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This Talk 

 

 Two classical algorithmic problems related to graph 
games and verification of probabilistic systems: 

 

 Buechi games. 

 

 Maximal end-component (MEC) decomposition. 

 

 The long-standing best known bounds for these 
problems have been O(n m). 

 

 This talk we will present algorithms for these 
problems to break the O(n m)  barrier. 
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Motivation 

 

 Roll back the clock 
 Tom Henzinger 2002: “very important and interesting 

algorithmic question”. 

 Orna Kupferman 2002: “very nice theoretical problem”. 

 Moshe Vardi 2022: talk on importance of Buechi 
automata and synthesis. 

 

 Real motivation 
 Synthesis. 

 Model checking of open systems. 

 Probabilistic verification. 
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Graphs vs. Games 

Two interacting players in games: Player 1 (Box) vs Player 2 (Diamond). 
 
AND-OR Graphs. 
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Game Graphs 
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Game Graphs  

 A game graph G= ((V,E), (V1, V2)) 
 Player 1 states (or vertices) V1  and similarly player 2 

states V2, and (V1, V2) partitions V. 

 E is the set of edges. 

 E(v) out-going edges from v, and assume E(v) non-
empty for all s. 

 Notation: n= |V|, m =|E|. 

 

 Game played by moving tokens: when player 1 
state, then player 1 chooses the out-going edge, 
and if player 2 state, player 2 chooses the 
outgoing edge. 
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Game Example  
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Game Example  
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Game Example  
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Strategies 

 Strategies are recipe how to move tokens or how 

to extend plays. Formally, given a history of play 

(or finite sequence of states), it chooses an out-

going edge. 

 

  ¾: V*  V1  V. 

 

  ¼: V*  V2 ! V. 
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Reachability and Buechi Objectives 

 

 Reachability: there is a set of good vertices and goal is to 

reach them. Formally, for a set T of vertices, the objective 

is the set of infinite paths that visit the target T at least 

once. 

 

 Buechi: there is a good set of vertices and goal is to visit 

them infinitely often. Formally, for a set B of vertices, the 

objective is the set of infinite paths that visit some vertex 

in B infinitely often. The objective is a liveness objective 

(like progress condition in mutual exclusion protocol). 
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Winning Set 

 

 Winning set: Starting vertices such that player 1 has a 

strategy to ensure the objective against all strategies of 

player 2. 

 

 Remark:  Memoryless strategies are sufficient. 

 

 We are interested in computing the winning set in games 

for player 1 for Buechi objectives. 
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Previous Result 

 

 Reachability games:  

 O(m) (linear time algorithm) and PTIME-complete 

[Immerman 81, Beeri 80]. 

 

 Buechi games:  

 Classical algorithm: O(n m) [EJ91]. 

 In the special case when m= O(n), an O(n2/ log n) 

algorithm [CJH03] 
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Buechi Games Algorithm 
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Classical Algorithm 

 A simple iterative algorithm using alternating 
reachability. 

 

 Steps are as follows: 
1. Compute player-1 alt-reach set A to the current Buechi 

set. 

 

2. If A is the set of all vertices of current game graph, then 
stop and output A as the winning set. 

 

3. Else U be the remaining vertices (complement of A). 
Remove player-2 alt-reach set C to the set U from game 
graph and continue.  

 



K. Chatterjee and M. Henzinger July 25, 2012 16 

Classical Algorithm 

 

 

 

 

 

 

 Compute alt-reach for player 1 to the set B. Let 

us call this set A. 

B 
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Classical Algorithm 

 

 

 

 

 

 

 

 Let U= V n A. Then U is a trap. Clearly, U is not in 

winning for player 1.  

 Hence alt-reach for player 2 to U is also not winning. 

B A U 

alt-reach-1 to B 
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Classical Algorithm 

 

 

 

 

 

 

 

 Iterate on the remaining sub-graph. 

 Every iteration what is removed is not part of  winning 
set.  

 When the iteration stops, all remaining vertices are 
winning for player 1. 

B A U 

alt-reach-2 to set U 
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Correctness Proof Idea 

 

 

 

 

 

 

 

 Player 2 cannot leave. 

 Player 1 can ensure to reach, and again, and 
again and so on. 

B A 
U* 

alt-reach-1 to B 
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Classical Algorithm 

 

 Classical algorithm identifies the largest trap and 
removes the trap. 

 

 At most n iterations with time O(m) each.  

  

 Analysis O(n m) is tight. 

 

 Remark: Player-2 alt-reachability overall 
iterations is O(m) (edges worked on are removed 
from the graph). 
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Our New Algorithm 

 

 Hierarchical graph decomposition technique. 

 

 

 As long as we find traps, we can remove them, need 
not find the largest trap. 

 

 Running time: O(n2) 
 Better worst case for dense graphs. 

 Along with previous [CJH03] algorithm breaks O(n m) for all 
cases. 
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New Algorithm 

 

 Create log n graphs hierarchically. 

 

 Game graph Gi=(V,Ei)  ensuring |Ei| is at most O(n ¢ 2i). 

Some special way to select edges according to ordering. 

 

G1 G2 
G3 

Glog n 
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Construction of Gi 

 The graph Gi-1 is a sub-graph of Gi.  

 In Gi, for every vertex add at most 2i out-edges.  

 

Gi 

At most 2i 
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Construction of Gi 

 The graph Gi-1 is a sub-graph of Gi.  

 In Gi, for every vertex add at most 2i out-edges.  

 Then for every vertex add at most 2i more in-edges with 

preference to edges from player-2 non-Buechi vertices. 

 

Gi 

At most 2i 
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New Algorithm 

 Search for traps in G1, G2, and so on. 

 Call a player-1 vertex with edges more than 2i as blue in Gi. 

 Compute alt-1 reachability to the set of Buechi or blue vertices. 

 If the complement is non-empty, then that is a trap (some sense 

largest trap (without Buechi and blue) in Gi). 

 In the trap all player-1 edges are retained (any player-1 vertex 

where edges are not retained are blue and not in trap). 

 Correctness follows.  

G1 G2 
G3 

Glog n 
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Correctness of New Algorithm 

 Correctness is as follows: 

 When identify a trap, then all player-1 edges of the original game graph in the 

trap. 

 When algorithm stops no trap as in the final graph all edges are retained.  

 Correctness follows from classical algorithm. 

 Challenge is running time analysis 

 We are working on more edges possibly (edge belong to several graphs). 

 Not clear we gain anything. 

 Challenge is to analyze the size of the trap we discover. 

G1 G2 
G3 

Glog n 
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Running Time Analysis 

 Analysis of the size of the trap. 

 Trap U identified in Gi but not in Gi-1.  

 We analyze the size of the trap we identify. 

Gi-1 
Gi 

Trap U 
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Running Time Analysis 

 Analysis of the size of the trap. 

 Trap U identified in Gi but not in Gi-1.  

 Case 1: U contains a player-1 vertex v that was blue in Gi-1. 

 Then v has at least 2i-1 out-edges, otherwise would not have 

been blue.  

 Since a trap all out-going edges from v in trap. Size of trap at 

least 2i-1. 

 

Gi-1 
Gi 

Trap U 
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Running Time Analysis 

 Analysis of the size of the trap. 

 Trap U identified in Gi but not in Gi-1.  

 Case 1: Done. U does not contain a player-1 vertex v that was 

blue in Gi-1. All player-1 edges in Gi and Gi-1 identical. 

 Case 2: Two sub-cases to analyze. 

 

Gi-1 
Gi 

Trap U 
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Running Time Analysis 

 Analysis of the size of the trap. 

 Case 1: All player-1 edges in Gi and Gi-1 identical. 

 Case 2 (a): All player-2 edges in Gi and Gi-1 are identical. Then U 

is a trap in Gi-1 and this a contradiction. 

 Case 2(b): One new player-2 edge in the trap. 

 

 

Gi-1 
Gi 

Trap U 
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Running Time Analysis 

 Analysis of the size of the trap. 

 Case 1: All player-1 edges in Gi and Gi-1 identical. 

 Case 2 (a): All player-2 edges in Gi and Gi-1 are identical.  

 Case 2(b): One new player-2 edge (u,v) in the trap. 

 Vertex v has at least 2i-1 in edges from player-2 non-Buechi 

vertices as they have the priority. 

 

 

Gi-1 
Gi 

Trap U 
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Running Time Analysis 

 Analysis of the size of the trap. 

 Case 1: All player-1 edges in Gi and Gi-1 identical. 

 Case 2 (a): All player-2 edges in Gi and Gi-1 are identical.  

 Case 2(b): One new player-2 edge (u,v) in the trap. 

 Vertex v has at least 2i-1 in edges from player-2 non-Buechi 

vertices as they have the priority. 

 

 

 

Gi-1 
Gi 

Trap U 
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Running Time Analysis 

 Analysis of the size of the trap. 

 Case 1: All player-1 edges in Gi and Gi-1 identical. 

 Case 2 (a): All player-2 edges in Gi and Gi-1 are identical.  

 Case 2(b): One new player-2 edge (u,v) in the trap. 

 Vertex v has at least 2i-1 in edges from player-2 non-Buechi 

vertices as they have the priority. 

 All in-edges in the trap.  

 Size of trap at least 2i-1.  

 

 

Gi-1 
Gi 

Trap U 
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New Algorithm 

 Search for traps in G1, G2, and so on. 

 If we find a trap, then remove it from all graphs. 

 Key argument: if we find a trap in Gi, then size of trap is 

at least 2i-1. 

  Work done O(n ¢ 2i+1) and charge to vertices removed. 

 

G1 G2 
G3 

Glog n 
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Result 

 New algorithm :O(n2).  

 Time spent to identify trap is O(n ¢ 2i+1) and charge to 

the trap of size 2i-1. 

 

 Strikingly simple algorithm breaks the long 

standing O(n m) barrier. 

 

 Along with O(n2/ log n) algorithm for m=O(n) of 

[CJH03] we break O(n m) barrier for all cases. 
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Maximal End-component 

Decomposition 
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Maximal End-component Decomposition 

 An end-component U is a set of vertices such 

that  
 Graph induced by U is strongly connected. 

 For all player-2 vertices in U all out-going edges end in U. 

 Typically used in MDPs (where player 2 is the probabilistic 

player). 

 

 We keep the notations uniform as our goal is to present algorithm 

for the problem. 

 

 Maximal end-component (MEC) decomposition: 

 Classical algorithm: O(n m) [CY95, deAlfaro97] 
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Classical Algorithm 

 A simple iterative algorithm using scc decomposition and 
alternating reachability. 

 

 Steps are as follows: 
1. Compute the bottom scc’s. They are all mec’s and let their union 

be U.  

 

2. Remove player-2 alt-reach set C to the set U from game graph 
and continue.  

 

3. Stop when all vertices are removed. 

 

 

Remark: Player-2 alt-reach over all iterations is O(m). Main 
work is repeated scc decomposition 
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New Algorithm 

 

 Same as for Buechi games using hierarchical 

graph decomposition technique. 

 

 Instead of traps search for bottom scc’s.  

 

 O(n2) time algorithm. 

 

 We also present a different improved algorithm. 
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Different Sub-quadratic Algorithm 

 The different sub-quadratic algorithm splits the 

classical algorithm as follows:  

 

 If more than m0.5 edges were lost, then use classical 

scc decomposition algorithm. 

 

 If less than m0.5 edges were lost, then use Tarjan scc 

algorithm with vertices having lost edges as starting 

point in lock-step.  
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Different Sub-quadratic Algorithm 
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Different Sub-quadratic Algorithm 
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Different Sub-quadratic Algorithm 

 

 

Stop when a bottom scc C is found. The bottom scc C is removed and  
work done is at most edges in C times m0.5.  
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Different Sub-quadratic Algorithm 

 The different sub-quadratic algorithm splits the 

classical algorithm as follows:  

 

 If more than m0.5 edges were lost, then use classical 

scc decomposition algorithm. 

 Total work: O(m1.5) since at most m0.5 iterations of O(m) time 

each. 

 If less than m0.5 edges were lost, then use Tarjan scc 

algorithm with vertices having lost edges as starting 

point in lock-step.  

 Total work: O(m1.5) since every removed edge is charged at 

most O(m0.5). 

 



K. Chatterjee and M. Henzinger July 25, 2012 45 

MEC Decomposition 

 Two algorithms: 

 

 O(n2). 

 

 O(m1.5). 

 

 

 Clearly can do the min of the above two. 
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Summary 

 

 Buechi games: a simple O(n2) time algorithm 

improving long-standing O(n m) bound. 

 

 

 MEC decomposition in time O(min(m1.5,n2)) 

(worst case O(m n2/3)).   
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Conclusion 

 Buechi games and MEC decomposition:  
 A core algorithmic problem in verification with long-

standing O(n m) barrier. 

 We present a simple O(n2) time algorithm for the 
problem, also for mec decomposition. 

 For mec decomposition also O(m1.5) algorithm that 
gives a worst case O(m n2/3) algorithm. 

 

 Open questions:  
 O(m n1-²) or O(n m1-²) for Buechi games, for some ² 

>0. 

 O(m n1/2) algorithm for mec decomposition. 
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Thank you ! 

 

Questions ? 

The end 


