
Flashing in the Memory Hierarchy
An Overview on Flash Memory Internals

Jalil Boukhobza, Stéphane Rubini

Lab-STICC, Université de Bretagne Occidentale

15/11/2012 {boukhobza, rubini}@univ-brest.fr 1

NAND Flash in the hierarchy

15/11/2012 {boukhobza, rubini}@univ-brest.fr 2

Where is the NAND flash memory ?

15/11/2012 {boukhobza, rubini}@univ-brest.fr 3

15/11/2012 {boukhobza, rubini}@univ-brest.fr 4

15/11/2012 {boukhobza, rubini}@univ-brest.fr 5

Presentation outline

1. Flash memory basics

2. Flash memory characteristics

3. Flash memory support

1. Mapping schemes

2. Wear leveling

3. Garbage collection

4. Flash specific cache systems

5. Some contributions

4. Performance & energy considerations

5. Flash memory interfacing

6. Conclusions & perspectives

15/11/2012 {boukhobza, rubini}@univ-brest.fr 6

Presentation outline

1. Flash memory basics

2. Flash memory characteristics

3. Flash memory support

1. Mapping schemes

2. Wear leveling

3. Garbage collection

4. Flash specific cache systems

5. Some contributions

4. Performance & energy considerations

5. Flash memory interfacing

6. Conclusions & perspectives

15/11/2012 {boukhobza, rubini}@univ-brest.fr 7

Flash memory cells

15/11/2012 {boukhobza, rubini}@univ-brest.fr 8

 Invented by F. Masuoka Toshiba 1980

 Introduced by Intel in 1988

 Type of EEPROM (Electrically Erasable &
Programmable Read Only Memory)

 Use of Floating gate transistors

 Electrons pushed in the floating gate are trapped

 3 operations: program (write), erase, and read

Control Gate

Floating gate

P substrate
N+ N+

Oxyde

layer

Source Drain

Flash memory operations

15/11/2012 {boukhobza, rubini}@univ-brest.fr 9

Erase operation

 FN (Fowler-
Nordheim) tunneling:
Apply high voltage to
substrate (compared
to the operating
voltage of the chip -
usually between 7–
20V)

 electrons off the
floating gate

 Logic « 1 » in SLC

Control Gate

N+ N+

20V 20V

0V

Program / write

operation

 Apply high voltage to

the control gate

 electrons get

trapped into the

floating gate

 Logic « 0 »

Control Gate

N+ N+

20V

0V 0V Control Gate

Floating gate

N+ N+

Ref. voltage

0V 0V

Read operation

 Apply reference
voltage to the
control gate:
 If floating gate

charged: no current
flow

 If not charged;
current flow

NOR Vs NAND

15/11/2012 {boukhobza, rubini}@univ-brest.fr 10

 NOR
 Byte random access

 Low density

 Higher cost (/bit)

 Fast read

 Slow write

 Slow erase

 Code storage (XIP – eXecute In
Place)

 NAND
 Page access

 High density

 Slower read

 Faster write

 Faster erase (block granularity)

 Data storage

 Other types: DiNOR, AND, … Source EETimes: http://www.eetimes.com/design/memory-

design/4009410/Flash-memory-101-An-Introduction-to-NAND-flash

NAND flash memory architecture

15/11/2012 {boukhobza, rubini}@univ-brest.fr 11

 Read/Write page

 Erasures blocks

 Page: 2-8KB

 Block: 128-1024 KB

 Source: http://www.electroiq.com/articles/sst/2011/05/solid-state-drives.html

Different densities: SLC, MLC, TLC

15/11/2012 {boukhobza, rubini}@univ-brest.fr 12

SLC

(Single Level Cell)

MLC

(Multi Level Cell)

TLC

(Tri Level Cell)

Storage 1 bit / cell 2 bits / cell 3 bits /cell

Performance +++ ++ +

Density + ++ +++

Lifetime (P/E

cycles)

~ 100 000 ~ 10 000 ~5 000

ECC complexity + ++ +++

Applications Embedded and

industrial applications

(high end SSDs…)

Most consumer

applications (e.g.

memory cards)

Low-end consumer

applications not

needing data updates

(e.g. mobile GPS)

Compound Annual Growth Rate (CAGR)

15/11/2012 {boukhobza, rubini}@univ-brest.fr 13

So
u
rce

: G
. W

o
n
g, «

 In
fle

ctio
n
 p

o
in

ts »
, F

lash
 Su

m
m

it 2
0
1
1

Presentation outline

1. Flash memory basics

2. Flash memory characteristics

3. Flash memory support

1. Mapping schemes

2. Wear leveling

3. Garbage collection

4. Flash specific cache systems

5. Some contributions

4. Performance & energy considerations

5. Flash memory interfacing

6. Conclusions & perspectives

15/11/2012 {boukhobza, rubini}@univ-brest.fr 14

Flash memory constraints

15/11/2012 {boukhobza, rubini}@univ-brest.fr 15

Write/Erase

granumarity

assymetry

(Cons1)

Erase-before-

write rule

(Cons2)

Limited cell

lifetime (Cons3)
Control

Gate

Floating

gate

N+ N+

• Electrons get trapped

in the oxide layer

deteriorating its

characteristics

• Electrons cannot move

from oxyde layer to

floating gate

Data update:

 - Invalidate

 - Out-of-place update

+

Logical to physical

mapping
Garbage Collection

+

Wear leveling

Wear leveling

15/11/2012 {boukhobza, rubini}@univ-brest.fr 16

 You already do that with your tyres …

 Keeping a balanced erasures’ distrubution over flash

memory blocks.

Pierelli

Courtesy

http://www.presence-pc.com/tests/ssd-flash-disques-22675/5/

More balanced

Garbage Collection

15/11/2012 {boukhobza, rubini}@univ-brest.fr 17

 Moving valid pages from blocks containing invlid data

and then erase/recycle the blocks

Inv. Op.
Moving people to a new city

and « erasing » the old one

to reuse the space !!!

Operating System Layer

FFS (Flash file System)

Flash Memory Device

FTL (Flash Translation Layer)

Flash memory structure

15/11/2012 {boukhobza, rubini}@univ-brest.fr 18

Logical to

physical mapping

Garbage

Collection

Wear

leveling

Other

Logical to

physical mapping

Garbage

Collection

Wear

leveling

Other

Application

Standard File System

Flash Memory Array

Application

Raw Flash Memory

Memory Technology Device (MTD)

Specific Technology Drivers

Presentation outline

1. Flash memory basics

2. Flash memory characteristics

3. Flash memory support

1. Mapping schemes

2. Wear leveling

3. Garbage collection

4. Flash specific cache systems

5. Some contributions

4. Performance & energy considerations

5. Flash memory interfacing

6. Conclusions & perspectives

15/11/2012 {boukhobza, rubini}@univ-brest.fr 19

Basic mapping schemes

a- Page mapping ideal scheme

15/11/2012 {boukhobza, rubini}@univ-brest.fr 20

 Each page mapped
independently

 High flexibility

 Ideal performance

 High RAM usage
unfeasible

 32GB flash memory, 2KB
per page and 8
bytes/table entry
128MB table !!!

 Optimal performance
reference

Basic mapping schemes

b- Block mapping scheme

15/11/2012 {boukhobza, rubini}@univ-brest.fr 21

 Only blocks numbers in

the mapping table

 Page offsets remain

unchanged

 Small mapping table

(memory footprint)

 Very bad performance

for write updates

 Same config. with 64

pages/block: 2MB page

table

Basic mapping schemes

c- Hybrid mapping scheme

15/11/2012 {boukhobza, rubini}@univ-brest.fr 22

 Use of both block and page

mappings

 Example:

 Block mapping (BM)

 Some data blocks are page

mapped (PM)

 Current designs use whether:

 One global BM and use log

blocks

 Partition flash memory in one

BM region and a PM region

 Performance of PM with a

memory footprint approaching

BM

FTL complex mapping schemes

15/11/2012 {boukhobza, rubini}@univ-brest.fr 23

FTL mapping

Block
mapping

Page
mapping

Hybrid
mapping

Global block
map/log
blocks

Region
partitionning

Global block map / log block based FTL

15/11/2012 {boukhobza, rubini}@univ-brest.fr 24

 PB with block mapping:

 Each page update: one block erase op. + pages copy for each page update

 [Shinohara99] use of log pages in each block

 Use of OOB to save the @ of the data page written to the spare

area

 [Ban99] use of log blocks: blocks dedicated to absorb data update

 ANAND : respecting the page offset in log blocks (cons: no more

than one same page update before merging data and log blocks)

 FMAX: Allowing associativity in log blocks (use of OOB area)

 1 to 1 data/log block correspondance

Data pages

Log pages

Update

page 1

Update

page 2

Update

page 3

Log block based FTL -2-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 25

 Merge operations:

 [RNFTL10] Reuse-Aware NAND FTL: only 46% of the

data blocks are full before merge operation happen

 erase only log block and use the rest of data block as log pages

for other blocks

 [BAST02] Block Associative Sector Translation FTL

 FMAX with log blocks

 Log blocks managed by page mapping table

 One log block for a given data block

Data block Log block

A
B

A` A``
B`

C
B`

C

Merge data and log

block into a free block

Log block based FTL -3-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 26

 [FAST07] Fully Associative Sector Translation FTL

 Log blocks poorly filled because of associativity

 Divide log blocks in 2 regions (spatial locality):

 One sequentially written log block

 Randomly accessed log blocks fully associative page
mapped

 [LAST08] Locality Aware Sector Translation FTL

 FAST: less merges operations but very costly because
pages coming from many different blocks

 As for FAST 2 regions

 Big writes sequential log blocks

 Small write random log blocks

 In random region: hot and cold region to avoid costly merge
operations

Log block based FTL -4-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 27

 [EAST08] Efficient and Advanced Space management
Technique

 FAST: bad usage of log blocks … yet not full

 No sequential and random regions but:

 In-place data updates in log blocks in first pace

 Out-of-place data updates if more updates are achieved

 Fix the number of log blocks that can be dedicated to one
data blocks according to flash characteristics

 [KAST09] K-Associative Sector Translation FTL

 FAST: costly merge operation for the random region

 Limit the associativity of log blocks (K)

 Many sequential log blocks

 Migration between random and sequential region

 [STAFF07] State Transition Applied Fast FTL

 Block: (F)ree state, (M)odified in-place, complete in-place

(S)tate, modified out-of-place (N), or in (O)bsolete state

(no valid data)

 Page mapping table for

 blocks in the N state.

 RAM usage unpredictability

 because of N

 [HFTL09] Hybrid FTL

 Use of hot data identifier:

 Hot data are page mapped

 Cold data use FAST

HFTL

Hybrid FTLs, region partitioning

15/11/2012 {boukhobza, rubini}@univ-brest.fr 28

Logical sector number

HFTL hot data

identifier

Flash memory

FAST Page Map

Hybrid FTLs, region partitioning -2-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 29

 [WAFTL11] Workload adaptive FTL

 Page mapped region

 Random data and partial updates

 Block mapped region

 Sequential data and mapping tables

So
u
rce

: h
ttp

://sto
rage

co
n
fe

re
n
ce

.o
rg/2

0
1
1
/P

re
se

n
tatio

n
s/R

e
se

arch
/6

.W
e
i.p

d
f

http://storageconference.org/2011/Presentations/Research/6.Wei.pdf

Page mapping FTL

15/11/2012 {boukhobza, rubini}@univ-brest.fr 30

 [DFTL09] Demand based FTL
 Idea : use page mapping and keep only part of the mapping table

in RAM
 Rest of the mapping table stored in the flash

 [SFTL11] Spatial locality FTL
 Reduces the size of the mapping table by keeping track of

sequential accesses and use only one table entry.

Source: [DFTL09]

Tablet Apple IPad

15/11/2012 boukhobza@univ-brest.fr 31

 Virtual Flash Layer (VFL): remaps bad blocks and

presents an error-free NAND to the FTL layer

 FTL YaFTL (Yet another FTL)

http://esec-lab.sogeti.com/post/Low-level-iOS-forensics

http://esec-lab.sogeti.com/post/Low-level-iOS-forensics
http://esec-lab.sogeti.com/post/Low-level-iOS-forensics
http://esec-lab.sogeti.com/post/Low-level-iOS-forensics
http://esec-lab.sogeti.com/post/Low-level-iOS-forensics
http://esec-lab.sogeti.com/post/Low-level-iOS-forensics
http://esec-lab.sogeti.com/post/Low-level-iOS-forensics
http://esec-lab.sogeti.com/post/Low-level-iOS-forensics
http://esec-lab.sogeti.com/post/Low-level-iOS-forensics
http://esec-lab.sogeti.com/post/Low-level-iOS-forensics
http://esec-lab.sogeti.com/post/Low-level-iOS-forensics
http://esec-lab.sogeti.com/post/Low-level-iOS-forensics

YaFTL

15/11/2012 boukhobza@univ-brest.fr 32

 Page mapping (implemented as a walk table)

 DFTL principles: a part of the map is stored on the Flash

 Splits the virtual address space into superblocks

 3 types of superblocks

 User data page

 Index page (page map)

 Context (index page+ erase count)

FTL (very partial) taxonomy

15/11/2012 {boukhobza, rubini}@univ-brest.fr 33

FTL mapping

Block
mapping

Page
mapping

DFTL

CDFTL

SFTL

Hybrid
mapping

Global block
map

Mitsubish
ANAND &

FMAX

RNFTL BAST

FAST LAST

EAST

Region
partitionning

STAFF

WAFTL

HFTL

See [Boukhobza13] for more details

Presentation outline

1. Flash memory basics

2. Flash memory characteristics

3. Flash memory support

1. Mapping schemes

2. Wear leveling

3. Garbage collection

4. Flash specific cache systems

5. Some contributions

4. Performance & energy considerations

5. Flash memory interfacing

6. Conclusions & perspectives

15/11/2012 {boukhobza, rubini}@univ-brest.fr 34

Wear leveling

15/11/2012 {boukhobza, rubini}@univ-brest.fr 35

 Objective: keep all the flash memory space usable as long
as possible

 Based on the number of erasures or writes performed on
a block

 < mean value : cold block

 > mean value: hot block

 Maintain the gap between hot and cold block as small as
possible

 Swap data from hot blocks to cold blocks (costly)

 Which blocks are concerned: only free ? All of them ?

 [DualPool95] adds 2 additional block mapping tables

 Hot and cold table: free block taken from cold blocks

 Periodically the mean erase number is recalculated and hot and
cold tables updated

Wear leveling -2-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 36

 Write count based wear leveler

 [Achiwa99]: erase count maintained in RAM in

addition to write count

 Put the more written data into the less erased blocks

 [Chang07]: like the dual pool but according to the

number of writes (pages level)

 [Kwon11] considering groups of blocks reducing the

RAM usage of the wear leveler

Presentation outline

1. Flash memory basics

2. Flash memory characteristics

3. Flash memory support

1. Mapping schemes

2. Wear leveling

3. Garbage collection

4. Flash specific cache systems

5. Some contributions

4. Performance & energy considerations

5. Flash memory interfacing

6. Conclusions & perspectives

15/11/2012 {boukhobza, rubini}@univ-brest.fr 37

Garbage Collection / cleaning policy

15/11/2012 {boukhobza, rubini}@univ-brest.fr 38

 Process that recycles free space from previously

invalidated pages in different blocks.

 Answers the questions:

1. When should it be launched ?

2. Which blocks to choose and how many ?

3. How should valid data be written ?

4. (where to write the new data ?) wear leveler

1. Free blocks < 3

2. Containing the most

invalid pages to free

3 blocks (1,3,5)

3. Respecting pages’

placement

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1
3
5
5

GC

Garbage Collection -2-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 39

 Minimizing cleaning cost wile maximizing cleaned space

 Cleaning cost:

 Number of erase operations

 Number of valid pages copy

 Main considered metric: ratio of dirty pages in blocks

 Maintaining counters in RAM or in metadata area

 Separate cold and hot data when performing valid pages

copy (Q. 3 In previous slide)

 Otherwise GC frequently launched (due to hot data updates)

 [DAC08] Dynamic dAta Clustering: partitioning flash memory

into many regions depending on update frequency

Garbage Collection -3-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 40

 Which blocks to choose (Q. 2)

 Greedy policy: blocks with the most dirty pages

 Efficient if flash memory accessed uniformly

 [Kawaguchi95]

 Space recycled: (1-u), cost of read and write valid data: (2u)

 Elapsed time since the last modification: age

 Age * (1-u)/2u block with the highest score is chosen

 [CAT99]: Cost AgeTimes

 Hot blocks are given more time to accumulate more invalid data
 direct erase without GC

 CleaningCost * (1/age) * NumberOfCleaning

 CleaningCost: u/(1-u) u: percentage of valid data in the block

 NumberOfCleaning: number of generated erases

 The less the score, the more chances to be cleaned

Presentation outline

1. Flash memory basics

2. Flash memory characteristics

3. Flash memory support

1. Mapping schemes

2. Wear leveling

3. Garbage collection

4. Flash specific cache systems

5. Some contributions

4. Performance & energy considerations

5. Flash memory interfacing

6. Conclusions & perspectives

15/11/2012 {boukhobza, rubini}@univ-brest.fr 41

Flash specific cache systems

15/11/2012 {boukhobza, rubini}@univ-brest.fr 42

 They are mostly write specific and try to:

 absorb most page/block write operations at the cache level

 reveal sequentiality by buffering write operations and reorganizing

them

 [CFLRU06] Clean First LRU (caches reads & writes)

 LRU list divided into two regions:

 A working region: recently accessed pages

 A clean first region: candidate for eviction

 It evicts first clean pages that do not generate any write (e.g. P7, P5,

P8, then P6.)

Flash specific cache systems -2-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 43

 [FAB06] Flash Aware Buffer

 Flushes the largest groups of pages belonging to the same

block (minimize merges)

 If the same number of pages: uses LRU

 [BPLRU08] Block Padding LRU

 Block level LRU scheme

 Page padding: read lacking pages and flush full blocks

 LRU compensation: sequentially written data are moved to

the end of the LRU queue

 LRU like algorithms, page/block granularity, & double

objective : caching, reducing erasures

Presentation outline

1. Flash memory basics

2. Flash memory characteristics

3. Flash memory support

1. Mapping schemes

2. Wear leveling

3. Garbage collection

4. Flash specific cache systems

5. Some contributions

4. Performance & energy considerations

5. Flash memory interfacing

6. Conclusions & perspectives

15/11/2012 {boukhobza, rubini}@univ-brest.fr 44

C-lash: a cache for flash [C-lash11]

15/11/2012 {boukhobza, rubini}@univ-brest.fr 45

 Hierarchical cache

 Cache with no WL or GC

 2 regions:

 Page region (P-space)

 Block region (B-space)

 Read operations

 Hit: Read from cache

 Miss: no copy to the cache

 Write operations

 Hit: update in the cache

 Miss: write in the P-spaces

C-lash: a cache for flash -2-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 46

 2 eviction policies

 P-space B-space: largest set of

pages from the same block

(spatial locality)

 B-space flash : LRU (temporal

locality)

 Early and late cache merge in

B-space.

 Switch (p-space/b-space)

 Proved good performance for

mostly sequential workload

 Bad for very random ones

CACH-FTL Cache-Aware Configurable

Hybrid FTL [CACH-FTL13]

15/11/2012 {boukhobza, rubini}@univ-brest.fr 47

 Most flash systems have cache mechanisms on top of FTL

 Most flash specific cache systems flush groups of pages

Flash specific cache system

Groups of

pages

CACH-FTL -2-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 48

 PMR (Page Mapped Region)
garbage collection:
 Launched when the number of

free blocks in the PMR goes under
a predefined threshold

 Greedy reclamation algorithm
(least number of valid pages)

 BMR (Block Mapped Region)
garbage collections
 PMR-GC cannot find any physical

block containing enough invalid
pages to recycle a block

 Greedy reclamation algorithm
selecting the largest group of PMR
pages belonging to the same data
block

CACH-FTL -3-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 49

• Flashsim+Disksim

simulator

• CACH-FTL configuration:

• threashold =8 pages

• Over-prov. of 10%

• OLTP real traces + Synth.

traces

CACH-FTL -4-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 50

Presentation outline

1. Flash memory basics

2. Flash memory characteristics

3. Flash memory support

1. Mapping schemes

2. Wear leveling

3. Garbage collection

4. Flash specific cache systems

5. Some contributions

4. Performance & energy considerations

5. Flash memory interfacing

6. Conclusions & perspectives

15/11/2012 {boukhobza, rubini}@univ-brest.fr 51

Performance and energy considerations

15/11/2012 {boukhobza, rubini}@univ-brest.fr 52

 2006 2012: nearly exponential growth of published

work on flash memory

 “Tape is dead, disk is tape, flash is disk, RAM locality is

King” Jim Gray 2006

 Flash disks outperform hard disk drives (HDD)

 Sequential reads and writes

 Random reads (no mechanical elements)

 Random writes Achilles' heel

 Depends on flash intricacies

 Flash disks are generally more energy efficient

 More than 5x less energy in some cases [Park11]

Performance and energy -2-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 53

 Flash disk performance is heterogeneous

 Depend on internal structure and workload

 Performance disparities between SSDs from the same

constructor and between different technologies are

significant [Park11]

Performance and energy -3-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 54

 A wide performance and energy asymmetry between

reads and writes [Park11]

 The more free space the better the write performance

Performance and energy -4-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 55

Flash performance needs time to reach steady

state.

So
u
rce

: h
ttp

://sn
ia.o

rg/site
s/d

e
fau

lt/file
s/SSS%

2
0
P
T

S%
2
0
C

lie
n
t%

2
0
-%

2
0
v1

.1
.p

d
f

Performance and energy -5-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 56

Flash memory design space is

large !

 Different FTLs (mapping, WL,

GC)

 Degree of concurrency

[Agrawal08]:

 Parallel requests: parallel

requests to each element of the

flash array, a queue per element.

 Ganging: using a gang of flash

elements in synchrony to

optimize multi-page request

 Interleaving: within a die

 Background cleaning

 Capacity > 2TB, cost 0.7€/GB

Source: Bonnet, Bouganim, Koltsidas, Viglas, VLDB 2011

Performance and energy -6-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 57

 Intra SSD performance:

 SSD System level: among channels

 Chip-level: among chips in a channel

 Dies level: among dies in a chip

 Among planes in a die

Channel

Package

Chip

Die

Plane

Block

Page

Page

Block

Page

Page

Plane

Block

Page

Page

Block

Page

Page

Die

Plane

Block

Page

Page

Block

Page

Page

Plane

Block

Page

Page

Block

Page

Page

Chip

Package

Channel

Performance and energy -6-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 58

Contributions

Power consumption & performance modeling of embedded

systems with an embedded OS (Pierre Olivier PhD)

15/11/2012 {boukhobza, rubini}@univ-brest.fr 59

 Performance and energy

consumption at different

layers.

 Microbenchmarking different

FFS / different initial states

 Simple, atomic access.

Legacy NAND commands :

 Read and write (page)

 Erase (block)

Linux :

MTD Device versus Block Device

15/11/2012 boukhobza@univ-brest.fr 60

Block device MTD device

Consists of sectors Consists of eraseblocks

Sectors are small (512, 1024 bytes) Eraseblocks are larger (typically 128KiB)

Maintains 2 main operations: read

sector and write sector

Maintains 3 main operations: read

from block, write to eraseblock, and

erase eraseblock

Bad sectors are re-mapped and hidden

by hardware

Bad eraseblocks are not hidden and

should be dealt with in software

Sectors are devoid of the wear-out

property

Eraseblocks wear-out and become bad

and unusable

Source: http://www.linux-mtd.infradead.org/

http://www.linux-mtd.infradead.org/
http://www.linux-mtd.infradead.org/
http://www.linux-mtd.infradead.org/
http://www.linux-mtd.infradead.org/

Performance

15/11/2012 {boukhobza, rubini}@univ-brest.fr 61

 Tests programs:

 Kernel level : modules (MTD

low level calls)

 MTD-userspace : shell scripts

 Ex : writes (MTD kernel

level)

Power consumption

15/11/2012 {boukhobza, rubini}@univ-brest.fr 62

 Same test programs, max access on test partition

 Ex : erases(MTD kernel level)

https://www.open-people.fr

https://www.open-people.fr/
https://www.open-people.fr/
https://www.open-people.fr/
https://www.open-people.fr/

Used tool: Flashmon [Flashmon11]

15/11/2012 {boukhobza, rubini}@univ-brest.fr 63

 Flash access profiler (kernel module) for raw flash-

based Linux embedded systems

 Monitors and log events (read, write, erase)

 Stores access counter for each block of the monitored

flash memory

 Linux programs profiled with Flashmon

 Flash access numbers injected into the models to

estimate Flash I/O time and power consumption

Flashmon -2-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 64

Presentation outline

1. Flash memory basics

2. Flash memory characteristics

3. Flash memory support

1. Mapping schemes

2. Wear leveling

3. Garbage collection

4. Flash specific cache systems

5. Some contributions

4. Performance & energy considerations

5. Flash memory interfacing

6. Conclusions & perspectives

15/11/2012 {boukhobza, rubini}@univ-brest.fr 65

Flash based subsystems

15/11/2012 boukhobza@univ-brest.fr 66

 Flash based subsystems

 Flash memory +

 Controller (FTL, wear

leveler) + (buffer) +

 Hardware interface,

software API

 Solid State Drive: ATA,

SATA, PCIe

 USB mass storage

 …

USB driver

SCSI driver

Flash Memory Device

FTL (Flash Translation Layer)

Logical to

physical mapping

Garbage

Collection

Wear

leveling

Other

Application

Standard File System

Flash Memory Array

Memory Card & Drive

15/11/2012 boukhobza@univ-brest.fr 67

Card Type Interface

(command)

CompactFlash N + PCMCIA,

PC_Card (PATA)

MMC/SD N + SPI (MMC)

XQD N + PCIexpress

USB flash drive USB (SCSI)

UFS UniPro (SCSI)

CFAST N+ SATA (SCSI)

SSD Drives: SATA, SAS,

NVMexpress,

N=Native

Flash memory integration

15/11/2012 {boukhobza, rubini}@univ-brest.fr 68

Source: J. Cooke, Micron, Flash Summit 2012

Integrated with

RAM

• Storage cache

• Hybrid system

• SSD storage

Universal Flash Storage (UFS)

15/11/2012 boukhobza@univ-brest.fr 69

 JEDEC standard V1.1, 2012

 Features:

 Multiple command queues,

multiple partitions parallel

functions, boot partition

 Max interface speed: 5.8 Gbps

 Command set: SCSI+UFS

specific

 Compatible eMMC

 Serial interconnection

(unipro), chain topology

http://www.toshiba-components.com/ufs/index.html

http://www.toshiba-components.com/ufs/index.html
http://www.toshiba-components.com/ufs/index.html
http://www.toshiba-components.com/ufs/index.html

Real-Time Constraints

15/11/2012 boukhobza@univ-brest.fr 70

 Full-duplex host interface

 High Priority Interrupt

Read Read Read

Write Write&merge

Missed deadline

MP3 play

Download app

Read Read Read

Write Wr&merge

MP3 play

Download app

Multiple NAND channels & partitions

15/11/2012 boukhobza@univ-brest.fr 71

 Full utilization of interleaving across NAND channels

 Read-while-write (full-duplex) and dual write across

multiple channels

NAND 1

NAND 2

UFS Host UFS Device
Multiple partitions

Technology mix:

Part 1: SLC

Part 2: TLC

NAND 2

TLC
optionnal

Async.

command

Interface / product

15/11/2012 {boukhobza, rubini}@univ-brest.fr 72

Presentation outline

1. Flash memory basics

2. Flash memory characteristics

3. Flash memory support

1. Mapping schemes

2. Wear leveling

3. Garbage collection

4. Flash specific cache systems

5. Some contributions

4. Performance & energy considerations

5. Flash memory interfacing

6. Conclusions & perspectives

15/11/2012 {boukhobza, rubini}@univ-brest.fr 73

Conclusions & perspectives

15/11/2012 {boukhobza, rubini}@univ-brest.fr 74

Source. E. Grochowski, “ Future Technology

Challenges For NAND Flash And HDD

Products”, FlashSummit 2012

Just one of a team !

Conclusions & perspectives -2-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 75

 Integration of the non-volatile memory in operating system
stack (not in the storage stack).

 Non volatile memories’ coexistence

 Toward the predictibility of access times in flash memory:
 Real time systems

 Data base cost models

 Leveraging data center’s energy/performance bottleneck:
 Storage represents 20% to 40% of the total energy consumption

[Carter10]

 EMC forecasted that the amount of digital information created
annually will grow by a factor of 44 from 2009 to 2020 [Farmer10]

 Microsoft, Google, and Yahoo are showing the way …

 Energy proportioinality

 Architectural design space exploration tools

 …

References

15/11/2012 {boukhobza, rubini}@univ-brest.fr 76

[Shinohara99] Shinohara, T. (1999), Flash Memory Card with Block Memory Address Arrangement, United States Patent, No

5,905,993.

[Ban99] Ban, A. (1999), Flash File System Optimized for Page-mode Flash Technologies, United States Patent, No 5,937,425.

[RNFTL10] Wang, Y., Liu, D., Wang, M., Qin, Z., Shao, Z., & Guan, Y. (2010), RNFTL: a Reuse-aware NAND Flash Translation Layer

for Flash Memory, In Proceedings of the ACM SIGPLAN/SIGBED 2010 conference on Languages, compilers, and tools for embedded systems

(LCTES).

[BAST02] Kim, J. Kim, J. M., Noh, S. H., Min, S. L., & Cho, Y. (2002), A Space-Efficient Flash Translation Layer for Compact Flash

Systems, IEEE Transactions on Consumer Electronics, 48(2), 366-375.

[FAST07] Lee, S., Park, D., Chung, T., Lee, D., Park, S., & Song, H. (2007), A Log Buffer Based Flash Translation Layer Using Fully

Associative Sector Translation, ACM Transactions on Embedded Computing Systems, 6(3), 1-27.

[LAST08] Lee, S., Shin, D., Kim, Y., & Kim, J. (2008), LAST: Locality Aware Sector Translation for NAND Flash Memory Based

Storage Systems, ACM SIGOPS Operating Systems Review, 42(6), 36-42.

[EAST08] Kwon, S. J., & Chung, T. (2008), An Efficient and Advanced Space-management Technique for Flash Memory Using

Reallocation Blocks, IEEE Transactions on Consumer Electronics, 54(2), 631-638.

[KAST09] Cho, H., Shin, D., & Eom, Y. I. (2009), KAST: K-associative sector translation for NAND flash memory in real-time

systems. In Proceedings of Design, Automation, and Test in Europe (DATE), 507-512.

[STAFF07] Chung, T. S., & Park, H. S. (2007), STAFF: a Flash Driver Algorithm Minimizing Block Erasures, Journal of Systems

Architectures, 53(12), 889-901.

[HFTL09] Lee, H., Yun, H., & Lee, D. (2009), HFTL: Hybrid Flash Translation Layer Based on Hot Data Identification for Flash

Memory, IEEE Transactions on Consumer Electronics, 55(4), 2005-2011.

[WAFTL11] Wei, Q., Gong, B., Pathak, S., Veeravalli, B., Zeng, L., & Okada, K. (2011), WAFTL: A Workload Adaptive Flash

Translation Layer with Data Partition, In Proceedings of 2011 IEEE 27th Symposium on Mass Storage Systems and Technologies (MSST).

[DFTL09] Gupta, A., Kim, Y., & Urgaonkar, B. (2009), DFTL: a Flash Translation Layer Employing Demand-based Selective Caching of

Page-level Address mappings, In Proceedings of the 14th international conference on Architectural support for programming languages and

operating systems (ASPLOS).

[SFTL11] Jiang, S., Zhang, L., Yuan, X., Hu, H., & Chen, Y. (2011), SFTL: An Efficient Address Translation for Flash Memory by

Exploiting Spatial Locality, In Proceedings of 2011 IEEE 27th Symposium on Mass Storage Systems and Technologies (MSST).

[Boukhobza13] Boukhobza, J. (2013), Flashing in the Cloud: Shedding some Light on NAND Flash Memory Storage System, chapter

to appear in Data Intensive Storage Services for Cloud Environment, IGI Global.

References -2-

15/11/2012 {boukhobza, rubini}@univ-brest.fr 77

[DualPool95] Assar, M., Namazie, S., & Estakhri, P. (1995), Flash Memory Mass Storage Architecture Incorporation Wear Leveling

Technique, United States Patent, No 5,479,638.

[Achiwa99] Achiwa, K., Yamamoto, A., & Yamagata, O. (1999), Memory Systems Using a Flash Memory and Method for Controlling

the Memory System, United States Patterns, No 5,930,193

[Chang07] Chang, L. (2007), On Efficient Wear Leveling for Large-scale Flash-Memory Storage Systems, In Proceedings of the 2007

ACM Symposium on Applied Computing (SAC).

[Kwon11] Kwon S. J., Ranjitkar, A., Ko, Y., & Chung, T. (2011), FTL Algorithms for NAND-type Flash Memories, Design Automation

for Embedded Systems, 15(3-4), 191-224.

[DAC08] Chiang, M., & Chang, R. C. (1999), Cleaning Policies in Mobile Computers Using Flash Memories, Journal of Systems and

Software, 48(3), 213-231.

[Kawaguchi95] Kawaguchi, A., Nishioka, S., & Motoda, H. (1995), A Flash Memory Based File System, In Proceedings of the USENIX

1995 Annual Technical Conference (ATC).

[CAT99] Chiang, M., & Chang, R. C. (1999), Cleaning Policies in Mobile Computers Using Flash Memories, Journal of Systems and

Software, 48(3), 213-231.

[CFLRU06] Park, S., Jung, D., Kang, J., Kim, J., & Lee, J. (2006), CFLRU: a Replacement Algorithm for Flash Memory, In Proceedings of

the 2006 International conference on Compilers, architecture and synthesis for embedded systems (CASES).

[FAB06] Jo, H., Kang, J., Park, S., Kim, J., & Lee. J. (2006), FAB: a Flash-aware Buffer Management Policy for Portable Media Players,

IEEE Transactions on Consumer Electronics, 52(2), 485-493.

[BPLRU08] Kim, H., & Ahn, S. (2008), BPLRU: A Buffer Management Scheme for Improving Random Writes in Flash Storage, In

Proceedings of the 6th USENIX Conference on File and Storage Technologies (FAST).

[C-lash11] Boukhobza, J., Olivier, P., & Rubini, S. (2011), A Cache Management Strategy To Replace Wear Leveling Techniques for

Embedded Flash Memory, 2011 International Symposium on Performance Evaluation of Computer & Telecommunication Systems (SPECTS).

[CACH-FTL13] Boukhobza, J., Olivier, P., & Rubini, S., A Cache-Aware Configurable Hybrid Flash Translation Layer , To appear in

the 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP).

[Park11] Park, S., Kim, Y., Urgaonkar, B., Lee, J., & Seo, E. (2011), A Comprehensive Study on Energy Efficiency of Flash Memory

Storages, Journal of Systems Architecture (JSA), 57(4), 354-365.

[Agrawal08] Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J. D., Manasse, M., & Panigrahy, R. (2008), Design Tradeoffs for SSD

Performance, In Proceedings of the USENIX Annual Technical Conference (ATC).

[Flashmon11] B., Khetib, I., and Olivier, P., (2011). Flashmon : un outil de trace pour les accès à la mémoire flash NAND, in

Proceedings of the Embed With linux Workshop, France, 2011,

Price of storage

15/11/2012 {boukhobza, rubini}@univ-brest.fr 78

Price of NAND storage

15/11/2012 {boukhobza, rubini}@univ-brest.fr 79

SoC TI OMAP4 Mobil Application

Platform

15/11/2012 boukhobza@univ-brest.fr 80

 Development of planned features for the

Smartphones and Mobile Internet Devices

 OMAP Boot System

15/11/2012 boukhobza@univ-brest.fr 81

Flash in the boot process

15/11/2012 boukhobza@univ-brest.fr 82

 Flash NOR

 boot code, executable, configuration data

 XIP : eXecute In Place capability

 Flash NAND:

 eMMC, USB mass storage

 Copy the boot code into RAM before being executed

 Pre-Flashing: the code provided by a peripheral is

automatically stored into a Flash for the next boots.

NAND Flash with NOR interface

15/11/2012 boukhobza@univ-brest.fr 83

 Samsung OneNAND

 Simplest interface (NOR NAND), XIP, prefetch

H
o
st In

te
rface

NAND

State

machine +

boot

loader

Internal

registers
Error

correction

Boot code

Data

RAM buffer

Address bus

Data bus

