Breaking the O(n m) Barrier for Buechi Games and Maximal End-Component Decomposition

Krishnendu Chatterjee (IST Austria) Monika Henzinger (University of Vienna, Austria)

LIP6, Paris, July 25, 2012

This Talk

- Two classical algorithmic problems related to graph games and verification of probabilistic systems:
 - Buechi games.
 - Maximal end-component (MEC) decomposition.
- The long-standing best known bounds for these problems have been O(n m).
- This talk we will present algorithms for these problems to break the O(n m) barrier.

Roll back the clock

- Tom Henzinger 2002: "very important and interesting algorithmic question".
- Orna Kupferman 2002: "very nice theoretical problem".
- Moshe Vardi 2022: talk on importance of Buechi automata and synthesis.
- Real motivation
 - Synthesis.
 - Model checking of open systems.
 - Probabilistic verification.

Graphs vs. Games

Two interacting players in games: Player 1 (Box) vs Player 2 (Diamond).

AND-OR Graphs.

K. Chatterjee and M. Henzinger

July 25, 2012

Game Graphs

Game Graphs

- A game graph G= $((V,E), (V_1, V_2))$
 - Player 1 states (or vertices) V₁ and similarly player 2 states V₂, and (V₁, V₂) partitions V.
 - E is the set of edges.
 - E(v) out-going edges from v, and assume E(v) nonempty for all s.
 - Notation: n= |V|, m =|E|.
- Game played by moving tokens: when player 1 state, then player 1 chooses the out-going edge, and if player 2 state, player 2 chooses the outgoing edge.

Game Example

Game Example

Game Example

Strategies

 Strategies are recipe how to move tokens or how to extend plays. Formally, given a history of play (or finite sequence of states), it chooses an outgoing edge.

•
$$\sigma: V^* V_1 \to V.$$

•
$$\pi: \mathsf{V}^* \ \mathsf{V}_2 \to \mathsf{V}.$$

Reachability and Buechi Objectives

- Reachability: there is a set of good vertices and goal is to reach them. Formally, for a set T of vertices, the objective is the set of infinite paths that visit the target T at least once.
- Buechi: there is a good set of vertices and goal is to visit them infinitely often. Formally, for a set B of vertices, the objective is the set of infinite paths that visit some vertex in B infinitely often. The objective is a liveness objective (like progress condition in mutual exclusion protocol).

Winning Set

- Winning set: Starting vertices such that player 1 has a strategy to ensure the objective against all strategies of player 2.
- Remark: Memoryless strategies are sufficient.
- We are interested in computing the winning set in games for player 1 for Buechi objectives.

Previous Result

- Reachability games:
 - O(m) (linear time algorithm) and PTIME-complete [Immerman 81, Beeri 80].
- Buechi games:
 - Classical algorithm: O(n m) [EJ91].
 - In the special case when m= O(n), an O(n²/ log n) algorithm [CJH03]

Buechi Games Algorithm

- A simple iterative algorithm using alternating reachability.
- Steps are as follows:
 - 1. Compute player-1 alt-reach set A to the current Buechi set.
 - 2. If A is the set of all vertices of current game graph, then stop and output A as the winning set.
 - 3. Else U be the remaining vertices (complement of A). Remove player-2 alt-reach set C to the set U from game graph and continue.

 Compute alt-reach for player 1 to the set B. Let us call this set A.

- Let U= V \ A. Then U is a trap. Clearly, U is not in winning for player 1.
- Hence alt-reach for player 2 to U is also not winning.

- Iterate on the remaining sub-graph.
- Every iteration what is removed is not part of winning set.
- When the iteration stops, all remaining vertices are winning for player 1.

Correctness Proof Idea

- Player 2 cannot leave.
- Player 1 can ensure to reach, and again, and again and so on.

- Classical algorithm identifies the largest trap and removes the trap.
- At most n iterations with time O(m) each.
- Analysis O(n m) is tight.
- Remark: Player-2 alt-reachability overall iterations is O(m) (edges worked on are removed from the graph).

Our New Algorithm

Hierarchical graph decomposition technique.

- As long as we find traps, we can remove them, need not find the largest trap.
- Running time: O(n²)
 - Better worst case for dense graphs.
 - Along with previous [CJH03] algorithm breaks O(n m) for all cases.

New Algorithm

- Create log n graphs hierarchically.
- Game graph G_i=(V,E_i) ensuring |E_i| is at most O(n · 2ⁱ).
 Some special way to select edges according to ordering.

Construction of G_i

The graph G_{i-1} is a sub-graph of G_i.

In G_i, for every vertex add at most 2ⁱ out-edges.

Construction of G_i

- The graph G_{i-1} is a sub-graph of G_i.
- In G_i, for every vertex add at most 2ⁱ out-edges.
- Then for every vertex add at most 2ⁱ more in-edges with preference to edges from player-2 non-Buechi vertices.

New Algorithm

- Search for traps in G₁, G₂, and so on.
 - Call a player-1 vertex with edges more than 2ⁱ as blue in G_i.
 - Compute alt-1 reachability to the set of Buechi or blue vertices.
 - If the complement is non-empty, then that is a trap (some sense largest trap (without Buechi and blue) in G_i).
 - In the trap all player-1 edges are retained (any player-1 vertex where edges are not retained are blue and not in trap).
 - Correctness follows.

Correctness of New Algorithm

- Correctness is as follows:
 - When identify a trap, then all player-1 edges of the original game graph in the trap.
 - When algorithm stops no trap as in the final graph all edges are retained.
 - Correctness follows from classical algorithm.
- Challenge is running time analysis
 - We are working on more edges possibly (edge belong to several graphs).
 - Not clear we gain anything.
 - Challenge is to analyze the size of the trap we discover.

- Analysis of the size of the trap.
 - Trap U identified in G_i but not in G_{i-1}.
 - We analyze the size of the trap we identify.

- Analysis of the size of the trap.
 - Trap U identified in G_i but not in G_{i-1}.
 - Case 1: U contains a player-1 vertex v that was blue in G_{i-1}.
 - Then v has at least 2ⁱ⁻¹ out-edges, otherwise would not have been blue.
 - Since a trap all out-going edges from v in trap. Size of trap at least 2ⁱ⁻¹.

- Analysis of the size of the trap.
 - Trap U identified in G_i but not in G_{i-1}.
 - Case 1: Done. U does not contain a player-1 vertex v that was blue in G_{i-1}. All player-1 edges in G_i and G_{i-1} identical.
 - Case 2: Two sub-cases to analyze.

- Analysis of the size of the trap.
 - Case 1: All player-1 edges in G_i and G_{i-1} identical.
 - Case 2 (a): All player-2 edges in G_i and G_{i-1} are identical. Then U is a trap in G_{i-1} and this a contradiction.
 - Case 2(b): One new player-2 edge in the trap.

- Analysis of the size of the trap.
 - Case 1: All player-1 edges in G_i and G_{i-1} identical.
 - Case 2 (a): All player-2 edges in G_i and G_{i-1} are identical.
 - Case 2(b): One new player-2 edge (u,v) in the trap.
 - Vertex v has at least 2ⁱ⁻¹ in edges from player-2 non-Buechi vertices as they have the priority.

- Analysis of the size of the trap.
 - Case 1: All player-1 edges in G_i and G_{i-1} identical.
 - Case 2 (a): All player-2 edges in G_i and G_{i-1} are identical.
 - Case 2(b): One new player-2 edge (u,v) in the trap.
 - Vertex v has at least 2ⁱ⁻¹ in edges from player-2 non-Buechi vertices as they have the priority.

- Analysis of the size of the trap.
 - Case 1: All player-1 edges in G_i and G_{i-1} identical.
 - Case 2 (a): All player-2 edges in G_i and G_{i-1} are identical.
 - Case 2(b): One new player-2 edge (u,v) in the trap.
 - Vertex v has at least 2ⁱ⁻¹ in edges from player-2 non-Buechi vertices as they have the priority.
 - All in-edges in the trap.
 - Size of trap at least 2ⁱ⁻¹.

New Algorithm

- Search for traps in G₁, G₂, and so on.
- If we find a trap, then remove it from all graphs.
- Key argument: if we find a trap in G_i, then size of trap is at least 2ⁱ⁻¹.
- Work done $O(n \cdot 2^{i+1})$ and charge to vertices removed.

Result

- New algorithm :O(n²).
 - Time spent to identify trap is O(n · 2ⁱ⁺¹) and charge to the trap of size 2ⁱ⁻¹.
- Strikingly simple algorithm breaks the long standing O(n m) barrier.
- Along with O(n²/ log n) algorithm for m=O(n) of [CJH03] we break O(n m) barrier for all cases.

Maximal End-component Decomposition

Maximal End-component Decomposition

- An end-component U is a set of vertices such that
 - Graph induced by U is strongly connected.
 - For all player-2 vertices in U all out-going edges end in U.
 - Typically used in MDPs (where player 2 is the probabilistic player).
 - We keep the notations uniform as our goal is to present algorithm for the problem.
- Maximal end-component (MEC) decomposition:
 - Classical algorithm: O(n m) [CY95, deAlfaro97]

- A simple iterative algorithm using scc decomposition and alternating reachability.
- Steps are as follows:
 - 1. Compute the bottom scc's. They are all mec's and let their union be U.
 - 2. Remove player-2 alt-reach set C to the set U from game graph and continue.
 - 3. Stop when all vertices are removed.

Remark: Player-2 alt-reach over all iterations is O(m). Main work is repeated scc decomposition

- Same as for Buechi games using hierarchical graph decomposition technique.
- Instead of traps search for bottom scc's.
- O(n²) time algorithm.
- We also present a different improved algorithm.

- The different sub-quadratic algorithm splits the classical algorithm as follows:
 - If more than m^{0.5} edges were lost, then use classical scc decomposition algorithm.
 - If less than m^{0.5} edges were lost, then use Tarjan scc algorithm with vertices having lost edges as starting point in lock-step.

Stop when a bottom scc C is found. The bottom scc C is removed and work done is at most edges in C times $M^{0.5}$.

K. Chatterjee and M. Henzinger

July 25, 2012

- The different sub-quadratic algorithm splits the classical algorithm as follows:
 - If more than m^{0.5} edges were lost, then use classical scc decomposition algorithm.
 - Total work: O(m^{1.5}) since at most m^{0.5} iterations of O(m) time each.
 - If less than m^{0.5} edges were lost, then use Tarjan scc algorithm with vertices having lost edges as starting point in lock-step.
 - Total work: O(m^{1.5}) since every removed edge is charged at most O(m^{0.5}).

MEC Decomposition

- Two algorithms:
 - O(n²).
 - O(m^{1.5}).

Clearly can do the min of the above two.

 Buechi games: a simple O(n²) time algorithm improving long-standing O(n m) bound.

 MEC decomposition in time O(min(m^{1.5},n²)) (worst case O(m n^{2/3})).

Conclusion

- Buechi games and MEC decomposition:
 - A core algorithmic problem in verification with longstanding O(n m) barrier.
 - We present a simple O(n²) time algorithm for the problem, also for mec decomposition.
 - For mec decomposition also O(m^{1.5}) algorithm that gives a worst case O(m n^{2/3}) algorithm.
- Open questions:
 - O(m n^{1-ϵ}) or O(n m^{1-ϵ}) for Buechi games, for some ϵ
 >0.
 - O(m n^{1/2}) algorithm for mec decomposition.

Thank you !

K. Chatterjee and M. Henzinger

July 25, 2012