
Prof. P. Felber
Pascal.Felber@unine.ch
http://iiun.unine.ch/

…and the Natural
Degree of Parallelism

of Concurrent
Applications

Optimistic
Synchronization

Based on the MSc thesis of J. Schenker

VELOX Stack Overview
Concurrent Programming for Multi-core Architectures

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 2

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 3

TM in a Nutshell

l  Multi-cores are here, the “free ride” is over
l  Concurrent programming necessary, hard to get right

l  TM can simplify concurrent programming
l  Sequence of instructions executed atomically

l  BEGIN … READ / WRITE … COMMIT

l  Alleviates problems of locks: both safe and scalable
l  Optimistic CC: upon conflict, rollback & restart

T2

T1

B W R→A W R W→A W R W C→A

B W C R

W R W C

B R C W B W C W B R C R

What Affects TM Performance?

l  TM is not good for all applications
l  There should be some conflicts...

(otherwise no synchronization necessary)

l  ...but not too many...
(otherwise pessimistic CC is better)

l  ...with not-too-long transactions…
(to keep the cost of aborts reasonable)

l  ...involving data not known statically
(otherwise no simpler than locks)

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 4

TM Designs and Adaptivity

l  Performance of TM depends on workload
l  Obstruction-free vs. lock-based, object- vs. word-

based, visible vs. invisible reads, encounter- vs.
commit-time locking, write-through vs. write-
back, implementation parameters…

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 5

 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000
 7500
 8000

 0 2 4 6 8 10 12 14 16 18 20

Th
ro

ug
hp

ut
 (=

 1
03 tx

s/
s)

Configuration

red/black tree, size=4096, #threads=8

3

1

3

3

5

-1

3 1

3

-4

1
1 1 1

-3 -4

2
2 -7

7

20
0+

%
 im

pr
ov

em
en

t

0
2

4
6

8 216
218

220
222

224

 0
 20
 40
 60
 80

 100
 120
 140
 160

STAMP Vacation, h=4, #threads=8

Th
ro

ug
hp

ut
 (×

 1
03 tx

s/
s)

#shifts
#locks

Another Dimension

l  Most existing TM benchmarks have a variable
number of threads
l  Should we have as many threads as cores?
l  More cores = more processing power…

= more concurrency = more potential conflicts…
¿=? less performance

l  Is there an “optimal” number of threads for a
given workload (and a given TM algorithm/
configuration)?

⇒  “Natural degree of parallelism” of the workload

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 6

Natural Degree of Parallelism

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 7

vacation-low vacation-high

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 0 10 20 30 40 50

 0 10 20 30 40 50

Sp
ee

du
p

Number of threads

ETLmodular
ETLsuicide
CTLsuicide

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

ETLmodular
ETLsuicide
CTLsuicide

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

 0 10 20 30 40 50

 0 10 20 30 40 50

Sp
ee

du
p

Number of threads

ETLmodular
ETLsuicide
CTLsuicide

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

ETLmodular
ETLsuicide
CTLsuicide

STAMP

Natural Degree of Parallelism

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 8

kmeans-low

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 10 20 30 40 50

 0 10 20 30 40 50

Sp
ee

du
p

Number of threads

ETLmodular
ETLsuicide
CTLsuicide

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

ETLmodular
ETLsuicide
CTLsuicide

kmeans-high

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50

 0 10 20 30 40 50

Sp
ee

du
p

Number of threads

ETLmodular
ETLsuicide
CTLsuicide

 0

 1

 2

 3

 4

 5

 6

ETLmodular
ETLsuicide
CTLsuicide

STAMP

Natural Degree of Parallelism

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50

 0 10 20 30 40 50

Sp
ee

du
p

Number of threads

ETLmodular
ETLsuicide
CTLsuicide

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

ETLmodular
ETLsuicide
CTLsuicide

yada intruder

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50

 0 10 20 30 40 50

Sp
ee

du
p

Number of threads

ETLmodular
ETLsuicide
CTLsuicide

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

ETLmodular
ETLsuicide
CTLsuicide

STAMP

Natural Degree of Parallelism

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 10

labyrinth ssca2

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 10 20 30 40 50

 0 10 20 30 40 50

Sp
ee

du
p

Number of threads

ETLmodular
ETLsuicide
CTLsuicide

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

ETLmodular
ETLsuicide
CTLsuicide

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

 0 10 20 30 40 50

Sp
ee

du
p

Number of threads

ETLmodular
ETLsuicide
CTLsuicide

 0

 2

 4

 6

 8

 10

 12

 14

ETLmodular
ETLsuicide
CTLsuicide

?

?

STAMP

STAMP Workloads

A wide variety of transactions!

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 11

 0

 0.2

 0.4

 0.6

 0.8

 1

101 102 103 104 105 106 107 108 109 1010

D
is

tri
bu

tio
n

(C
D

F)

Transaction length (CPU cycles)
M

ea
n

tim
e

sl
ic

e

bayes

labyrinth

ssca2

yada

intruder genome

vacation (low)
vacation (high)

kmeans (low/high)

Note on Contention Management

l  Proper contention management can avoid
degradation of throughout for high thread
counts
l  E.g., serialize conflicting transactions

… but it does not improve performance…
l  Typically remains flat

… and it wastes resources
l  More threads, same performance!

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 12

Adapting Concurrency

l  Goal: dynamic adaptation of the degree of
parallelism in TM applications

l  Requires support for variable number of threads
l  Refactoring of application/benchmark code

l  Split work into small pieces
l  Assign pieces to tasks
l  Use thread pool to execute tasks

l  Introduction of a new “main” loop
l  3 phases: measurement, decision making, adaptation
l  Threads run tasks that process pieces

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 13

Importance of Number of Pieces

l  Too many pieces ⇒ extra overhead
l  Too few pieces ⇒ less even load balancing

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 14

vacation-low

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50

 0 10 20 30 40 50

Sp
ee

du
p

Number of threads

30
50
70
90

150
300
600

1200
3000

30000
400000

 0

 1

 2

 3

 4

 5

 6

 7

 8

30
50
70
90

150
300
600

1200
3000

30000
400000

 1

 10

 10 100 1000 10000 100000 1e+06

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
on

ds
 (l

ow
er

 is
 fa

st
er

)

Amount of Work Pieces

vacation-low using 43 threads

Thread Management

l  Exploration-based scaling
l  Measure performance of application threads

l  Period duration adjusted according to throughout

l  Explore neighboring/random configurations
l  Adjust the number of threads

l  Upon improvement continue, otherwise revert

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 15

Controller thread Application

Application
threads

Measurement

TransitionDecision

Hill Climbing Algorithm

l  Simple hill-climbing algorithm
l  Increase #threads

l  If performance improves: keep on adding threads
l  If performance degrades: revert #threads

l  Decrease #threads
l  If performance improves: keep on removing threads
l  If performance degrades: revert #threads

l  Periodically choose random #threads
l  If performance improves: keep #threads
l  If performance degrades: revert #threads

l  Step sizes: linear or logarithmic
Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 16

Exploration-Based Scaling

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 17

vacation-low vacation-high
STAMP

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50

 0 10 20 30 40 50

Sp
ee

du
p

Number of threads

dynamic
static

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

dynamic
static

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50

 0 10 20 30 40 50

Sp
ee

du
p

Number of threads

dynamic
static

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

dynamic
static

Exploration-Based Scaling

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 18

intruder
STAMP

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50

 0 10 20 30 40 50

Sp
ee

du
p

Number of threads

dynamic
static

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

dynamic
static

Performance is better
than with any static
number of threads!
How can that be?

Exploration-Based Scaling

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 19

vacation-low
STAMP

Usually we slowly
converge toward an
optimal value

 0

 50000

 100000

 150000

 200000

 250000

 0 50 100 150 200 250 300

 15

 20

 25

 30

 35

 40

 45

 50

 55

c
o
m

m
it
s
/p

e
ri
o
d
 a

b
o
rt

s
/p

e
ri
o
d

a
m

o
u
n
tO

fT
h
re

a
d
s

period

dyn threads commits

amountOfThreads

dyn threads aborts

Exploration-Based Scaling

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 20

intruder
STAMP

With intruder, the
number of threads
continuously evolves
(no optimal value?)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7 8 9 10

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

FR
P
P
LWV
�S
HU
LR
G�
��D
ER
UWV
�S
HU
LR
G�
���
[�
�ҋ
��
��

a
m

o
u
n
t
o
f
th

re
a
d
s

SHULRG����[����

dyn threads commits

amountOfThreads

dyn threads aborts

Exploration-Based Scaling

l  The intruder benchmark models an intrusion
detection system
l  Processes fragments of messages

l  Three types of transactions
l  T1 — Get network packet
l  T2 — Find position in data structure

l  If message complete, search for intrusions

l  T3 — Store information about detected intrusions

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 21

Exploration-Based Scaling

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 22

intruder
STAMP

l  2nd/3rd transactions grow
l  Cost of 2nd transaction

dominates
l  More conflicts near the

end of the execution
(larger data structures)

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8
 0.001

 0.01

 0.1

 1

 10

 100

 1000

re
ad

-s
et

 s
iz

e

w
rit

e-
se

t s
iz

e

7UDQVDFWLRQV����[��ҋ���ҋ����

read-set-size transaction 1
write-set-size transaction 1
read-set-size transaction 2
write-set-size transaction 2
read-set-size transaction 3
write-set-size transaction 3

Exploration-Based Scaling

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 23

Synthetic benchmark

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 10 20 30 40 50 60

 0 10 20 30 40 50 60

Sp
ee

du
p

Number of threads

dynamic
static

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

dynamic
static

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 100 200 300 400 500 600 700
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

co
m

m
its

/p
er

io
d

am
ou

nt
 o

f t
hr

ea
ds

period

dyn threads commits
amount of threads

Dynamic Workloads

l  Some workloads have dynamically-changing
properties
l  Varying transaction lengths (e.g., as data

structures get populated)
l  More conflicts at certain times
l  Different mixes of transactions

l  The optimal degree of parallelism is not
always a constant value

l  Likely to happen in real-world applications (?)

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 24

Exploration vs. Modeling

l  Alternative: predictive models to forecast the
impact of adding/removing threads
l  Good for distributed TM (exploration does not

scale due to cost of adding nodes)
l  Accurate models hard to get right

l  Idea: combine both approaches
l  Online exploration can improve model’s accuracy
l  Analytical model can improve scalability of online

technique
l  Joint work with D. Didona & P. Romano

Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 25

Summary

l  Performance depends on workload
l  Driven mainly by conflicts
l  Long transactions, large write sets, etc.

l  There is no one-size-fits-all TM
l  Many dimensions for adaptation
l  Degree of concurrency particularly important

l  Some workloads evolve at runtime
l  Dynamic adaptation techniques can help TM adjust

to changing workloads

l  One more knob: optimistic vs. pessimistic?
Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications 26

