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This Talk

Two classical algorithmic problems related to graph
games and verification of probabilistic systems:

Buechi games.

Maximal end-component (MEC) decomposition.

The long-standing best known bounds for these
problems have been O(n m).

This talk we will present algorithms for these
problems to break the O(n m) barrier.

K. Chatterjee and M. Henzinger July 25, 2012 2



Motivation

Roll back the clock

Tom Henzinger 2002: “very important and interesting
algorithmic question”.

Orna Kupferman 2002: “very nice theoretical problem”.

Moshe Vardi 2022: talk on importance of Buechi
automata and synthesis.

Real motivation
Synthesis.

Model checking of open systems.
Probabilistic verification.
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Graphs vs. Games

A, S

Two interacting players in games: Player 1 (Box) vs Player 2 (Diamond).

AND-OR Graphs.
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Game Graphs




Game Graphs

A game graph G= ((V,E), (V4, V,))
Player 1 states (or vertices) V, and similarly player 2
states V,, and (V,, V,) partitions V.
E is the set of edges.

E(v) out-going edges from v, and assume E(v) non-
empty for all s.

Notation: n= |V|, m =|E]|.

Game played by moving tokens: when player 1
state, then player 1 chooses the out-going edge,
and if player 2 state, player 2 chooses the
outgoing edge.
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Strategies

Strategies are recipe how to move tokens or how
to extend plays. Formally, given a history of play
(or finite sequence of states), it chooses an out-
going edge.

o V'V, > V.

V'V, = V.
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Reachability and Buechi Objectives

Reachability: there is a set of good vertices and goal is to
reach them. Formally, for a set T of vertices, the objective
Is the set of infinite paths that visit the target T at least
once.

Buechi: there is a good set of vertices and goal is to visit
them infinitely often. Formally, for a set B of vertices, the
objective is the set of infinite paths that visit some vertex
in B infinitely often. The objective is a liveness objective
(like progress condition in mutual exclusion protocol).
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Winning Set

Winning set: Starting vertices such that player 1 has a
strategy to ensure the objective against all strategies of
player 2.

Remark: Memoryless strategies are sufficient.

We are interested in computing the winning set in games
for player 1 for Buechi objectives.
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Previous Result

Reachability games:

O(m) (linear time algorithm) and PTIME-complete
[Immerman 81, Beeri 80].

Buechi games:
Classical algorithm: O(n m) [EJ91].

In the special case when m= O(n), an O(n?/ log n)
algorithm [CJHO3]
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Buechi Games Algorithm
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Classical Algorithm

A simple iterative algorithm wusing alternating
reachability.

Steps are as follows:

Compute player-1 alt-reach set A to the current Buechi
set.

If A is the set of all vertices of current game graph, then
stop and output A as the winning set.

Else U be the remaining vertices (complement of A).
Remove player-2 alt-reach set C to the set U from game
graph and continue.
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Classical Algorithm

Compute alt-reach for player 1 to the set B. Let
us call this set A.
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Classical Algorithm

Let U=V \ A. Then U is a trap. Clearly, U is not in
winning for player 1.
Hence alt-reach for player 2 to U is also not winning.
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Classical Algorithm

alt-reach-2 to set U

Iterate on the remaining sub-graph.
Every iteration what is removed is not part of winning
set.

When the iteration stops, all remaining vertices are
winning for player 1.
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Correctness Proof Idea

U*

Player 2 cannot leave.

Player 1 can ensure to reach, and again, and
again and so on.
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Classical Algorithm

Classical algorithm identifies the largest trap and
removes the trap.

At most n iterations with time O(m) each.
Analysis O(n m) is tight.

Remark: Player-2  alt-reachability  overall
iterations is O(m) (edges worked on are removed
from the graph).
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Our New Algorithm

Hierarchical graph decomposition technique.

As long as we find traps, we can remove them, need
not find the largest trap.

Running time: O(n?)
Better worst case for dense graphs.

Along with previous [CJHO3] algorithm breaks O(n m) for all
cases.
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New Algorithm

Create log n graphs hierarchically.

Game graph G=(V,E)) ensuring |E| is at most O(n - 2}).
Some special way to select edges according to ordering.
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Construction of G

The graph G, ; is a sub-graph of G..
In G, for every vertex add at most 2' out-edges.
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Construction of G

The graph G, ; is a sub-graph of G..
In G, for every vertex add at most 2' out-edges.

Then for every vertex add at most 2' more in-edges with
preference to edges from player-2 non-Buechi vertices.
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New Algorithm

Search for traps in G4, G,, and so on.
Call a player-1 vertex with edges more than 2' as blue in G..
Compute alt-1 reachability to the set of Buechi or blue vertices.

If the complement is non-empty, then that is a trap (some sense
largest trap (without Buechi and blue) in G;).

In the trap all player-1 edges are retained (any player-1 vertex
where edges are not retained are blue and not in trap).

Correctness follows. .
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Correctness of New Algorithm

Correctness is as follows:

When identify a trap, then all player-1 edges of the original game graph in the
trap.

When algorithm stops no trap as in the final graph all edges are retained.
Correctness follows from classical algorithm.

Challenge is running time analysis
We are working on more edges possibly (edge belong to several graphs).
Not clear we gain anything.
Challenge is to analyze the size of the trap we discover.
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Running Time Analysis

Analysis of the size of the trap.
Trap U identified in G, but not in G, ;.
We analyze the size of the trap we identify.
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Running Time Analysis

Analysis of the size of the trap.
Trap U identified in G, but not in G, ;.
Case 1: U contains a player-1 vertex v that was blue in G, ,.

Then v has at least 2+ out-edges, otherwise would not have
been blue.

Since a trap all out-going edges from v in trap. Size of trap at
least 21,
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Running Time Analysis

Analysis of the size of the trap.
Trap U identified in G, but not in G, ;.

Case 1: Done. U does not contain a player-1 vertex v that was
blue in G,_,. All player-1 edges in G, and G, , identical.
Case 2: Two sub-cases to analyze.
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Running Time Analysis

Analysis of the size of the trap.

Case 1: All player-1 edges in G, and G,_, identical.

Case 2 (a): All player-2 edges in G, and G, , are identical. Then U
is a trap in G, ; and this a contradiction.

Case 2(b): One new player-2 edge in the trap.
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Running Time Analysis

Analysis of the size of the trap.
Case 1: All player-1 edges in G, and G,_, identical.
Case 2 (a): All player-2 edges in G, and G, , are identical.
Case 2(b): One new player-2 edge (u,v) in the trap.
Vertex v has at least 2! in edges from player-2 non-Buechi
vertices as they have the priority.
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Running Time Analysis

Analysis of the size of the trap.
Case 1: All player-1 edges in G, and G,_, identical.
Case 2 (a): All player-2 edges in G, and G, , are identical.
Case 2(b): One new player-2 edge (u,v) in the trap.
Vertex v has at least 2! in edges from player-2 non-Buechi
vertices as they have the priority.
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Running Time Analysis

Analysis of the size of the trap.
Case 1: All player-1 edges in G, and G,_, identical.
Case 2 (a): All player-2 edges in G, and G, , are identical.
Case 2(b): One new player-2 edge (u,v) in the trap.
Vertex v has at least 2! in edges from player-2 non-Buechi
vertices as they have the priority.

All in-edges in the trap.
Size of trap at least 2'-1.
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New Algorithm

Search for traps in G4, G,, and so on.
If we find a trap, then remove it from all graphs.

Key argument: if we find a trap in G;, then size of trap is
at least 21,

Work done O(n - 2*1) and charge to vertices removed.
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Result

New algorithm :O(n?).
Time spent to identify trap is O(n - 2*') and charge to
the trap of size 2*1.

Strikingly simple algorithm breaks the long
standing O(n m) barrier.

Along with O(n4/ log n) algorithm for m=0(n) of
[CJHO3] we break O(n m) barrier for all cases.
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Maximal End-component
Decomposition
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Maximal End-component Decomposition

An end-component U is a set of vertices such
that

Graph induced by U is strongly connected.

For all player-2 vertices in U all out-going edges end in U.
Typically used in MDPs (where player 2 is the probabilistic
player).

We keep the notations uniform as our goal is to present algorithm
for the problem.

Maximal end-component (MEC) decomposition:
Classical algorithm: O(n m) [CY95, deAlfaro97]
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Classical Algorithm

A simple iterative algorithm using scc decomposition and
alternating reachabillity.

Steps are as follows:

Compute the bottom scc’s. They are all mec’s and let their union
be U.

Remove player-2 alt-reach set C to the set U from game graph
and continue.

Stop when all vertices are removed.

Remark: Player-2 alt-reach over all iterations is O(m). Main
work is repeated scc decomposition
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New Algorithm

Same as for Buechi games using hierarchical
graph decomposition technique.

Instead of traps search for bottom scc’s.
O(n?) time algorithm.

We also present a different improved algorithm.
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Different Sub-quadratic Algorithm

The different sub-quadratic algorithm splits the
classical algorithm as follows:

If more than m%°> edges were lost, then use classical
scc decomposition algorithm.

If less than m%> edges were lost, then use Tarjan scc
algorithm with vertices having lost edges as starting
point in lock-step.
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Different Sub-quadratic Algorithm
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Different Sub-quadratic Algorithm
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Different Sub-quadratic Algorithm

Stop when a bottom scc C is found. The bottom scc C is removed and

work done is at most edges in C times m9>,
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Different Sub-quadratic Algorithm

The different sub-quadratic algorithm splits the
classical algorithm as follows:

If more than m%°> edges were lost, then use classical
scc decomposition algorithm.
Total work: O(m'-%) since at most m°®?° iterations of O(m) time
each.
If less than m%> edges were lost, then use Tarjan scc
algorithm with vertices having lost edges as starting
point in lock-step.

Total work: O(m'-®) since every removed edge is charged at
most O(m?©-°).
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MEC Decomposition

Two algorithms:
O(n?).

O(m*s).

Clearly can do the min of the above two.

K. Chatterjee and M. Henzinger July 25, 2012

45



Summary

Buechi games: a simple O(n?) time algorithm
improving long-standing O(n m) bound.

MEC decomposition in time O(min(m'2,n?))
(worst case O(m n?%3)).
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Conclusion

Buechi games and MEC decomposition:

A core algorithmic problem in verification with long-
standing O(n m) barrier.

We present a simple O(n?) time algorithm for the
problem, also for mec decomposition.

For mec decomposition also O(m'®) algorithm that
gives a worst case O(m n?3) algorithm.

Open questions:

O(m n') or O(n m'<) for Buechi games, for some ¢
>0.

O(m n'2) algorithm for mec decomposition.
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The end

Thank you !

%? Questions ?
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