identified:

= Direct read/write transactions (L1 caches => L2 caches)

= Coherency transactions (L2 caches <=> L1 caches)

= External memory accesses ( L2 caches => Ext. RAM)

6 communication channels
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TSAR Manycore - Cache Coherency

Write-through:

Simple coherency protocol

Simple hardware

BUT more network traffic

Caches need to be inclusive

Write-back:

= Network traffic reduced

= Automatic replication and distribution
= Cache storage better exploited

= BUT complex protocol

= Problem of false sharing
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3D Cache - TSAR 3D L3

External RAM ctrl

10

3D DSPIN micro network

CPU CPU : CPU CPU :
FPU FPU L2 Timer | & % FPU FPU L2 Timer
....... DMA i : DMA
L1 | L1 L1 | L1 cache icu | i N R L1 ff L1 || cache Icu
I D I D : : I D I D
-
Local Interconnect | {777 Local Interconnect

1o — e y DSPIN micro- network A NIC - /O
ctrl ctrl

letislist Lip

Adaptive 3D Cache Architecture for Manycores — GDR SOCSIP — Eric Guthmuller | 15 November 2012 | 20

© CEA. All rights reserved




3D Cache - TSAR3D L3

External RAM ctrl
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Do We Need a L3 cache? Which cache?

Splash Radlx Integer with 2~18 elements with/without L3, 300 cycles RAM latency roundtrlp
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3D Cache - TSAR3D L3

= An architecture bui!t around 3 NoCs

g ~

ID-based
routing

—
———— ——

S I
Cache |
coherency |

TSAR

Die O

— >
Die O

—
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3D Cache - TSAR3D L3

Proposed 3D architecture: regular 3D mesh
Hypothesis: 1:1 Proc tile/Cache tile

/ / / /1 Last Level Cache
Ae tile / / / (tier 1 to N)
e %/\j J

ache tile I/éch):e’gtile / j //

Manycore

Cache Access Control / 5 3D NOC

PUO PU1 PU 2/

External Memory
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3D Cache - TSAR3D L3

Proposed 3D architecture: regular 3D mesh
Hypothesis: 1:1 Proc tile/Cache tile

T

MISS.

Fully fonctional
caches
Private/Shared /(che

Stackable ile -

) 7
Ie/l 8

|

. Manycore
Istributed control; DDR (tier %)
acheti Scalable+adaptable ontroller(
Cache Access Control

S)
Z/: — —
BDNOC m
/__pPUQ_ PUT PU 2/ /

External Memory
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3D Cache - Adaptivity

Allocation of cache tiles to memory segments

@ Cache access control Cache tiles
0x000../Segment O
Cache BdB.1
Segment 1 Controller 0 pdp.1
Memory /
space ..
Cache 2.dp.]
Controller 1 pdf
pdp
oemaony
(%D(FFF... irst mapping: Second mapping:
Mapping of cache Allocation of cache
access controllers tiles to cache access
In memory space controllers
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3D Cache - Adaptivity

Allocation of cache tiles to memory segments

@ Cache access control Cache tiles
0x000..;Segmento TP ——u0. . -
Cache Bdp1 30 ;:3_2 3]
Pl 5 5 T
Segment 1 Controller 0 2dp1 S
11{2,0| |12,1];12,2| |2;3
T_rl_‘— —
l\/;%r;géy @@ ! E I E 1,3
|
Cache @@ I 10,0| |0, {0,2| |0,3
Controller 1 fdf.1 ; =5 B e B
bdbd
((()%D(FFF... First mapping: Second mapping:
Mapping of cache Allocation of cache
. access controllers tiles to cache access
3D: low latency to neighborhood in memory space controllers

Different cache quantities for different memory segments

Shared cache tiles: the most accessed memory segment takes the most part of
the cache tile

Conclusion: 2 levels of adaptability:
Programmable by the soft (OS) at runtime
Very dynamic when cache tiles are shared
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T T 7
3D Cache - Architecture / Z 7

L L

= Cache controllers integrated in the ‘I/ ‘I// /

computing tier AT

= Selects the tile coordinates and its cache set to use

Cache set

3D Cache

1

1

1

1

Req ‘ distribution :
1

address function :
I

1

1

1

_JL

Cache tile coordinates

To (X,Y,2)
Upper w-___-__ A
Tiers
CACHE TAG CACHE LINE
397 Y 0
@ W |

Tile numbe

r
Parameters :>D|St”bqt'0n X,Y,2) Destination
Function ' — cache set
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T T 7
3D Cache - Architecture / Z 7

L L

= Cache controllers integrated in the ‘I/ ‘I// /

computing tier AT

= Selects the tile coordinates and its cache set to use

Cache set

3D Cache

1

1

1

1

Req ‘ distribution :
1
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I

1

1
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_JL

Cache tile coordinates
To o
A (X,Y,2)
Upper w-o-_-__. A .
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e
’
............
’

@ x|y|[z
Parameters: (X,,Yo,Z
(X0, Y0, Zo) (X+Xo, Y+Yo, Z+Z,) Destination
Cache Set of tile
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T T 7
3D Cache - Architecture AL

/L L
. | ’U
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J LSS

3D Cache - Architecture LSS

//./.
A N7
eIz

Low frequency high throughput tile TR

1 MB cache tile
: ser/des FIFOs 1, - i
: \:: 1MB Data [igf,f,‘;‘;;y :
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Results: Benchmark platform

/ -16 tiles/tier

,Aﬁgé%m //// 64

3D " processors
ache tile . . .
k \ Y, U

PUO PU1 PU2_ PU 3

= SystemC Cycle and Bit Accurate models
“ SoClib [4]

= 16 tiles of 4 cores

= 16x1MB 3D cache tiles per memory tier

= L3 tiles frequency == Processor frequency
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Results: Benchmark platform

Bandwidth to External Memory: we emulate an
equivalent 1024 cores circuit

Splash 2 multithreaded benchmarks on MutekH [5] OS:
Radix: a radix sorting algorithm
FFT: a distributed FFT
LU: a matrix factorization algorithm

Ocean: a sea current solver
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First case: Private caches

Private
cache tiles

EXPLOIT NUMA

|
= Two applications, 32 cores each: ALLOCATION °

* Memory intensive (red)
* Computational (grey)
= 1%t case: private 3D cache tiles
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Second case: Shared caches

Shared
cache tiles

= 2nd case: shared 3D cache tiles

= Competition between the two applications on cache
utilization

=> The most demanding application will occupy more
cache space
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Results: Tiles Allocation

We study execution time for shared Execution Time with shared caches
caches wrt. private caches 19

Mix of Splash FFT and Splash LU 08
80’6
£0,4
30,2

0

applications for test cases
App Set App Set App Set App Set App Set App Set

1 2 3 4 5 6
B Memory Intensive App B Computational App

-

The most memory intensive
application performs better with
shared caches

Reduction wrt. private

=> Quality of Service vs Best Effort

Total traffic to memory with shared caches

The overall traffic to the
external memory is
reduced by up to 55%

Traffic wrt. p

App Set 1 App Set 2 App Set 3 App Set 6
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Results: Tiles allocation

App Set Intlc\e/lnesri?/grxpp Comp:;laononal L3 cache
1 FFT 218 FFT 214 1 tier (16MB)
2 FFT 220 FFT 218 4 tiers (64MB)
3 LU 1024 LU 512 1 tier (16 MB)
4 FFT 218 LU 512 1 tier (16 MB)
5 FFT 218 LU 1024 1 tier (16 MB)
6 FFT 220 LU 512 4 tiers (64MB)
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V | Faulty Good

Results: Fault Tolerance 1

(Xflyflzf) (Xglyglzg)

We consider only faulty cache tiles

A list of faulty tiles in each cache access controller and a
decision algorithm
Two possible algorithms if we select a faulty tile

First order algorithm Second order algorithm

Tier 0 Tier 1 Tier O Tier 1
(1,0,0)|} 1(0,0,1) |(1,0,1) | ! L (T0.1) |

(. I I 1

 VERSUS ~ |
(LLmEE(QLn (LLDE : 10,11 1(1,1,1)
__________ e g L | — ______II_____ ____:
(X.\Y,2) faulty (X,Y,2)
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Results: Fault Tolerance

We compare the two algorithms while we introduce
faults

1 tier 3D cache (16 tiles) with FFT 218

1 faulty tile: 13.5% execution time increase for
first order algo versus 2.9% for second order

4 tiers 3D cache (64 tiles) with FFT 220

1 faulty tile: 1.8% execution time increase for first
order algo versus 0% for second order

4 faulty tiles: 9.3% execution time increase for
first order algo versus 2.7% for second order
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Hardware Implementation - Synthesis

Synthesis of a 1MB cache tile in 65nm with SRAM
memories
Extrapolation to 32nm and eDRAM

3 TSV sizes : 10um (WidelO), 5um and 2um

Power TSVs: according to the Wide 10 example
68 TSVs, 10pum diam. (272 for 5um and 1700 for 2um)

Signal TSVs: 284 for the 3D NoCs (worst case tile)
L2/L3 NoC
L3/ExtMem NoC
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Hardware Implementation - Synthesis

Synthesis of a 1MB cache tile in 65nm with the two 3D NoCs

65nm SRAM 65nm eDRAM 32nm eDRAM

TSV arrays:
3D NoC signals [ )\ ( A [ )
8
Memory tier . nTSV ]
power su pp|y |_| ~80% memaory O Control
° M ] denS|ty m Data
Control: .
Directory E . \
Logic g ] — \\
@
NoC routers < > ' ' 5
Data: 1 %i
Cached data 10 5 2 10 5 2 10 5 2
TSV diameter (um)
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Conclusion

How many cores in a manycore architecture without
saturating memory access ?

= TSAR, NUMA cache coherent manycore
= 4x2133 MHz DDR3 interfaces

= Constant computing density (GFLOPS/mm?)
= HPC application

2D : 3D-1tier : 3D-4tiers
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Conclusion

The memory bandwidth is the limiting factor for
manycore architectures

3D big caches are a solution
= Even if they have only a S impact on memory accesses

We propose a low power and high performance 3D
cache architecture with

= Adaptivity

= Fault tolerance
A 28nm hardware implementation has been
performed with low 3D overhead
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