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This Talk 

 

 Two classical algorithmic problems related to graph 
games and verification of probabilistic systems: 

 

 Buechi games. 

 

 Maximal end-component (MEC) decomposition. 

 

 The long-standing best known bounds for these 
problems have been O(n m). 

 

 This talk we will present algorithms for these 
problems to break the O(n m)  barrier. 
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Motivation 

 

 Roll back the clock 
 Tom Henzinger 2002: “very important and interesting 

algorithmic question”. 

 Orna Kupferman 2002: “very nice theoretical problem”. 

 Moshe Vardi 2022: talk on importance of Buechi 
automata and synthesis. 

 

 Real motivation 
 Synthesis. 

 Model checking of open systems. 

 Probabilistic verification. 
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Graphs vs. Games 

Two interacting players in games: Player 1 (Box) vs Player 2 (Diamond). 
 
AND-OR Graphs. 
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Game Graphs 
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Game Graphs  

 A game graph G= ((V,E), (V1, V2)) 
 Player 1 states (or vertices) V1  and similarly player 2 

states V2, and (V1, V2) partitions V. 

 E is the set of edges. 

 E(v) out-going edges from v, and assume E(v) non-
empty for all s. 

 Notation: n= |V|, m =|E|. 

 

 Game played by moving tokens: when player 1 
state, then player 1 chooses the out-going edge, 
and if player 2 state, player 2 chooses the 
outgoing edge. 
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Game Example  
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Game Example  
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Game Example  
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Strategies 

 Strategies are recipe how to move tokens or how 

to extend plays. Formally, given a history of play 

(or finite sequence of states), it chooses an out-

going edge. 

 

  ¾: V*  V1  V. 

 

  ¼: V*  V2 ! V. 
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Reachability and Buechi Objectives 

 

 Reachability: there is a set of good vertices and goal is to 

reach them. Formally, for a set T of vertices, the objective 

is the set of infinite paths that visit the target T at least 

once. 

 

 Buechi: there is a good set of vertices and goal is to visit 

them infinitely often. Formally, for a set B of vertices, the 

objective is the set of infinite paths that visit some vertex 

in B infinitely often. The objective is a liveness objective 

(like progress condition in mutual exclusion protocol). 
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Winning Set 

 

 Winning set: Starting vertices such that player 1 has a 

strategy to ensure the objective against all strategies of 

player 2. 

 

 Remark:  Memoryless strategies are sufficient. 

 

 We are interested in computing the winning set in games 

for player 1 for Buechi objectives. 
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Previous Result 

 

 Reachability games:  

 O(m) (linear time algorithm) and PTIME-complete 

[Immerman 81, Beeri 80]. 

 

 Buechi games:  

 Classical algorithm: O(n m) [EJ91]. 

 In the special case when m= O(n), an O(n2/ log n) 

algorithm [CJH03] 
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Buechi Games Algorithm 
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Classical Algorithm 

 A simple iterative algorithm using alternating 
reachability. 

 

 Steps are as follows: 
1. Compute player-1 alt-reach set A to the current Buechi 

set. 

 

2. If A is the set of all vertices of current game graph, then 
stop and output A as the winning set. 

 

3. Else U be the remaining vertices (complement of A). 
Remove player-2 alt-reach set C to the set U from game 
graph and continue.  
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Classical Algorithm 

 

 

 

 

 

 

 Compute alt-reach for player 1 to the set B. Let 

us call this set A. 

B 
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Classical Algorithm 

 

 

 

 

 

 

 

 Let U= V n A. Then U is a trap. Clearly, U is not in 

winning for player 1.  

 Hence alt-reach for player 2 to U is also not winning. 

B A U 

alt-reach-1 to B 
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Classical Algorithm 

 

 

 

 

 

 

 

 Iterate on the remaining sub-graph. 

 Every iteration what is removed is not part of  winning 
set.  

 When the iteration stops, all remaining vertices are 
winning for player 1. 

B A U 

alt-reach-2 to set U 
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Correctness Proof Idea 

 

 

 

 

 

 

 

 Player 2 cannot leave. 

 Player 1 can ensure to reach, and again, and 
again and so on. 

B A 
U* 

alt-reach-1 to B 
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Classical Algorithm 

 

 Classical algorithm identifies the largest trap and 
removes the trap. 

 

 At most n iterations with time O(m) each.  

  

 Analysis O(n m) is tight. 

 

 Remark: Player-2 alt-reachability overall 
iterations is O(m) (edges worked on are removed 
from the graph). 
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Our New Algorithm 

 

 Hierarchical graph decomposition technique. 

 

 

 As long as we find traps, we can remove them, need 
not find the largest trap. 

 

 Running time: O(n2) 
 Better worst case for dense graphs. 

 Along with previous [CJH03] algorithm breaks O(n m) for all 
cases. 
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New Algorithm 

 

 Create log n graphs hierarchically. 

 

 Game graph Gi=(V,Ei)  ensuring |Ei| is at most O(n ¢ 2i). 

Some special way to select edges according to ordering. 

 

G1 G2 
G3 

Glog n 
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Construction of Gi 

 The graph Gi-1 is a sub-graph of Gi.  

 In Gi, for every vertex add at most 2i out-edges.  

 

Gi 

At most 2i 
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Construction of Gi 

 The graph Gi-1 is a sub-graph of Gi.  

 In Gi, for every vertex add at most 2i out-edges.  

 Then for every vertex add at most 2i more in-edges with 

preference to edges from player-2 non-Buechi vertices. 

 

Gi 

At most 2i 
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New Algorithm 

 Search for traps in G1, G2, and so on. 

 Call a player-1 vertex with edges more than 2i as blue in Gi. 

 Compute alt-1 reachability to the set of Buechi or blue vertices. 

 If the complement is non-empty, then that is a trap (some sense 

largest trap (without Buechi and blue) in Gi). 

 In the trap all player-1 edges are retained (any player-1 vertex 

where edges are not retained are blue and not in trap). 

 Correctness follows.  

G1 G2 
G3 

Glog n 
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Correctness of New Algorithm 

 Correctness is as follows: 

 When identify a trap, then all player-1 edges of the original game graph in the 

trap. 

 When algorithm stops no trap as in the final graph all edges are retained.  

 Correctness follows from classical algorithm. 

 Challenge is running time analysis 

 We are working on more edges possibly (edge belong to several graphs). 

 Not clear we gain anything. 

 Challenge is to analyze the size of the trap we discover. 

G1 G2 
G3 

Glog n 
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Running Time Analysis 

 Analysis of the size of the trap. 

 Trap U identified in Gi but not in Gi-1.  

 We analyze the size of the trap we identify. 

Gi-1 
Gi 

Trap U 
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Running Time Analysis 

 Analysis of the size of the trap. 

 Trap U identified in Gi but not in Gi-1.  

 Case 1: U contains a player-1 vertex v that was blue in Gi-1. 

 Then v has at least 2i-1 out-edges, otherwise would not have 

been blue.  

 Since a trap all out-going edges from v in trap. Size of trap at 

least 2i-1. 

 

Gi-1 
Gi 

Trap U 
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Running Time Analysis 

 Analysis of the size of the trap. 

 Trap U identified in Gi but not in Gi-1.  

 Case 1: Done. U does not contain a player-1 vertex v that was 

blue in Gi-1. All player-1 edges in Gi and Gi-1 identical. 

 Case 2: Two sub-cases to analyze. 

 

Gi-1 
Gi 

Trap U 
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Running Time Analysis 

 Analysis of the size of the trap. 

 Case 1: All player-1 edges in Gi and Gi-1 identical. 

 Case 2 (a): All player-2 edges in Gi and Gi-1 are identical. Then U 

is a trap in Gi-1 and this a contradiction. 

 Case 2(b): One new player-2 edge in the trap. 

 

 

Gi-1 
Gi 

Trap U 
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Running Time Analysis 

 Analysis of the size of the trap. 

 Case 1: All player-1 edges in Gi and Gi-1 identical. 

 Case 2 (a): All player-2 edges in Gi and Gi-1 are identical.  

 Case 2(b): One new player-2 edge (u,v) in the trap. 

 Vertex v has at least 2i-1 in edges from player-2 non-Buechi 

vertices as they have the priority. 

 

 

Gi-1 
Gi 

Trap U 
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Running Time Analysis 

 Analysis of the size of the trap. 

 Case 1: All player-1 edges in Gi and Gi-1 identical. 

 Case 2 (a): All player-2 edges in Gi and Gi-1 are identical.  

 Case 2(b): One new player-2 edge (u,v) in the trap. 

 Vertex v has at least 2i-1 in edges from player-2 non-Buechi 

vertices as they have the priority. 

 

 

 

Gi-1 
Gi 

Trap U 
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Running Time Analysis 

 Analysis of the size of the trap. 

 Case 1: All player-1 edges in Gi and Gi-1 identical. 

 Case 2 (a): All player-2 edges in Gi and Gi-1 are identical.  

 Case 2(b): One new player-2 edge (u,v) in the trap. 

 Vertex v has at least 2i-1 in edges from player-2 non-Buechi 

vertices as they have the priority. 

 All in-edges in the trap.  

 Size of trap at least 2i-1.  

 

 

Gi-1 
Gi 

Trap U 
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New Algorithm 

 Search for traps in G1, G2, and so on. 

 If we find a trap, then remove it from all graphs. 

 Key argument: if we find a trap in Gi, then size of trap is 

at least 2i-1. 

  Work done O(n ¢ 2i+1) and charge to vertices removed. 

 

G1 G2 
G3 

Glog n 
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Result 

 New algorithm :O(n2).  

 Time spent to identify trap is O(n ¢ 2i+1) and charge to 

the trap of size 2i-1. 

 

 Strikingly simple algorithm breaks the long 

standing O(n m) barrier. 

 

 Along with O(n2/ log n) algorithm for m=O(n) of 

[CJH03] we break O(n m) barrier for all cases. 
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Maximal End-component 

Decomposition 
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Maximal End-component Decomposition 

 An end-component U is a set of vertices such 

that  
 Graph induced by U is strongly connected. 

 For all player-2 vertices in U all out-going edges end in U. 

 Typically used in MDPs (where player 2 is the probabilistic 

player). 

 

 We keep the notations uniform as our goal is to present algorithm 

for the problem. 

 

 Maximal end-component (MEC) decomposition: 

 Classical algorithm: O(n m) [CY95, deAlfaro97] 
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Classical Algorithm 

 A simple iterative algorithm using scc decomposition and 
alternating reachability. 

 

 Steps are as follows: 
1. Compute the bottom scc’s. They are all mec’s and let their union 

be U.  

 

2. Remove player-2 alt-reach set C to the set U from game graph 
and continue.  

 

3. Stop when all vertices are removed. 

 

 

Remark: Player-2 alt-reach over all iterations is O(m). Main 
work is repeated scc decomposition 
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New Algorithm 

 

 Same as for Buechi games using hierarchical 

graph decomposition technique. 

 

 Instead of traps search for bottom scc’s.  

 

 O(n2) time algorithm. 

 

 We also present a different improved algorithm. 
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Different Sub-quadratic Algorithm 

 The different sub-quadratic algorithm splits the 

classical algorithm as follows:  

 

 If more than m0.5 edges were lost, then use classical 

scc decomposition algorithm. 

 

 If less than m0.5 edges were lost, then use Tarjan scc 

algorithm with vertices having lost edges as starting 

point in lock-step.  
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Different Sub-quadratic Algorithm 
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Different Sub-quadratic Algorithm 
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Different Sub-quadratic Algorithm 

 

 

Stop when a bottom scc C is found. The bottom scc C is removed and  
work done is at most edges in C times m0.5.  
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Different Sub-quadratic Algorithm 

 The different sub-quadratic algorithm splits the 

classical algorithm as follows:  

 

 If more than m0.5 edges were lost, then use classical 

scc decomposition algorithm. 

 Total work: O(m1.5) since at most m0.5 iterations of O(m) time 

each. 

 If less than m0.5 edges were lost, then use Tarjan scc 

algorithm with vertices having lost edges as starting 

point in lock-step.  

 Total work: O(m1.5) since every removed edge is charged at 

most O(m0.5). 
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MEC Decomposition 

 Two algorithms: 

 

 O(n2). 

 

 O(m1.5). 

 

 

 Clearly can do the min of the above two. 
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Summary 

 

 Buechi games: a simple O(n2) time algorithm 

improving long-standing O(n m) bound. 

 

 

 MEC decomposition in time O(min(m1.5,n2)) 

(worst case O(m n2/3)).   
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Conclusion 

 Buechi games and MEC decomposition:  
 A core algorithmic problem in verification with long-

standing O(n m) barrier. 

 We present a simple O(n2) time algorithm for the 
problem, also for mec decomposition. 

 For mec decomposition also O(m1.5) algorithm that 
gives a worst case O(m n2/3) algorithm. 

 

 Open questions:  
 O(m n1-²) or O(n m1-²) for Buechi games, for some ² 

>0. 

 O(m n1/2) algorithm for mec decomposition. 
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Thank you ! 

 

Questions ? 

The end 


