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VELOX Stack Overview 
Concurrent Programming for Multi-core Architectures 
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TM in a Nutshell 

l  Multi-cores are here, the “free ride” is over 
l  Concurrent programming necessary, hard to get right 

l  TM can simplify concurrent programming 
l  Sequence of instructions executed atomically 

l  BEGIN … READ / WRITE … COMMIT 

l  Alleviates problems of locks: both safe and scalable 
l  Optimistic CC: upon conflict, rollback & restart 
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What Affects TM Performance? 

l  TM is not good for all applications 
l  There should be some conflicts... 

(otherwise no synchronization necessary) 

l  ...but not too many... 
(otherwise pessimistic CC is better) 

l  ...with not-too-long transactions… 
(to keep the cost of aborts reasonable) 

l  ...involving data not known statically 
(otherwise no simpler than locks) 
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TM Designs and Adaptivity 

l  Performance of TM depends on workload 
l  Obstruction-free vs. lock-based, object- vs. word-

based, visible vs. invisible reads, encounter- vs. 
commit-time locking, write-through vs. write-
back, implementation parameters… 
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Another Dimension 

l  Most existing TM benchmarks have a variable 
number of threads 
l  Should we have as many threads as cores? 
l  More cores = more processing power… 

= more concurrency = more potential conflicts… 
¿=? less performance 

l  Is there an “optimal” number of threads for a 
given workload (and a given TM algorithm/
configuration)? 

⇒  “Natural degree of parallelism” of the workload 
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Natural Degree of Parallelism 
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Natural Degree of Parallelism 
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Natural Degree of Parallelism 
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Natural Degree of Parallelism 

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 10 

labyrinth ssca2 

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0  10  20  30  40  50

 0  10  20  30  40  50

Sp
ee

du
p

Number of threads

ETLmodular
ETLsuicide
CTLsuicide

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

      

      

 

 

ETLmodular
ETLsuicide
CTLsuicide

 0

 2

 4

 6

 8

 10

 12

 14

 0  10  20  30  40  50

 0  10  20  30  40  50

Sp
ee

du
p

Number of threads

ETLmodular
ETLsuicide
CTLsuicide

 0

 2

 4

 6

 8

 10

 12

 14

      

      

 

 

ETLmodular
ETLsuicide
CTLsuicide

? 

? 

STAMP 



STAMP Workloads 

A wide variety of transactions! 
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Note on Contention Management 

l  Proper contention management can avoid 
degradation of throughout for high thread 
counts 
l  E.g., serialize conflicting transactions 

… but it does not improve performance… 
l  Typically remains flat 

… and it wastes resources 
l  More threads, same performance! 
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Adapting Concurrency 

l  Goal: dynamic adaptation of the degree of 
parallelism in TM applications 

l  Requires support for variable number of threads 
l  Refactoring of application/benchmark code 

l  Split work into small pieces 
l  Assign pieces to tasks 
l  Use thread pool to execute tasks 

l  Introduction of a new “main” loop 
l  3 phases: measurement, decision making, adaptation 
l  Threads run tasks that process pieces 
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Importance of Number of Pieces 

l  Too many pieces ⇒ extra overhead 
l  Too few pieces ⇒ less even load balancing 
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Thread Management 

l  Exploration-based scaling 
l  Measure performance of application threads 

l  Period duration adjusted according to throughout 

l  Explore neighboring/random configurations 
l  Adjust the number of threads 

l  Upon improvement continue, otherwise revert 
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Hill Climbing Algorithm 

l  Simple hill-climbing algorithm 
l  Increase #threads 

l  If performance improves: keep on adding threads 
l  If performance degrades: revert #threads 

l  Decrease #threads 
l  If performance improves: keep on removing threads 
l  If performance degrades: revert #threads 

l  Periodically choose random #threads 
l  If performance improves: keep #threads 
l  If performance degrades: revert #threads 

l  Step sizes: linear or logarithmic 
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Exploration-Based Scaling 
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Exploration-Based Scaling 
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Exploration-Based Scaling 
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Exploration-Based Scaling 

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 20 

intruder 
STAMP 

With intruder, the 
number of threads 
continuously evolves 
(no optimal value?) 

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  1  2  3  4  5  6  7  8  9  10

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

FR
P
P
LWV
�S
HU
LR
G�
��D
ER
UWV
�S
HU
LR
G�
���
[�
�ҋ
��
��

a
m

o
u
n
t 
o
f 
th

re
a
d
s

SHULRG����[����

dyn threads commits

amountOfThreads

dyn threads aborts



Exploration-Based Scaling 

l  The intruder benchmark models an intrusion 
detection system 
l  Processes fragments of messages 

l  Three types of transactions 
l  T1 — Get network packet 
l  T2 — Find position in data structure 

l  If message complete, search for intrusions 

l  T3 — Store information about detected intrusions 
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Exploration-Based Scaling 
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Exploration-Based Scaling 
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Dynamic Workloads 

l  Some workloads have dynamically-changing 
properties 
l  Varying transaction lengths (e.g., as data 

structures get populated) 
l  More conflicts at certain times 
l  Different mixes of transactions 

l  The optimal degree of parallelism is not 
always a constant value 

l  Likely to happen in real-world applications (?) 
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Exploration vs. Modeling 

l  Alternative: predictive models to forecast the 
impact of adding/removing threads 
l  Good for distributed TM (exploration does not 

scale due to cost of adding nodes) 
l  Accurate models hard to get right 

l  Idea: combine both approaches 
l  Online exploration can improve model’s accuracy 
l  Analytical model can improve scalability of online 

technique 
l  Joint work with D. Didona & P. Romano 
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Summary 

l  Performance depends on workload 
l  Driven mainly by conflicts 
l  Long transactions, large write sets, etc. 

l  There is no one-size-fits-all TM 
l  Many dimensions for adaptation 
l  Degree of concurrency particularly important 

l  Some workloads evolve at runtime 
l  Dynamic adaptation techniques can help TM adjust 

to changing workloads 

l  One more knob: optimistic vs. pessimistic? 
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