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Parallel Hardware: Where Are We Now?

DDR3-2133 SDRAM
Latency: 10.3 ns
Memory bandwidth: 17.6 GB/s

4-core 2GHz ARM Cortex Al15 — 4W
Compute bandwidth: 2 X 4 threads X 1 NEON unit X 16 bytes X 2 GHz = 256 GB/s

8-core 3GHz AMD Opteron Interlagos — 90W
Compute bandwidth: 2 X 8 threads X 2 SSE units X 16 bytes X 3 GHz
Memory bandwidth: 17.6 GB/s

1536 GB/s

256-core 400MHz Kalray MPPA — 5-10W?
Compute bandwidth: 2 X 256 threads X 2 words X 4 bytes X 400 MHz

1638.4 GB/s

1536-core 1.006GHz NVIDIA Kepler — 200-300W
Compute bandwidth: 2 X 1536 threads X 1 float X 4 bytes X 1.006 GHz = 12361.6 GB/s
Memory bandwidth: 190 GB/s
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What Should We Do About It?

> What are the essential semantic requirements for source programs?

> Should programmers care
About parallelism?
About the memory and power walls?
Which programmers?

> What role for the software stack?
Compilers
Runtime systems
Libraries, library generators
Auto-tuning, dynamic optimization
Operating system, virtual machine monitor
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What Foundations for Parallel Programming?

Domain theory of recursive functions: denotational semantics of
a program as the least fixpoint of a system of equations over
continuous functions

Dana Scott (1932-), Turing Award

Kahn process networks: system of equations over continuous
functions on infinite streams (denotational); or processes com-
municating over infinite FIFOs with blocking reads (operational)

+ Function and parallel composition
+ Deterministic by construction

— Concurrent data structures, in-place operations missing

— How to “run” a Kahn process network efficiently?

Gilles Kahn (1946-2006), President and CEO of INRIA
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1. Task Models

© Task Models
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The Cilk Project

@ C dialect for dynamic multithreaded applications

@ Developed since 1994 at MIT in the group of Charles Leiserson
http://supertech.csail.mit.edu/cilk
Now part of Intel Parallel Studio (and TBB, ArBB)

@ Tasks are (nested) coroutines
@ Two keywords:

> retval = spawn function(args) to indicate that the function call and its
continuation may execute concurrently
> sync to implement a join operation, waiting for all child tasks of the current task

cilk int fib (int n) {

if (n < 2)
return n;

else {
int x, y;
x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return (x+y);
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Cilk Properties

Cilk programs are canonically sequentialized with the elision of the special keywords
—> Depth-first execution of the task tree by a single-thread

— As a corollary, all inputs to a task are available at the task creation point
— A property called strictness (some relation to strictness in functional languages)

— Lots of benefits: absence of deadlocks, sequentialization/compilation of parallelism,
faster/lighter runtime...

7/36



Work-Stealing, Lock-Free Deque

State-of-the-art implementation: David Chase and Yossi Lev 2005

@ Uses a wrap-around buffer with automatic resizing

@ No atomic compare-and-swap in the common case

@ On x86, only needs one fence for each task

int take ) {
long b = bottom - 1;
item_t *q = deque;

void push (int task) {
long b = bottom;
long t = top;

bottom = b; item_t *q = deque;
MFENCE; if (b - t > g->size - 1)
long t = top; expand () ;
if (b <t) { q->buf [b%g->size] = task;
bottom = t; bottom = b + 1;
return EMPTY; 3
}
int task = gq->buf [b%q->sizel;
if (b > t)

return task;

if (latomic_cas(&top, t, t+1))
return EMPTY;

bottom = t + 1;

return task;

void steal (int task,
item_t *remote_deque) {
long t = top;
long b = bottom;
item_t *q = remote_deque;
if (¢t >= b)
return EMPTY;
int task = gq->buf [t%q->sizel;
if (latomic_cas(&top, t, t+1))
return ABORT;
return task;
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Work-Stealing on a Relaxed Memory Model

Portable C11 implementation

(formal proof of POWER/ARM version available, easily adaptable to C11)

int take(deque_t *deque) {
long b = load_explicit(&deque->bottom, relaxed) - 1;
array_t *q = load_explicit(&deque->array, relaxed);
store_explicit(&deque->bottom, b, relaxed);
thread_fence(seq_cst);
long t = load_explicit(&deque->top, relaxed);
if (b <t) {
store_explicit(&deque->bottom, b + 1, relaxed);
return EMPTY;

int task = load_explicit(&q->buffer[blg->sizel, relaxed);

if (b > t)
return task;
if (!compare_exchange_strong_explicit(&deque->top,
&t, t + 1, seq_cst, relaxed))
task = NULL;
store_explicit(&deque->bottom, b + 1, relaxed);
return task;

}

int steal(deque_t *remote_deque) {

long t = load_explicit(&remote_deque->top, acquire);
thread_fence(seq_cst);
long b = load_explicit(&remote_deque->bottom, acquire);
if (t >= b)

return EMPTY;
array_t *q = load_explicit(&remote_deque->array, relaxed);
int task = load_explicit(&q->buffer[tiq->sizel, relaxed);
if (!compare_exchange_weak_explicit(&remote_deque->top,

&t, t + 1, seq_cst, relaxed))

return ABORT;

return task;

void push(deque_t *deque, int task) {
long b = load_explicit(&deque->bottom, relaxed);
long t = load_explicit(&deque->top, acquire);
array_t *q = load_explicit(&deque->array, relaxed);

if (b - t > g->size - 1)
resize(deque) ;

store_explicit(kq->buffer [blq->sizel, task, relaxed);

thread_fence(release);

store_explicit(&deque->bottom, b + 1, relaxed);
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Work-Stealing on a Relaxed Memory Model

Speedup vs. Seq-Cst
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Modern Work-Stealing Implementations and Task Models

Hierarchical, heterogeneous, distributed workstealing, accelerators

StarPU project in Bordeaux, now underlying the MAGMA and PLASMA libraries
http://runtime.bordeaux.inria.fr/StarPU

StarSs project in Barcelona, with OMPSs framework and Nanos runtime
http://pm.bsc.es/ompss

KAAPI project in Grenoble
http://moais.imag.fr/membres/thierry.gautier/TG/home_page.html
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2. Multigranularity Scheduling With a Software Cache

0 Multigranularity Scheduling With a Software Cache
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Multigranularity Scheduling: Sparse LU

The need for hybrid CPU+GPU execution

Work-stealing for super-tasks: CPU+GPU
Work-stealing for tasks: CPU cores
Software cache with compute/reuse policy

GFLOP/s

100 - GPU & CPUs - cache and ordered deque --
GPU & CPUs - software cache -
GP -

Platform: 2 Opteron Magny-Cours (24 cores), 2 GTX 470 (Fermi)

13/36



Multigranularity Scheduling: Runtime System

list of super-tasks ordered by Compute Intensity list of super-tasks ordered by Compute Intensity

fhelper
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CPU core CPU core CPU core GPU CPU core CPU core CPU core CPU core GPU
NUMA node
L NUIOA node NUIOA node
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Multigranularity Scheduling: PN application (CEA DAM)

Effect of software cache replacement policy:
compute intensity vs. data intensity

Best strategy: hybrid

PN: 1586 X 1536 mesh, 36 iterations

Parallelization scheme for numerical_flux

Large GEMM 1 Small GEMM Tasks Large GEMM 2
0 sequential sequential sequential sequential
1 CPU CPU CPU CPU
2 CPU+GPU CPU CPU CPU+GPU
compute compute
3 CPU+GPU CPU CPU+GPU CPU+GPU
compute compute compute compute
4 CPU+GPU CPU CPU+GPU CPU+GPU
compute compute data compute
5 CPU+GPU CPU CPU+GPU CPU+GPU
compute compute data data
6 CPU+GPU CPU CPU+GPU CPU+GPU
no transfer no transfer no transfer

Platform: 2 Xeon Nehalem E5620 (16 cores), 2 Tesla 2090 (Fermi)
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3. Generating Host and Kernel Code

© Generating Host and Kernel Code
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CARP EU Project

w/ ARM, RealEyes, Rightware, Monoidics,
Imperial College, RWTH Aachen, U. Twente

@ Compiler construction for DSLs:
support for parallelization,
vectorization, loop transformation...

@ Reconcile advanced loop nest
optimizations, software engineering
practices, and formal verification
methods

DSL — PIL
Compilers

i Hand-written PIL

PIL

PIL

Portable Intermediate

Kernel fusion, memory reuse,

e Language (PIL)

A

PIL Cross-C Optimiser

[ Single blob of optimised PIL

Polyhedral analysis

; vy
i [Polyhedral representation] [Pezg?:;ﬁigg'a]'%

Compiler employs code-based

Optimising, Auto-parallelizing, Power-
v aware Polyhedral Compiler

cost analysis techniques

Hand-Written OpenCL.

Optimised,
power-efficient,

parallel
OpenCL

Vendor-specific
OpenCL drivers

|

ARM Mali| | NvIDIA AMD OpendL-
Platform GPUs GPUs enabled

accelerators.

Accelerator Hardware |

Profile-based lterative Compilation
and Auto-tuning
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Polyhedral Compilation for NVIDIA Fermi:

Speedup
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Polyhedral Compilation for NVIDIA Fermi: GEMM
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Polyhedral Compilation for NVIDIA Fermi: GEMM vs. Difficult Cases
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4. Dynamic Data Flow

© Dynamic Data Flow
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Functional Determinism and Dependences

@ Cilk only implements joins/barriers

o Cilk's tasks are immediately ready (price to pay for strictness)

@ The schedule is over-constrained: detrimental to scalability and load balancing

@ Motivation for a more expressive, data-flow task model

Speedup vs. sequential

@ How to implement Kahn networks with coroutines and a work-stealing scheduler?

Gauss-Seidel (size 8196, tile 256) on 24 cores
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4

Gauss-Seidel (size 256, tile 64) on 24 cores

OpénMP Stfeaming ‘ -
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@ How to exented a scheduling algorithm to deal with dependent tasks?
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Data-Flow

Jack Dennis (1931-), Turing Award

Arvind, Culler, lannuci, Nikhil, Pingali, Gao et al. (MIT)
lan Watson, John Gurd (Manchester)

Motivation: hardware data-flow architectures

Goal: data is always local
when a task is scheduled/activated
Efficient use of local memories

Run-to-completion coroutines
— linear stacks are sufficient

@ Tasks/coroutines are called data-flow threads
@ Activation records of (dependent) tasks are called data-flow frames
> Explicitly managed by the scheduler in a dedicated heap structure
» Frame allocation at thread creation, deallocation at termination
@ Question: data-driven/feed-forward style with a synchronization counter (SC) vs.
tag-based data flow with associative map?
» Data-driven: remote writes to frames of consumer threads, decrement SC
> Tag-based: tag every write, match consumer with ready tags
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Sample Data-Driven Execution Primitives

Source: inspired from the DTA architecture, from Krishna Kavi and Roberto Giorgi

@ void *tcreate(void (*func)(), int sc, int size);
Allocates a new frame, sets the function pointer and initial SC

@ void tdecrease(void *fp);
Each call to tdecrease increments a thread-local counter to cache locally the value
to be decremented on a given consumer thread

@ tend()
Atomically subtracts each thread-local counter from the corresponding dependent
thread’s SC; when any SC reaches 0, it inserts the corresponding thread to the ready
queue of the current worker thread; deallocates the frame of the terminating thread
and returns

@ tgetcfp()
Retrieve the current frame pointer from the thread-local storage area of the worker
thread
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Task-Parallelization of Basic Blocks

int caller() void caller.th2()
{ {
BB1 £p2 = tgetcfp()
al = ...
al = fp2->al;
BB2 — fp3 = fp2->fp3;
d5 = al*al; d5 = alxal;
fp3->d5 = d5;
BB2
... = d5; tdecrease (£p3) ;
} i

Input arguments and pointers to the frames of the dependent frame are collected from
the def-use chains (SSA form in compilers for imperative languages)

25/36



Modular Task-Parallelization of Function Calls

void caller.th2()
{
£fp2 = get_cfp()

al = fp2->al;
fp3 = fp2->fp3;
d5 = alxal;
fp3->d5 = d5;

tdecrease(£fp3) ;

int caller() {

ret = callee(argl);

N 0o

. = ret;

void caller.bb.1() {
// creation point

fp_callee.
fp_callee.
fp_callee.
fp_callee.
fp_callee.

entry = tcreate(callee.entry, sc, ...);
return = tcreate(callee.return, sc, ...);
entry->argl = argl;

entry->ret_addr = &fp_callee.return->ret;
entry->ret_fp = fp_callee.return;
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General Conversion of Control Flow to Data Flow

Problem: in general, the consumer is not known at production time
C5

bbl

ph =
if (| 3 > N) goto BB2

sum_2=sum_3+i_3;

i_2=i_3+1; if (c5) goto H
goto BB1 lelse goto bl bb2

bb3 / \

bbs|ret = sum_3:|
N\

/

ret = 5um_3‘2;| bb4

@ When creating the thread for bb1, the frame pointer of its consumer(s) is unknown,
and it is not even sure there will be one
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General Conversion of Control Flow to Data Flow

Problem: in general, the consumer is not known at production time
C5

¥
i 1=0; / C5
sum_120; | °°° v Ny \ fp2 <7 idum3
¥ Y A
D] e | bbo | [ bb1 = [ b2 |

if (1.3 > N) goto BB2 R
¢ ot
4 BN

sum_2=sum_3+i_3;

i_2=1_3+1; if (c5) goto bbd; ‘ bb3 ‘ ‘ bb4 ‘ ‘ bb5
goto BB1 lelse goto bbs; bb2
bb3 / \

ret = sum_3*2;

bb4

bbs|ret = sum_3:|
N\

/

@ Decompose the data dependence bbl—bb4 into bb1—bb2 and bb2—bb4
o Additional dependence: frame pointer of bb2 passed through entry to bbl
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Data-Driven Execution

Eliminates with many performance probems!

@ Garbage collection, cactus stacks
@ Blindness of task scheduler w.r.t. future synchronizations

» The critical path is hidden
» Non-urgent tasks waste precious local memory resources

® Memory consumption of suspended, waiting tasks

@ Scheduling overhead of task suspension

Remaining challenges

@ Allows to implement arbitrary dynamic dependences, but cumbersome: need for
“proxy” threads, decoupling thread creation and join from the computational part

@ Compilation methods and runtime dependence resolver to let a thread know about
its consumers

@ Missing a method to aggregate communications across multiple instances of a task
v
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Optimization: Stream Computing

I -
write view V4 |U3 V2 U1 — |V2 |1 (Vo | — = |V2

3] 2] 1 1 0 __ 2

process write view horizon record read view

last defined

stall commit last available update
read/write \ | read—only o
\ , ]

read—only

\
Vo | read view
I

process

release

Generalization of Arvind, Nikhil and Pingali's I-structures: index-based MPMC streams

Lightweight runtime

@ Lock-free, consensus-free implementation

» No hardware atomic instruction
» No memory fence with x86 memory model

@ = 10 cycles per streaming communication cycle

@ Enables fine-grain concurrency: very good for local memories
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Evaluation on FFT

M Mixed pipeline W Pipeline parallelism  m Data-parallelism OpenMP3.0 tasks ~ mCilk
and data-parallelism OpenMP3.0 loops

Best configuration for each FFT size
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4-socket Opteron — 16 cores
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Data-Flow Stream Computing Based on OpenMP: OpenStream

http://www.di.ens.fr/StreamingOpenMP

A streaming extension of OpenMP (TERAFLUX EU project)
@ Dynamic, nested task creation
First class streams (function arguments/return, heap data structures)
Unifies streams (w/ sliding windows) and dynamic data flow
Modular composition (separate compilation)
Formal semantics: Control-Driven Data Flow (CDDF)
Prototype in GCC 4.7
Working on power- and energy-aware scheduling (PHARAON EU project)

Scaling Shared Memory to Manycore Architectures: global address space model
@ Data-flow based: inspired by location consistency and DAG consistency
@ Region-based cache/publish semantics and relaxed memory model
@ Non-partitioned: VGAS: “Virtual” GAS, not PGAS
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5. Conclusion and Perspectives

© Conclusion and Perspectives
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Lessons Learnt

Application programmers

@ Do not abandon decades of progress in programming languages, software
engineering, and tools

e Unmanaged languages like C, C4++ (Fortran?) have a bright future
e Domain-specific languages also

Runtime library and compiler writers
o Define a portable concurrency model for asynchronous tasks
@ Scalable and efficient coordination, communication, and synchronization
e Convert portable concurrency into target-specific, in-place computations
@ Memory model: formal semantics, and SW support to scale shared memory

Hardware designers

@ Invest into a standards-compliant, open source tool chain
Implement ®GAS (e.g., P2012) or VGAS (e.g., MPI clusters, Kalray MPPA)
Optimize most of the chip for the common automatable case

Isolate time-predictable area for reactive control applications
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PARKAS Team
Synchronous Kahn Parallelism

@ Data-flow synchronous languages, compilers, runtime libraries
@ Polyhedral compilation and tools

@ Applied to embedded control, parallel programming, compiler construction

Established September 2010, INRIA and Ecole Normale Supérieure, Paris
5 faculty, 4 postdocs, 14 PhD students, 1 engineer
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