
K. Chatterjee and M. Henzinger July 25, 2012 1

Breaking the O(n m) Barrier for Buechi Games

and Maximal End-Component Decomposition

Krishnendu Chatterjee (IST Austria)

Monika Henzinger (University of Vienna, Austria)

LIP6, Paris, July 25, 2012

K. Chatterjee and M. Henzinger July 25, 2012 2

This Talk

 Two classical algorithmic problems related to graph
games and verification of probabilistic systems:

 Buechi games.

 Maximal end-component (MEC) decomposition.

 The long-standing best known bounds for these
problems have been O(n m).

 This talk we will present algorithms for these
problems to break the O(n m) barrier.

K. Chatterjee and M. Henzinger July 25, 2012 3

Motivation

 Roll back the clock
 Tom Henzinger 2002: “very important and interesting

algorithmic question”.

 Orna Kupferman 2002: “very nice theoretical problem”.

 Moshe Vardi 2022: talk on importance of Buechi
automata and synthesis.

 Real motivation
 Synthesis.

 Model checking of open systems.

 Probabilistic verification.

K. Chatterjee and M. Henzinger July 25, 2012 4

Graphs vs. Games

Two interacting players in games: Player 1 (Box) vs Player 2 (Diamond).

AND-OR Graphs.

K. Chatterjee and M. Henzinger July 25, 2012 5

Game Graphs

K. Chatterjee and M. Henzinger July 25, 2012 6

Game Graphs

 A game graph G= ((V,E), (V1, V2))
 Player 1 states (or vertices) V1 and similarly player 2

states V2, and (V1, V2) partitions V.

 E is the set of edges.

 E(v) out-going edges from v, and assume E(v) non-
empty for all s.

 Notation: n= |V|, m =|E|.

 Game played by moving tokens: when player 1
state, then player 1 chooses the out-going edge,
and if player 2 state, player 2 chooses the
outgoing edge.

K. Chatterjee and M. Henzinger July 25, 2012 7

Game Example

K. Chatterjee and M. Henzinger July 25, 2012 8

Game Example

K. Chatterjee and M. Henzinger July 25, 2012 9

Game Example

K. Chatterjee and M. Henzinger July 25, 2012 10

Strategies

 Strategies are recipe how to move tokens or how

to extend plays. Formally, given a history of play

(or finite sequence of states), it chooses an out-

going edge.

 ¾: V* V1 V.

 ¼: V* V2 ! V.

K. Chatterjee and M. Henzinger July 25, 2012 11

Reachability and Buechi Objectives

 Reachability: there is a set of good vertices and goal is to

reach them. Formally, for a set T of vertices, the objective

is the set of infinite paths that visit the target T at least

once.

 Buechi: there is a good set of vertices and goal is to visit

them infinitely often. Formally, for a set B of vertices, the

objective is the set of infinite paths that visit some vertex

in B infinitely often. The objective is a liveness objective

(like progress condition in mutual exclusion protocol).

K. Chatterjee and M. Henzinger July 25, 2012 12

Winning Set

 Winning set: Starting vertices such that player 1 has a

strategy to ensure the objective against all strategies of

player 2.

 Remark: Memoryless strategies are sufficient.

 We are interested in computing the winning set in games

for player 1 for Buechi objectives.

K. Chatterjee and M. Henzinger July 25, 2012 13

Previous Result

 Reachability games:

 O(m) (linear time algorithm) and PTIME-complete

[Immerman 81, Beeri 80].

 Buechi games:

 Classical algorithm: O(n m) [EJ91].

 In the special case when m= O(n), an O(n2/ log n)

algorithm [CJH03]

K. Chatterjee and M. Henzinger July 25, 2012 14

Buechi Games Algorithm

K. Chatterjee and M. Henzinger July 25, 2012 15

Classical Algorithm

 A simple iterative algorithm using alternating
reachability.

 Steps are as follows:
1. Compute player-1 alt-reach set A to the current Buechi

set.

2. If A is the set of all vertices of current game graph, then
stop and output A as the winning set.

3. Else U be the remaining vertices (complement of A).
Remove player-2 alt-reach set C to the set U from game
graph and continue.

K. Chatterjee and M. Henzinger July 25, 2012 16

Classical Algorithm

 Compute alt-reach for player 1 to the set B. Let

us call this set A.

B

K. Chatterjee and M. Henzinger July 25, 2012 17

Classical Algorithm

 Let U= V n A. Then U is a trap. Clearly, U is not in

winning for player 1.

 Hence alt-reach for player 2 to U is also not winning.

B A U

alt-reach-1 to B

K. Chatterjee and M. Henzinger July 25, 2012 18

Classical Algorithm

 Iterate on the remaining sub-graph.

 Every iteration what is removed is not part of winning
set.

 When the iteration stops, all remaining vertices are
winning for player 1.

B A U

alt-reach-2 to set U

K. Chatterjee and M. Henzinger July 25, 2012 19

Correctness Proof Idea

 Player 2 cannot leave.

 Player 1 can ensure to reach, and again, and
again and so on.

B A
U*

alt-reach-1 to B

K. Chatterjee and M. Henzinger July 25, 2012 20

Classical Algorithm

 Classical algorithm identifies the largest trap and
removes the trap.

 At most n iterations with time O(m) each.

 Analysis O(n m) is tight.

 Remark: Player-2 alt-reachability overall
iterations is O(m) (edges worked on are removed
from the graph).

K. Chatterjee and M. Henzinger July 25, 2012 21

Our New Algorithm

 Hierarchical graph decomposition technique.

 As long as we find traps, we can remove them, need
not find the largest trap.

 Running time: O(n2)
 Better worst case for dense graphs.

 Along with previous [CJH03] algorithm breaks O(n m) for all
cases.

K. Chatterjee and M. Henzinger July 25, 2012 22

New Algorithm

 Create log n graphs hierarchically.

 Game graph Gi=(V,Ei) ensuring |Ei| is at most O(n ¢ 2i).

Some special way to select edges according to ordering.

G1 G2
G3

Glog n

K. Chatterjee and M. Henzinger July 25, 2012 23

Construction of Gi

 The graph Gi-1 is a sub-graph of Gi.

 In Gi, for every vertex add at most 2i out-edges.

Gi

At most 2i

K. Chatterjee and M. Henzinger July 25, 2012 24

Construction of Gi

 The graph Gi-1 is a sub-graph of Gi.

 In Gi, for every vertex add at most 2i out-edges.

 Then for every vertex add at most 2i more in-edges with

preference to edges from player-2 non-Buechi vertices.

Gi

At most 2i

K. Chatterjee and M. Henzinger July 25, 2012 25

New Algorithm

 Search for traps in G1, G2, and so on.

 Call a player-1 vertex with edges more than 2i as blue in Gi.

 Compute alt-1 reachability to the set of Buechi or blue vertices.

 If the complement is non-empty, then that is a trap (some sense

largest trap (without Buechi and blue) in Gi).

 In the trap all player-1 edges are retained (any player-1 vertex

where edges are not retained are blue and not in trap).

 Correctness follows.

G1 G2
G3

Glog n

K. Chatterjee and M. Henzinger July 25, 2012 26

Correctness of New Algorithm

 Correctness is as follows:

 When identify a trap, then all player-1 edges of the original game graph in the

trap.

 When algorithm stops no trap as in the final graph all edges are retained.

 Correctness follows from classical algorithm.

 Challenge is running time analysis

 We are working on more edges possibly (edge belong to several graphs).

 Not clear we gain anything.

 Challenge is to analyze the size of the trap we discover.

G1 G2
G3

Glog n

K. Chatterjee and M. Henzinger July 25, 2012 27

Running Time Analysis

 Analysis of the size of the trap.

 Trap U identified in Gi but not in Gi-1.

 We analyze the size of the trap we identify.

Gi-1
Gi

Trap U

K. Chatterjee and M. Henzinger July 25, 2012 28

Running Time Analysis

 Analysis of the size of the trap.

 Trap U identified in Gi but not in Gi-1.

 Case 1: U contains a player-1 vertex v that was blue in Gi-1.

 Then v has at least 2i-1 out-edges, otherwise would not have

been blue.

 Since a trap all out-going edges from v in trap. Size of trap at

least 2i-1.

Gi-1
Gi

Trap U

K. Chatterjee and M. Henzinger July 25, 2012 29

Running Time Analysis

 Analysis of the size of the trap.

 Trap U identified in Gi but not in Gi-1.

 Case 1: Done. U does not contain a player-1 vertex v that was

blue in Gi-1. All player-1 edges in Gi and Gi-1 identical.

 Case 2: Two sub-cases to analyze.

Gi-1
Gi

Trap U

K. Chatterjee and M. Henzinger July 25, 2012 30

Running Time Analysis

 Analysis of the size of the trap.

 Case 1: All player-1 edges in Gi and Gi-1 identical.

 Case 2 (a): All player-2 edges in Gi and Gi-1 are identical. Then U

is a trap in Gi-1 and this a contradiction.

 Case 2(b): One new player-2 edge in the trap.

Gi-1
Gi

Trap U

K. Chatterjee and M. Henzinger July 25, 2012 31

Running Time Analysis

 Analysis of the size of the trap.

 Case 1: All player-1 edges in Gi and Gi-1 identical.

 Case 2 (a): All player-2 edges in Gi and Gi-1 are identical.

 Case 2(b): One new player-2 edge (u,v) in the trap.

 Vertex v has at least 2i-1 in edges from player-2 non-Buechi

vertices as they have the priority.

Gi-1
Gi

Trap U

K. Chatterjee and M. Henzinger July 25, 2012 32

Running Time Analysis

 Analysis of the size of the trap.

 Case 1: All player-1 edges in Gi and Gi-1 identical.

 Case 2 (a): All player-2 edges in Gi and Gi-1 are identical.

 Case 2(b): One new player-2 edge (u,v) in the trap.

 Vertex v has at least 2i-1 in edges from player-2 non-Buechi

vertices as they have the priority.

Gi-1
Gi

Trap U

K. Chatterjee and M. Henzinger July 25, 2012 33

Running Time Analysis

 Analysis of the size of the trap.

 Case 1: All player-1 edges in Gi and Gi-1 identical.

 Case 2 (a): All player-2 edges in Gi and Gi-1 are identical.

 Case 2(b): One new player-2 edge (u,v) in the trap.

 Vertex v has at least 2i-1 in edges from player-2 non-Buechi

vertices as they have the priority.

 All in-edges in the trap.

 Size of trap at least 2i-1.

Gi-1
Gi

Trap U

K. Chatterjee and M. Henzinger July 25, 2012 34

New Algorithm

 Search for traps in G1, G2, and so on.

 If we find a trap, then remove it from all graphs.

 Key argument: if we find a trap in Gi, then size of trap is

at least 2i-1.

 Work done O(n ¢ 2i+1) and charge to vertices removed.

G1 G2
G3

Glog n

K. Chatterjee and M. Henzinger July 25, 2012 35

Result

 New algorithm :O(n2).

 Time spent to identify trap is O(n ¢ 2i+1) and charge to

the trap of size 2i-1.

 Strikingly simple algorithm breaks the long

standing O(n m) barrier.

 Along with O(n2/ log n) algorithm for m=O(n) of

[CJH03] we break O(n m) barrier for all cases.

K. Chatterjee and M. Henzinger July 25, 2012 36

Maximal End-component

Decomposition

K. Chatterjee and M. Henzinger July 25, 2012 37

Maximal End-component Decomposition

 An end-component U is a set of vertices such

that
 Graph induced by U is strongly connected.

 For all player-2 vertices in U all out-going edges end in U.

 Typically used in MDPs (where player 2 is the probabilistic

player).

 We keep the notations uniform as our goal is to present algorithm

for the problem.

 Maximal end-component (MEC) decomposition:

 Classical algorithm: O(n m) [CY95, deAlfaro97]

K. Chatterjee and M. Henzinger July 25, 2012 38

Classical Algorithm

 A simple iterative algorithm using scc decomposition and
alternating reachability.

 Steps are as follows:
1. Compute the bottom scc’s. They are all mec’s and let their union

be U.

2. Remove player-2 alt-reach set C to the set U from game graph
and continue.

3. Stop when all vertices are removed.

Remark: Player-2 alt-reach over all iterations is O(m). Main
work is repeated scc decomposition

K. Chatterjee and M. Henzinger July 25, 2012 39

New Algorithm

 Same as for Buechi games using hierarchical

graph decomposition technique.

 Instead of traps search for bottom scc’s.

 O(n2) time algorithm.

 We also present a different improved algorithm.

K. Chatterjee and M. Henzinger July 25, 2012 40

Different Sub-quadratic Algorithm

 The different sub-quadratic algorithm splits the

classical algorithm as follows:

 If more than m0.5 edges were lost, then use classical

scc decomposition algorithm.

 If less than m0.5 edges were lost, then use Tarjan scc

algorithm with vertices having lost edges as starting

point in lock-step.

K. Chatterjee and M. Henzinger July 25, 2012 41

Different Sub-quadratic Algorithm

K. Chatterjee and M. Henzinger July 25, 2012 42

Different Sub-quadratic Algorithm

K. Chatterjee and M. Henzinger July 25, 2012 43

Different Sub-quadratic Algorithm

Stop when a bottom scc C is found. The bottom scc C is removed and
work done is at most edges in C times m0.5.

K. Chatterjee and M. Henzinger July 25, 2012 44

Different Sub-quadratic Algorithm

 The different sub-quadratic algorithm splits the

classical algorithm as follows:

 If more than m0.5 edges were lost, then use classical

scc decomposition algorithm.

 Total work: O(m1.5) since at most m0.5 iterations of O(m) time

each.

 If less than m0.5 edges were lost, then use Tarjan scc

algorithm with vertices having lost edges as starting

point in lock-step.

 Total work: O(m1.5) since every removed edge is charged at

most O(m0.5).

K. Chatterjee and M. Henzinger July 25, 2012 45

MEC Decomposition

 Two algorithms:

 O(n2).

 O(m1.5).

 Clearly can do the min of the above two.

K. Chatterjee and M. Henzinger July 25, 2012 46

Summary

 Buechi games: a simple O(n2) time algorithm

improving long-standing O(n m) bound.

 MEC decomposition in time O(min(m1.5,n2))

(worst case O(m n2/3)).

K. Chatterjee and M. Henzinger July 25, 2012 47

Conclusion

 Buechi games and MEC decomposition:
 A core algorithmic problem in verification with long-

standing O(n m) barrier.

 We present a simple O(n2) time algorithm for the
problem, also for mec decomposition.

 For mec decomposition also O(m1.5) algorithm that
gives a worst case O(m n2/3) algorithm.

 Open questions:
 O(m n1-²) or O(n m1-²) for Buechi games, for some ²

>0.

 O(m n1/2) algorithm for mec decomposition.

K. Chatterjee and M. Henzinger July 25, 2012 48

Thank you !

Questions ?

The end

