

Thèse de Doctorat de l’Université Paris VI Pierre et Marie Curie

Spécialité : Systèmes Informatiques

présentée par : Andrey SADOVYKH
Pour obtenir le grade de Docteur de l’Université Paris VI Pierre et Marie Curie

Sujet de la Thèse :

Concept innovateur d’un middleware

pour la supervision de systèmes complexes.

Titre en Anglais :

Innovative Middleware Concept for Supervision of

Complex Systems

Soutenue le 6 avril 2005 devant le jury composé de :

Directeurs de Thèse :

Serge FDIDA Prof. à l’Université Pierre et Marie Curie

Antoine LAYDIER EADS SPACE Transportation

Rapporteurs :

Michel DIAZ Dir. de Rech. au CNRS, LAAS-CNRS

Olivier FESTOR Dir. de Rech. au LORIA-INRIA Lorraine

Examinateurs :

Ramon PUIGJANER Prof. à l’Universitat de les Illes Balears

Stefan WESNER HLRS (High Performance Computing Center), Stuttgart

Marie-Pierre GERVAIS Prof. à l’Université Paris X Nanterre

RAPPORTSTAGE.DOC Modèle du 11.02.04

CLASSIFICATION DU DOCUMENT

CONFIDENTIEL EADS-ST

NON PROTEGE

RAPPORT DE STAGE

RENSEIGNEMENTS CONCERNANT LE STAGE

Sujet : Concept innovateur d’un middleware pour la supervision de systèmes complexes

Dates : 01/10/2002-06/04/2005

Unité ou service d'accueil : TE641

Maître de stage : Antoine LAYDIER

RENSEIGNEMENTS CONCERNANT LE STAGIAIRE

Nom : Andrey SADOVYKH

Ecole : LIP6

Niveau d'études : BAC+6

Spécialité : Systèmes Informatiques

Responsable de stage de l'école : Serge FDIDA

Date et lieu de soutenance : le 06 avril 2005 au LIP6, Paris

VISAS DU RAPPORT

MAITRE DE STAGE PROPRIETE INDUSTRIELLE SECURITE INDUSTRIELLE SERVICE REPROGRAPHIE

Ce rapport est-il confidentiel :

OUI NON

DATE - VISA DATE - VISA DATE - VISA DATE - VISA

DIFFUSION : HF2

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005

Le document original et sa copie classés CONFIDENTIEL EADS-ST doivent impérativement être restitués à EADS-ST à la fin de la soutenance.

Ce travail a été réalisé dans le cadre du projet Européen GeneSyS (Generic Systems

Supervision) IST-2001-34162

J’aimerais exprimer ma gratitude envers tous les membres du jury de cette thèse :

Serge FDIDA et Antoine LAYDIER d’avoir dirigé mes travaux de thèse.

Michel DIAZ et Olivier FESTOR pour l’honneur qu’ils m’ont fait d’avoir

accepté d’être rapporteurs de cette thèse.

Ramon PUIGJANER, Stefan WESNER et Marie-Pierre GERVAIS d’avoir

accepté d’être membre du Jury de la thèse.

Remerciement spécial à Jean-Eric BOHDANOWICZ, chef du projet GeneSyS, qui a

dirigé mes travaux au sein de EADS SPACE Transportation et qui m’a beaucoup aidé à

rédiger le texte en français, pour ses remarques et commentaires.

Je tiens aussi à remercier Daniel CLAUDE pour l’honneur qu’il m’a fait de m’avoir invité

à travailler à EADS et pour son aide à la relecture du document.

Je remercie également Alexander VANKOV et Petr SHLYAEV de D-3-GROUP pour

leur soutien. Je remercie également tous mes collègues d’EADS et du LIP6 pour m’avoir

accueilli dans leurs équipes.

Je remercie tous les membres de l’équipe GeneSyS pour le plaisir d’avoir travaillé avec

eux.

Je remercie ma femme, Svetlana, qui m’a soutenu pendant ces trois années et qui, de plus,

m’a beaucoup aidé à corriger la stylistique anglaise.

Enfin, je remercie mes parents pour leur attention et leur présence.

Résumé :

Durant les dernières années, l’informatique passe des systèmes monolithiques vers des

systèmes répartis multi-modulaires. Ces systèmes exigent une solution appropriée pour leur

supervision aussi bien au niveau du réseau et que de l'application. L’état de l’art au niveau des

standards de systèmes commerciaux de la supervision montre que les solution existantes

partagent les contraintes communes suivantes : interopérabilité, portabilité, flexibilité, un

manque de solutions complètes…

La thèse propose une architecture ouverte, modulaire et flexible basée sur les Web

Services. L’innovation principale repose sur une approche de conception dédiée à optimiser

l’intégration de tous les moyens de supervision dans un système unique et puissant.

Les travaux de recherches ont été effectués en collaboration forte avec des industriels afin

de valider le concept sur les systèmes réels. Les résultats obtenus sont significatifs, car

représentatifs pour la plupart de systèmes repartis.

Mots Clés :

Systèmes de Supervision, Middleware de Supervision, Web Services, GeneSyS.

Abstracts:

During the past years the IT domain showed a continuous trend to move from a single

computer towards complex networks and from monolithic systems to multi-modular

distributed ones. The distributed systems require an appropriate supervision solution both at

network and application levels. The state of the art research in distributed management

standards and commercial frameworks showed that existing solutions have such common

constraints as interoperability, portability, flexibility and a lack of comprehensive solutions.

This thesis proposes an open, modular and flexible architecture based on Web Services.

The main innovation is the design approach purposed to optimise integration of all available

supervision means into a unique powerful system.

The work included a strong cooperation with industrial partners in order to validate the

concept on real systems. The obtained results are significant, since they are representative for

most distributed systems.

Keywords:

Supervision Systems, Supervision Middleware, Web Services, GeneSyS.

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xi

Résumé

1. INTRODUCTION

1.1. Définition du Problème

Durant les dernières années, les technologies de l'information montrent une

tendance à passer de l’ordinateur isolé vers des réseaux complexes et des systèmes

monolithiques vers des systèmes répartis multi-modulaires.

Les systèmes répartis exigent une solution appropriée pour leur supervision

aussi bien au niveau du réseau et que de l'application. Pour gérer ce problème, il

existe plusieurs standards et systèmes de supervision, comme, par exemple,

SNMP [9], JMX [10], Tivoli (IBM) [11], OpenView (HP) [12] et NAGIOS [13].

Ils visent différents aspects de la supervision, allant des systèmes d'exploitation,

en passant par le réseau, jusqu’à certaines applications commerciales courantes.

Toutefois, la plupart d'entre eux affichent plusieurs contraintes communes,

certaines d'entre elles sont indiquées dans la liste ci-dessous :

• Interopérabilité : Des composants écrits en différents langages de

programmation et utilisant différentes implémentations sont censés utiliser

les mêmes spécifications d’architecture mais peuvent ne pas être capables

de coopérer à 100%.

• Portabilité des composants : Souvent, les composants sont conçus pour

fonctionner uniquement sous leur système d'exploitation d’origine comme

Windows ou Linux. Ils sont très dépendants des mécanismes de transport

et d'une manière générale des protocoles de communication de bas niveaux

propres à leur système d’exploitation d’origine.

• Complexité de développement/déploiement : Beaucoup d'applications

commerciales reposent sur des interfaces de programmation (API)

propriétaires qui rendent difficile la création de nouveaux agents et la

connexion de ceux-ci à un seul système de supervision existant.

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xii

• Architecture non-flexible: Lorsque l’agent de supervision et l’outil de

visualisation sont implémentés dans le même composant, alors les mises à

jour de la console impactent les fonctionnalités de l’agent et vice versa.

• Manque de solutions complètes : Il existent de nombreuses solutions

différentes ne permettant de superviser que des éléments précis d’un

système. Pourtant, une solution complète de supervision permettrait

d’évaluer l’état global du système surveillé. Par exemple, l’état d'une

application dépend fortement de l’état du système d'exploitation qui la

supporte. A partir du moment où la surveillance d’une simple application

ne peut donner une vue correcte de l’ensemble des problèmes possibles, il

devient nécessaire d’intégrer les informations en provenance de tous les

composants impliqués dans le système.

Les contraintes mentionnées ci-dessus compliquent l'intégration d‘outils de

surveillance en provenance de tiers. Cette intégration est essentielle pour assurer

le contrôle du système à tous les niveaux. Par ailleurs, les solutions propriétaires

freinent le développement de ce domaine.

Par conséquent, l'objectif de mes travaux de recherche est d'étudier un concept

de middleware générique, modulaire et complet de supervision, qui permettrait de

résoudre ou de réduire les limitations indiquées ci-dessus.

1.2. Contributions

Ces recherches doctorales ont été effectuées sous la direction du Laboratoire

d’Informatique de l’Université Paris 6 dans le cadre du projet GeneSyS au sein de

la société EADS SPACE Transportation.

Les contributions de l'auteur sont brièvement récapitulées ci-dessous :

• Une étude de deux systèmes repartis industriels dans le domaine

aérospatial (une application de travail collaboratif et une simulation

distribuée interactive) afin de déterminer des exigences communes pour

leur supervision ;

• Analyse de l’état de l’art dans le domaine des technologies et systèmes de

supervision distribuée afin d'étudier leur applicabilité aux systèmes

industriels étudiés ;

• Analyse des technologies utilisées dans les différents progiciels pour

limiter les solutions possibles ;

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xiii

• Etude et spécification d’un système de supervision basé sur la technologie

des Web-Services.

• Conception et implémentation de plusieurs prototypes destinés à la

supervision des systèmes repartis industriels étudiés : Application

d’Ingénierie Collaborative et Simulation Distribuée Interactive;

• Démonstration de l’adéquation de ces prototypes aux besoins utilisateurs

au moyen de deux scénarios de validation ;

• Évaluation des caractéristiques de la solution implémentée.

1.3. Méthodologie et sommaire du document de thèse

Les travaux menés dans le cadre de cette thèse et énumérés dans la section

précédente sont décrits dans les différents chapitres de ce document:

• Chapitre 2 : La section « contexte du problème » donne les principales

définitions des concepts utilisés dans le document: Systèmes Complexes,

Systèmes Distribués, Systèmes de Supervision. Ces définitions sont

illustrées avec des exemples réels : « Preliminary Design Review »

(Revue de Design Préliminaire - système de travail collaboratif) et

« Distributed Training Scenario » (Scénario d’Entrainement Distribué -

simulation interactive de la mission de Rendez-Vous de l’ATV et de

l’ISS). Le but de ces exemples est de fournir des exigences

représentatives des besoins des utilisateurs d’un système de supervision

dans ces différents contextes qui serviront de critères d’évaluation lors de

l’analyse du produit final;

• Chapitre 3 : La section « état de l’art » décrit des technologies et des

systèmes existants, ainsi que des projets scientifiques, dans le domaine de

la supervision de systèmes distribués. Le chapitre finit par une analyse des

solutions existantes et de leur applicabilité aux problèmes industriels

mentionnés ci-dessus;

• Chapitre 4: Les sections de « conception et d'implémentation » présentent

les points importants qui ont été analysés lors de la phase de conception et

se concentrent sur les innovations liées à ce genre d’outil de supervision

et aux technologies associées. Le chapitre commence par une hypothèse :

la technologie des Web-Services pourrait être un bon choix

d’implémentation pour un outil de supervision. Une analyse des

technologies utilisées dans les progiciels disponibles permet de justifier

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xiv

cette hypothèse. Ce chapitre se poursuit par une présentation détaillée de

la technologie des Web-Services afin d’aider le lecteur dans sa

compréhension de l'approche choisie par l’auteur. La section « Proposed

Architecture » décrit une proposition d’architecture permettant de réaliser

un système de supervision en se basant sur les Web-Services. Enfin, la

section « Prototype » décrit les différentes approches et solutions qui ont

été implémentées afin de superviser les systèmes industriels étudiés ;

• Chapitre 5: la section « d'évaluation » discute des limitations de la

solution implémentée en se basant tout d’abord sur les résultats des tests

de performance effectués puis sur les étapes de validation qui ont fait

participer des utilisateurs réels. Enfin, la conformité de la solution vis-à-

vis des besoins exprimés est étudiée.

• En conclusion, le document résume tous les résultats majeurs acquis dans

le cadre de cette thèse et indique un certain nombre d’axes potentiels pour

de futures recherches.

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xv

2. CONTEXT DU PROBLEME

2.1. Définitions

Le but de la première partie du chapitre est de définir les principales notions

utilisées dans le document :

• supervision – fonction de surveillance et de gestion de tous les aspects

opérationnels d’un système complexe, y compris : disponibilité des

applications, systèmes d’exploitation, équipement réseaux, flux de

données, stockage de données, activités des utilisateurs, droits d’accès, etc.

• système distribué – un sous-ensemble de systèmes complexes, qui a

particulièrement été étudié dans la thèse. La complexité de ces systèmes se

caractérise par un grand nombre de composants et de relations entre ces

composants, par l’hétérogénéité des types de composants et des moyens

d’accès, ainsi que par l’étendue de la distribution ;

• systèmes de supervision distribuée – ces systèmes sont destinés à la

supervision de systèmes repartis et sont eux mêmes des systèmes

distribués. Une architecture classique de supervision distribuée sous-

entend une utilisation de composants individuels pour chacun des aspects

d’un système repartis, ainsi que l’utilisation d’une application centrale

pour la visualisation des statistiques de surveillance et pour

l’administration du fonctionnement du système. Cette approche est

connue comme « la gestion par délégation », car les fonctions de

supervision sont « déléguées » aux composants repartis. Ainsi, les

composants sont classés d’après leurs fonctions comme des « délégués »

(delegates) et/ou des « superviseurs » (supervisors). La communication

entre ces composants est imposée par leurs modes de fonctionnement et

leurs fonctionnalités. Par exemple, une communication périodique ou

événementielle peut être exigée ;

• un middleware de supervision – un progiciel qui permet de faire le lien

entre des sources ou des moyens de supervision et des applications

utilisatrices des fonctions d’administration. Le middleware sert à cacher la

complexité de la distribution, de la réalisation d’une communication vis-à-

vis des utilisateurs finaux. Il est conçu pour fournir une base de conception

d’agents de supervision et pour simplifier leur intégration avec des outils

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xvi

de visualisation. L’étude de ces nouveaux middlewares de supervision est

le thème principal de ces travaux de recherches.

2.2. Problèmes Industriels Réels

La deuxième partie du chapitre illustre les définitions au moyen de deux

applications industrielles distribuées utilisées par EADS SPACE Transportation.

Tout d’abord, l’application PDR (Preliminary Design Review) est une

application d’ingénierie collaborative, utilisée à l’échelle européenne pour la

conception du véhicule de ravitaillement de la station spatiale internationale,

l’ATV (Automated Transfer Vehicle). Cette application inclut des serveurs de

documentation et de visio-conférence basés sur les plateformes Windows et

Linux. De plus, les applications clientes sont programmées en PHP, Java et C++.

La supervision de ce système est nécessaire afin de pouvoir configurer, surveiller

et contrôler les éléments suivants:

• l’accès de nombreux clients internationaux ;

• les flux multimédia H.323, T.120 (bande passante, nombre de connexions

aux serveurs, etc.) ;

• les équipements réseau ;

• les systèmes d’exploitation concernés (Windows, Linux) ;

• la base de données Oracle ;

• le serveur de visioconférence (MCU) ;

• le serveur d’applications Apache Tomcat;

• l’application permettant d’accéder aux documents ;

• les applications clients.

Le problème est compliqué à cause de l’étendue de la distribution du système

global, car il doit être capable de fournir ses services à des utilisateurs situés dans

différents pays européens (France, Allemagne, Angleterre, Italie, Espagne).

La supervision multi-niveaux de ce type de système nécessite une solution

portable, flexible et complète.

Deuxième système industriel visé, l’application DIS-RVM (Distributed

Interactive Simulation pour Rendez-Vous Mission) est une simulation distribuée

interactive conçue pour l’entraînement du personnel de l’ISS (International Space

Station) sur des phases spécifiques de la mission de Rendez-Vous de l’ATV et de

l’ISS. La simulation est basée sur le standard HLA (High Level Architecture), qui

concerne toutes les phases des simulations : la préparation, l’exécution et la

collecte de résultats. Le fonctionnement de la simulation nécessite un bon

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xvii

déroulement et un enchaînement correct de toutes les phases et des nombreuses

actions qui les composent, et pourtant, la supervision n’est pas prise en compte

par l’architecture HLA. L’approche proposée tente de résoudre ce problème d’une

façon générique.

Ces deux applications distribuées issues du domaine spatial ont servi de base

aux scénarii de validation qui permettent d’évaluer les prototypes résultant des

travaux.

2.3. Spécification de besoins communs

Par ailleurs, l’étude détaillée des besoins de supervision liés à ces deux

applications réelles et distinctes permet de définir une liste d’exigences communes

à un système générique de supervision vis-à-vis des points suivants :

• interopérabilité – le fait que plusieurs systèmes, qu'ils soient identiques ou

radicalement différents, puissent communiquer sans ambiguïté ;

• portabilité – capacité d'être utilisé sous différents systèmes d'exploitation ;

• flexibilité dans le sens d’intégration de informations complexes ;

• support d’agents intelligents pour des solutions élaborées ;

• facilité de développement des composants de supervision ;

• facilité d’utilisation de l’outil.

Ces critères sont utilisés tout au long du document pour comparer des

approches existantes et des technologies de middleware afin de concevoir une

solution appropriée.

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xviii

3. L’ETAT DE L’ART

 Cette section est destinée à décrire la situation actuelle dans le domaine des

progiciels de supervision, leurs architectures et leurs domaines d’application. Pour

cela, le chapitre étudie trois grandes catégories : les standards, les systèmes

commerciaux et les recherches académiques conduites sur des thèmes similaires.

Les sujets abordés sont les suivants :

• Standards de gestion de réseaux :

o ICMP – protocole de contrôle des messages Internet;

o SNMP – protocole simple de gestion de réseau.

• Java Management Extension – un middleware de supervision basé sur

Java;

• Standards du groupe DMTF ;

• Systèmes de supervision commerciaux existants :

o Unicenter TNG (Computer Associated) – un système complexe de

supervision basé sur SNMP ;

o Nagios – un système de surveillance simple, puissant et distribué

sous une licence GNU ;

o OpenView (HP) – un système de supervision à l’échelle d’une

entreprise appliquant SNMP;

o Tivoli (IBM) – un système de supervision à l’échelle d’une

entreprise.

• Recherches académiques : des projets universitaires et des travaux publiés

lors de conférences spécialisées.

La première partie parcourt les standards de niveaux bas de la supervision –

des protocoles de gestion de réseaux (ICMP, SNMP), qui sont beaucoup utilisés

dans les systèmes classiques. Le chapitre sur Java Management Extension est

consacré au survol d’un standard de middleware, qui a pour but d‘introduire des

moyens de contrôle dans le monde Java. De plus, la section dédiée aux standards

du groupe DMTF cite les principales normes de modèles d’information pour la

supervision. La partie sur les systèmes commerciaux de supervision fournit des

informations sur les architectures et les approches récentes. Par ailleurs, les

recherches académiques présentent les derniers travaux effectués dans le domaine.

Cet état de l’art est suivi par une analyse des avantages et des contraintes de

ces systèmes de supervision dans le cadre des domaines fonctionnels visés. Cette

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xix

analyse permet de justifier la nécessité de la recherche d’une nouvelle solution

plus appropriée à la supervision de systèmes complexes hétérogènes. Elle

démontre que la flexibilité des systèmes existants est compromise, car la plupart

d’entre eux repose sur d’anciennes versions de SNMP. De ce fait, le format des

messages utilisés est très strict et ne permet pas d’extension simple, ce que limite

fortement l’utilisation de données complexes, structurées ou couplées, nécessaires

à une supervision de systèmes plus récents. De plus, leur complexité et l’absence

de documentation rendent difficile leur utilisation pour les systèmes visés.

Le grand nombre de travaux académiques dans ce domaine permet également

de justifier l’étude et le développement d’un nouveau concept de supervision plus

adapté aux systèmes actuels.

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xx

4. CONCEPTION ET PROTOTYPAGE

Ce chapitre décrit le principal sujet de recherche de la thèse, l’étude d’un

concept d’utilisation de la technologie des Web Services pour la réalisation d’un

middleware de supervision.

4.1. L’étude de technologies de middleware

Afin d’identifier une meilleure base pour la conception d’une architecture

innovante, il était nécessaire d’étudier les solutions générales d’un middleware.

Les standards étudiés dans ce contexte sont les suivants :

• RPC - un protocole permettant de faire des appels de procédures à

distance;

• Les middlewares orientés objets (RMI, DCOM, CORBA) ;

• Les middlewares de composants (CCM, EJB) ;

• Les plateformes multi-agents (FIPA, ICM) ;

• Les middlewares de communication par messages (JMS, Message

Queuing) ;

• Web Services (SOAP, Dot Net).

Les meilleurs candidats vis-à-vis des contraintes spécifiées ont alors été

identifiés : CORBA et Web Services. Toutes les deux, ces technologies sont

portables, interopérables et flexibles grâce à l’utilisation de protocoles du niveau

d’application (GIOP et SOAP) et à des langages de définition d’interfaces (IDL et

WSDL). Ils offrent également des moyens d’intégration flexibles comme des

adaptateurs portables d’objets (POA) pour CORBA et des outils de

développement intégrés pour Web Services.

Les principales différences entre ces deux approches sont décrites ci-dessous :

• CORBA est strictement orienté objet, tandis que SOAP (et donc Web

Services) n’est pas limité à la technologie objet ;

• CORBA sous-entend un couplage d’applications de type client/serveur,

ainsi que la présence d’un composant ORB. En revanche, les Web

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xxi

Services sont conçus pour fonctionner de manière autonome et sont

orientés pour une utilisation dans des systèmes fortement repartis.

• En considérant la possibilité d’avoir des clients légers (agents autonomes

de supervision), les Web Services propose plus d’avantages car il est

facilement possible de les faire fonctionner sans composants

supplémentaires (comme des ORBs, par exemple).

• CORBA fixe la sérialisation d’objets par un ORB et, donc, ne laisse pas le

choix pour l’encodage de données. SOAP, lui, permet de customiser toutes

les parties des messages, charges utiles comprises. Or, nous considérons

cette caractéristique comme extrèmement importante pour l’intégration de

différents types de données de surveillance et pour la réalisation de

passerelles entre des composants de supervision.

Néanmoins, les différences entre les deux approches sont très subtiles, car

CORBA est très mature et robuste. Cependant, nous considérons que les

avantages de Web Services sont plus intéressants dans le cadre de composants

autonomes tel que des agents de supervision. Par conséquent, nous nous sommes

concentrés sur l’étude de l’applicabilité des Web Services comme technologie de

base d’un middleware de supervision.

4.2. Architecture

La partie architecture présente le concept d’un middleware de supervision basé

sur les Web Services. Les innovations principales sont le couplage de la gestion

par délégation et de la gestion événementielle, ainsi que l’application des

technologies de type Web Services pour la conception d’un middleware de

supervision.

La conception de l’architecture se concentre sur les fonctionnalités d’un

middleware : la transmission de données, l’intégration des opérations de

supervision, l’adaptation à des moyens de supervision hétérogènes, la découverte

de ressources de supervision, ainsi qu’un modèle d’informations générique pour

la présentation de charges utiles. Dans ce sens, le concept définit les interfaces des

trois composants principaux : le superviseur, le délégué et le service d'annuaire

(CORE). De plus, le protocole de communication entre ces composants est

spécifié.

La technologie des Web Services a fourni la base pour :

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xxii

• la « customisation » du transport des messages via le protocole SOAP pour

implémenter la gestion par délégation et la gestion événementielle;

• la présentation d’opérations de service (découverte d’agents de

supervision) et de supervision (surveillance manuelle et automatique,

transmission de commandes de contrôle) comme des Web Services en

utilisant le langage WSDL ;

• la définition des messages de services (enregistrement des capacités d’un

agent, découverte d’un agent particulier), ainsi que des messages de

supervision ;

• la description des agents de supervision (un délégué et un superviseur),

ainsi que du service d'annuaire (CORE) en WSDL afin de les présenter

comme des Web Services.

En appliquant les Web Services, les fonctions de gestion par délégation ont été

réalisées comme des opérations de service du « délégué » - « monitor» pour une

surveillance manuel et « perform » pour une transmission de commandes. La

gestion événementielle a été implémentée en introduisant l’opération

« subscribe » dans le service du « délégué » afin de s’inscrire à un événement et

l’opération « accept » du coté du « superviseur » pour la transmission des

événements.

Les fonctionnalités de support de gestion sont représentées par le service

d'annuaire (CORE) qui stocke les capacités des agents inscrits et permet de

localiser un agent particulier à partir de ses caractéristiques. Afin d’exposer ses

capacités, un agent doit s’enregistrer dans le CORE. Cette procédure est

accessible par l’opération « register » du CORE. Pour découvrir un agent

particulier ou un groupe d’agents, l’opération « find » doit être utilisée en

précisant les caractéristiques demandées.

Les opérations mentionnées ci-dessus sont des paramètres de messages SOAP.

La flexibilité du protocole SOAP a permis d’intégrer les parties destinées au

service (tampon de temps, identifiants d’agents en communication, type de

message) dans l’entête des messages SOAP. Cela rend possible l’utilisation de

toute la partie principale des messages SOAP pour les charges utiles.

Bien que l’encodage des charges utiles ne soit pas à proprement parlé géré dans

l’architecture, une approche générique a été définie afin de proposer un exemple

d’encodage en langage XML qui permettait, de façon flexible, de présenter tous

les types complexes de données : des listes, des énumérations, des données

emboîtées contenant plusieurs niveaux, des types composés, etc.

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xxiii

Ces activités de conception ont permis de définir les descriptions en WSDL des

composants principaux. En utilisant des compilateurs spécifiques, ces descriptions

permettent de créer des squelettes d’agents en plusieurs langages de

programmation populaires comme C, C++, Java, PHP, Perl, MS C#, MS

FORTRAN, etc. Ensuite, les développeurs peuvent remplir un squelette avec une

fonctionnalité de supervision. Cela facilite la mise en application du concept

proposé.

4.3. Prototypage

Pendant les travaux de prototypage, plusieurs agents ont été développés pour la

supervision de certains paramètres des réseaux utilisés, de la consommation des

ressources des systèmes d’exploitation Windows et Linux, d’une base de donnée,

d’un serveur d’applications, d’un serveur de visioconférence et d’applications

complexes, ainsi que des outils générique de visualisation. Les composants de

services développés incluent le CORE et les adaptateurs pour C++, Java et PHP,

qui implémentent des opérations de services et servent de « points d’entrée » pour

l’implémentation des communications avec un élément supervisé et pour

intégration de la charge utile.

Ces premiers éléments ont servi d’éléments de base pour construire des

solutions complètes de supervision pour les systèmes industriels mentionnés ci-

dessus.

La section « prototypage » du document de thèse décrit les contributions de

l’auteur à la conception et à l’implémentation des systèmes de supervision

suivants :

• pour le système PDR (Ingénierie Collaborative) : conception d’un système

de supervision, réalisation d’agents (l’agent EDB), d’un console et

validation du prototype ;

• pour le système DIS-RVM (Simulation Distribuée Interactive) :

conception d’un système de supervision, réalisation d’agents (MÄK RTI)

et validation du prototype ;

• deux approches de supervision intelligente ;

• l’adaptateur C++ pour la plateforme Linux.

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xxiv

Afin de démontrer la flexibilité du concept et la possibilité offerte d’inclure de

« l’intelligence » dans la supervision, la phase du prototypage du système de

gestion pour DIS-RVM a inclus le développement de deux approches génériques

pour une supervision intelligente :

• Collaboration d’agents pour une visualisation générique : Démonstration

de la flexibilité du concept proposé grâce à la réalisation d’un complément

du protocole de supervision gérant une description de modes de

visualisation. Afin de créer un outil de visualisation générique, il est

nécessaire de définir une façon de présenter tous les types de données.

Notre approche propose de compléter la description des capacités fournie

par chaque agent par des champs indiquant son mode de visualisation. Par

exemple, pour une visualisation par des tables, des noms de colonnes et

des descriptions de paramètres sont nécessaires;

• Corrélation d’informations de surveillance pour une supervision

intelligente : Un prototype de système de supervision permettant une

synthèse d’informations afin de détecter rapidement la cause initiale de

problèmes en série a été réalisé. Dans les grands systèmes complexes,

certains paramètres opérationnels sont liés. Par exemple, le

fonctionnement d’une application est lié à la charge du système

d’exploitation et, en conséquence, à la consommation de ressources de

CPU, de la mémoire vivre, des disques durs. Ainsi, une surcharge du CPU

par des processus parallèles peut provoquer un défaut de fonctionnement

de l’application. Notre approche a consisté à établir un arbre de

dépendances entre les paramètres de supervision. Les agents évaluent un

statut des paramètres surveillés par rapport aux critères prédéfinis et

envoient une information d’état dans chaque message. Cette information

est ensuite directement reportée dans l’arbre de dépendances. Ce qui

permet d’impacter des paramètres de plus hauts niveaux.

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xxv

5. EVALUATION

Ce chapitre présente la mise en application de l’architecture de supervision

pour des systèmes réels (PDR et DIS-RVM)., ainsi qu’une étude des

performances de la solution.

Les activités d'évaluation décrites se décomposent en trois phases représentant

chacune un point de vue différent :

• les leçons tirées du développement : la flexibilité du concept, la facilité de

développement et d’utilisation ;

• les essais de performance : évaluation de rapidité, consommation et

robustesse d’un prototype développé ;

• la validation d’un prototype par des utilisateurs réels d’un système

distribué : démontration d’applicabilité de l’approche proposé à un cas

concret.

5.1. Essais de performance

Pendant les essais de performance, les agents basés sur l’adaptateur développés

pour le C++ (System, MäK RTI, DIS-RVM) ont été testés avec des procédures

génériques sur les plateformes réelles. Le temps de réponse des agents a été

mesuré dans deux cas: une charge normale (environ 30 requête par second) et une

charge lourde (jusqu’a environ 200 requêtes par second). Le cas de charge

normale permet d’évaluer le système dans une situation courante d’utilisation,

alors que le cas de charge lourde constitue un test de robustesse. Les paramètres

surveillés sont décrits ci-dessous :

• le temps de réponse – un intervalle entre une requête et une réponse ;

• la charge de CPU – un pourcentage d’utilisation de CPU par une tache

d’agent;

• la bande passante – un nombre de requêtes servies par seconde ;

• le débit et la charge des réseaux – un nombre de bits passés entre un agent

et un logiciel de test.

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xxvi

Les tests ont démontré que le système de supervision se comporte comme

prévu. Même en cas de charge lourde, aucune perte de message n’a été détectée.

Toutefois, il est nécessaire de souligner, que le coût en terme de bande passante

du protocole utilisé était important du fait qu’il est basé sur XML. Cela rends

difficile l’application de cette approche à certains systèmes ayant des fortes

exigences concernant le débit. Cependant, il a été prouvé que le concept était

utilisable pour un grand nombre de problèmes, qui nécessitaient l’intégration de

plusieurs moyens de supervision.

5.2. Validation par les utilisateurs

La validation a été décomposée en plusieurs scenarii d’utilisation de systèmes

industriels : PDR et DIS-RVM. Ce processus a exigé le déploiement de

plateformes de validations sur le site de EADS SPACE Transportation. Cela a

permis d’inclure des opérationnels (utilisateurs finaux) dans l’évaluation des

prototypes.

Les essais ont démontré l'applicabilité du concept pour des systèmes

d’ingénierie collaborative et des systèmes de simulations distribuées interactives

du point de vue d'un utilisateur. Les acteurs ont joué les scénarii prédéfinis,

pendant lesquels ils ont normalement utilisé les systèmes et ont essayé d’insérer

des défauts qui ont été détectés à temps par l’outil de supervision. Néanmoins, ils

ont tout de même remarqué des problèmes d’utilisation dans le scénario PDR qui

ont été résolus dans le scénario de « Distributed Training » pour le système DIS-

RVM. Les utilisateurs ont également évalué l’impact de la supervision sur le

temps de réponse global du système, et l’ont jugé acceptable.

En conclusion, les résultats de l’évaluation confirment qu’il est possible

d’utiliser les Web Services pour la réalisation d’un middleware de supervision.

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xxvii

6. CONCLUSIONS

Ce chapitre fournit un résumé du travail effectué et indique les axes à

suivre pour les recherches futures.

6.1. Résumé du document de thèse

La première partie de ce document présente le contexte, c'est-à-dire les

systèmes complexes, les systèmes répartis, et la supervision de système. Par la

suite, la partie sur les « problèmes industriels » présente deux systèmes complexes

dans le domaine de fabrication de véhicules spatiaux (le système de la PDR et

celui de DIS-RVM) qui illustrent les définitions et fournissent les motivations de

la recherche actuelle. De plus, ces exemples servent de base de spécification du

besoin pour un middleware de supervision et permettent d’en tirer des exigences.

Ces exigences ont été fortement utilisées pour évaluer le concept en utilisant le

prototype développé.

Le troisième chapitre présente un état de l’art dans le domaine des technologies

et systèmes de supervision existants. Il identifie que des standards de supervision

basés sur des protocoles (SNMP) et des interfaces/middleware (JMX) sont à la

base de l’architecture des principaux systèmes de supervision (Unicenter TNG,

OpenView, Tivoli etc.). Cette section fournit également une confrontation des

systèmes existants vis-à-vis des exigences identifiées précédemment. Le manque

d’adéquation constaté entre les solutions disponibles sur le marché et les besoins

nécessite donc de poursuivre la recherche dans le domaine des middleware de

supervision.

Le quatrième chapitre commence par une comparaison des technologies de

middleware. Cette analyse laisse à penser qu'une solution basée sur les Web

Services pourrait fournir des avantages liés à la fois à des systèmes de supervision

basés sur des protocoles, ainsi qu’à ceux basés sur des middlewares. En

conséquence, il a été décidé d'étudier l'applicabilité des Web Services en vue de la

réalisation d’un middleware dédié à la supervision.

Dans la suite du chapitre, la présentation des Web Services montre la flexibilité

de cette technologie et aide à la compréhension de la section sur l’architecture. De

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xxviii

plus, elle décrit les concepts de base des technologies XML et fournit les jalons à

venir concernant les activités en cours sur la prise en compte de la sécurité dans

les Web Services.

Ensuite, le chapitre présent le point clé du document, c.-à-d. l’architecture

générique d'un système de supervision basé sur les Web Services. Cette partie

contient la description des composants de base, des opérations, le codage des

informations de service et un exemple général d’encodage des données

transportées. Cette architecture est l'innovation principale de ce travail et elle a été

mise en application dans le projet GeneSyS pendant le prototypage.

Le quatrième chapitre se termine avec la description de la contribution de

l'auteur au prototypage, qui a permis de vérifier le concept proposé dans un

contexte industriel réel. Les systèmes de supervision développés pour les

applications d’ingénierie collaborative (système PDR) et de simulations

distribuées interactives (système DIS-RVM) utilisent l'approche proposée. En

outre, les mécanismes simples mis en place pour la collaboration entre agent et la

synthèse des informations démontrent la flexibilité du concept et sa complétude

par rapport au besoin. L’utilisation d’un adaptateur en C++ résout efficacement

les problèmes d'interopérabilité et fournit un moyen rapide pour développer de

nouveaux agents.

Le cinquième chapitre présente une autre valeur ajoutée importante, c.-à-d.

l’évaluation de l'applicabilité du concept. Les résultats principaux des essais de

performance indiquent que les surcharges générales moyennes de la solution

proposée (codage d'information) sont d’environ 38 kbps pour une paire de

message requête/réponse. Bien que ce résultat soit habituel pour le monde XML,

il indique clairement que la solution de surveillance n'est pas acceptable pour le

système DIS-RVM au regard de ses spécifications (64kbps). Cependant, des tests

plus récents sur des réseaux locaux et des réseaux hauts débits étendus, ont donnés

des résultats acceptables, puisque pour le système DIS-RVM, la consommation

moyenne de bande passante était d’environ 200kbps. D'ailleurs, l'approche

appliquée utilise une surveillance périodique la plupart du temps, alors qu’une

solution intelligente, utilisant des événements par exemple, diminuerait la charge

de réseau de manière significative. Ainsi, cette approche basée sur des

événements a été mise en application dans l'agent surveillant le MÄK RTI. Elle

est donc disponible pour des recherches futures.

De plus, les essais de performance ont prouvé que dans certaines conditions (1

requête par 20ms), une solution basée sur les Web Services montre un temps de

réponse (1 ms) comparable avec les middlewares basés sur des protocoles

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xxix

binaires. D'ailleurs, lors de tests de robustesse qui ont chargé le processeur à

100%, les agents se sont correctement comportés. Bien que le temps de réponse

ait diminué de manière significative, aucune corruption ou perte de message n’ont

été détectées. Par conséquent, ces tests prouvent la fiabilité et la robustesse du

système dans le cas d’une utilisation intensive.

Les activités de validation par les utilisateurs réels ont démontré la viabilité du

concept. Ces activités ont été organisées en différentes sessions mettant en jeu de

vrais utilisateurs suivant des scénarios de validation permettant d’évaluer les

fonctionnalités du middleware d’un point de vue utilisation. Durant cette phase de

validation, le système a résisté aux pannes insérées par les utilisateurs, c.-à-d. le

débranchement du réseau, la surcharge des processus du système d'exploitation, la

terminaison anormale de certaines applications, etc.

Toutes ces actions ont permis de vérifier la conformité du middleware vis-à-vis

des exigences décrites dans le chapitre d'introduction. De cette façon, les essais de

performance laissent supposer que l'approche proposée est applicable pour un

grand nombre de problèmes, où la flexibilité et l'interopérabilité de l’outil de

supervision sont très importantes.

6.2. Impact Technologique

La section présente l’impact industriel de l’utilisation des Web Services dans le

cadre de la supervision de systèmes repartis.

Récemment, plusieurs communautés ont fourni des spécifications de

technologies de supervision basée sur les Web Services. Parmi celles-ci se

trouvent les spécifications suivantes :

• OASIS MUWS - Management Using Web Services;

• OASIS-WSRF - WS-ResourceDescription, WS-Notification;

• WS-Management - WS-Eventing, WS-Enumeration de Microsoft;

• WSLA - Web Service Level Agreements.

Les architectures proposées dans ces spécifications ressemblent étonnamment

au concept considéré dans ce document qui a été mise en application dans le

projet GeneSyS. Au moment de la rédaction de ce document, les initiatives

indiquées ci-dessus n’en sont qu’à la phase initiale d’implémentation. Il n’existe

pas encore d’implémentations et d’applications réelles, tandis que dans le cadre de

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xxx

la validation du projet GeneSyS, des systèmes de supervision ont été créés pour

les domaines suivants :

• Ingénierie Collaborative –Système PDR (EADS-ST);

• Simulation Distribuée Interactive – Système DIS-RVM (EADS-ST);

• Serveurs Web – Dictionnaire en ligne (MTA SZTAKI).

De plus, il est prévu de réutiliser les résultats de GeneSyS dans les domaines

scientifiques et industriels notamment dans les domaines et projets suivants :

• Robotique Collaborative (University of Würzburg);

• Middleware de MMOG (Fraunhofer Gesellschaft);

• Plateforme mobile de jeux (University of Turin);

• « SMASH supercomputers based on FPGA devices »;

• Projets ASPIC et BROADWAN (EU IST FP6);

• Projet Tallisys CRUK.

Tout cela laisse supposer que le succès considérable du projet GeneSyS prouve

explicitement l'applicabilité du concept proposé.

6.3. Sujets potentiels de recherches futures

Le travail décrit dans ce document ne répond pas à toutes les questions. Les

sujets et préoccupations présentés ci-dessous montrent que la supervision de

systèmes distribués demande encore de nombreuses recherches, tant académiques

qu’industrielles :

• Une architecture commune pour les adaptateurs du middleware pourrait

aider à développer des modèles génériques de programmation des agents

de supervision;

• Une analyse en vue d’améliorer le codage des données échangées aiderait

à optimiser le trafic de réseau ;

• Une chorégraphie d'agents de supervision élaborerait des possibilités de

services d’auto-découverte, d’auto-configuration et améliorerait la

collaboration entre les agents ;

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior

written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005
xxxi

• Les recherches dans le domaine des réseaux pair-à-pair d’agents de

supervision semblent être une suite logique d’une chorégraphie d'agents;

• Des recherches ultérieures dans le domaine de l'intelligence de la

supervision, de la prévision des réactions du système en fonction de

comportements permettraient de concevoir un système de réparation

automatique ;

• La collaboration avec les groupes de standardisation comme WBEM

(CIM) et WSDM (OASIS) permettrait de normaliser le concept.

6.4. Postface

Selon SUN Microsystems, l'ordinateur est un réseau.

Selon Intel, l’évolution des systèmes répartis passe par les réseaux Pair-à-Pair.

Selon Microsoft, les Web Services sont une panacée.

En tout cas, la complexité des problèmes induits par la distribution des

systèmes affirme le besoin de systèmes de supervision.

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 33

CONTENTS:

CHAPTER 1. INTRODUCTION ... 41

1.1 Problem Statement ... 41

1.2 Contributions .. 42

1.3 Methodology and Outline .. 42

CHAPTER 2. PROBLEM CONTEXT... 45

2.1 Definitions ... 45
2.1.1 Complex and Distributed Systems .. 45
2.1.2 Distributed Supervision Systems and Supervision Middleware .. 49

2.2 Industrial Problems ... 51
2.2.1 Automated Transfer Vehicle ... 51
2.2.2 Preliminary Design Review... 52
2.2.3 Distributed Training Scenario ... 54

2.3 Requirements for Supervision Middleware ... 57

CHAPTER 3. STATE OF THE ART .. 59

3.1 Network Management Protocols... 59
3.1.1 Internet Control Message Protocol (ICMP) .. 59
3.1.2 Simple Network Management Protocol (SNMP) .. 61

3.2 Java Management Extension (JMX) .. 65

3.3 Distributed Management Task Forces Standards (DMTF) ... 68

3.4 Existing Commercial Supervision Frameworks .. 69
3.4.1 Unicenter TNG (Computer Associated) .. 69
3.4.2 Nagios ... 72
3.4.3 HP OpenView ... 75
3.4.4 Tivoli ... 77

3.5 Academic Researches ... 80

3.6 Analysis ... 81

3.7 Conclusions ... 84

CHAPTER 4. CONCEPT AND IMPLEMENTATION ... 85

4.1 Proposed Solution .. 85

4.2 Analysis of Middleware Technologies .. 85

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 34

4.3 Applicable Web Technologies ... 89
4.3.1 XML .. 89

4.3.1.1 XML Syntax .. 90
4.3.1.2 XML Schema vs. DTD .. 90
4.3.1.3 XML processor (parser) ... 91

4.3.2 Web Services ... 93
4.3.2.1 Architecture Overview ... 94
4.3.2.2 Network Layer ... 95
4.3.2.3 XML Protocol Layer – SOAP ... 97
4.3.2.4 Web Service Description Language (WSDL) .. 99
4.3.2.5 Universal Description, Discovery and Integration (UDDI) ... 102
4.3.2.6 Business Process Execution Language for Web Services (BPEL4WS) 103
4.3.2.7 Products and Implementations ... 104
4.3.2.8 Web Services Security ... 104

4.3.3 Conclusions ... 105

4.4 Proposed Architecture ... 107
4.4.1 Components and Operations ... 107
4.4.2 Component Interactions .. 110
4.4.3 Component Interfaces ... 113
4.4.4 Messages ... 115
4.4.5 Operations – Services Encoding .. 118

4.4.5.1 Core Services ... 118
4.4.5.2 Delegate Services ... 119
4.4.5.3 Supervisor Services ... 121

4.4.6 Information Encoding ... 121
4.4.6.1 Mandatory Header Block ... 122
4.4.6.2 Component Identification .. 122
4.4.6.3 Agent Information ... 123
4.4.6.4 Supervision Operation Encoding ... 126
4.4.6.5 Supervision Request Encoding .. 126
4.4.6.6 Supervision Response Encoding .. 128

4.4.7 Conclusions ... 129

4.5 Prototype ... 131
4.5.1 Preliminary Design Review System Supervision Solution ... 131

4.5.1.1 Engineering Database Agent ... 133
4.5.2 Supervision Solution for Distributed Training .. 135

4.5.2.1 Agent Collaboration for Generic Visualisation ... 136
4.5.2.2 Intelligence – Summarising View .. 139
4.5.2.3 C++ Adapter .. 142
4.5.2.4 MÄK RTI Agent .. 144

4.5.3 Conclusions ... 146

CHAPTER 5. EVALUATION ... 147

5.1 Development Lessons Learned .. 148

5.2 Performance Tests.. 149
5.2.1 Measurement Approach .. 149
5.2.2 Test Results ... 152

5.2.2.1 System Monitoring Agent .. 152
5.2.2.2 System Control Agent .. 155
5.2.2.3 MÄK RTI Monitoring Agent ... 158
5.2.2.4 DIS-RVM Monitoring Agent ... 161

5.2.3 Conclusions ... 163

5.3 Preliminary Design Review Scenario ... 165
5.3.1 Scenario Description ... 165

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 35

5.3.2 Validation Process ... 166
5.3.3 Results ... 167

5.4 Distributed Training Scenario .. 168
5.4.1 Scenario Description ... 169
5.4.2 Validation Process ... 170
5.4.3 Results ... 172

5.5 Conclusions ... 173

CHAPTER 6. CONCLUSIONS .. 175

6.1 Summary ... 175

6.2 Technological Impact ... 176

6.3 Directions for Future Researches ... 177

6.4 Afterword.. 177

CHAPTER 7. BIBLIOGRAPHY ... 179

CHAPTER 8. LIST OF PUBLICATIONS ... 182

CHAPTER 9. ANNEXES ... 183

9.1 Core Web Services Definition ... 183

9.2 Delegate Web Services Definition ... 194

9.3 Supervisor Web Services Definition ... 205

9.4 Information Types – XML Schema .. 209

9.5 Free Disk Space Check Example – XML Schema ... 214

TABLE OF FIGURES
Figure 1. General Component Model of a Complex System ... 48

Figure 2. General Component Deployment Model .. 49

Figure 3. General Architecture of a Distributed Supervision System 50

Figure 4. ATV Mission .. 52

Figure 5. PDR process for ATV design ... 52

Figure 6. PDR Application ... 53

Figure 7. Overall view of the ATV flight trajectory near ISS .. 54

Figure 8. Architecture of the DIS-RVM Federation .. 55

Figure 9. Visual representation of DIS-RVM simulation .. 57

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 36

Figure 10. Layout of an ICMP message ... 60

Figure 11. SNMP Managed Network ... 61

Figure 12. The Structure of the Management Information .. 62

Figure 13. Relationships between components of the JMX architecture 66

Figure 14. Unicenter TNG Architecture .. 70

Figure 15. Nagios Plug-in Architecture ... 73

Figure 16. ITO interaction model ... 76

Figure 17. TME Framework Nodes ... 79

Figure 18. Roles within Web Service Architecture .. 94

Figure 19. Web Services Protocol Stack .. 95

Figure 20. Example of an HTTP Request .. 96

Figure 21. Example of an HTTP Response .. 96

Figure 22. Example of an HTTP Error Response .. 96

Figure 23. Example of an HTTP Redirect Response ... 97

Figure 24. SOAP Communication Types ... 97

Figure 25. Logical Components of SOAP Message .. 98

Figure 26. Example of a SOAP Request message ... 98

Figure 27. Example of a SOAP Response message ... 98

Figure 28. WSDL definition structure .. 100

Figure 29. WSDL:Example of a <definitions> block .. 100

Figure 30. WSDL:Example of a <message> block .. 100

Figure 31. WSDL:Example of a <portType> block ... 101

Figure 32. WSDL:Example of a <binding> block .. 101

Figure 33. WSDL:Example of a <service> block ... 101

Figure 34. WSDL:XML Spy Diagram ... 102

Figure 35. Compound Agent .. 108

Figure 36. Component Interface Relations – UML Class Diagram 108

Figure 37. Agents’ Life-Cycle. .. 109

Figure 38. Delegate-Core Interactions – UML Sequence Diagram 110

Figure 39. Supervisor-Core Interactions – UML Sequence Diagram 111

Figure 40. Supervisor-Delegate Interactions – UML Sequence Diagram.............................. 112

Figure 41. Supervisor-Delegate Perform Interactions – UML Sequence Diagram 113

Figure 42. Component Hierarchy and Interfaces – UML Class Diagram 114

Figure 43. Message Hierarchy – UML Class Diagram .. 115

Figure 44. Message Structure – UML Class Diagram ... 116

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 37

Figure 45. Supervision Message Structure – UML Class Diagram 117

Figure 46. Service Message Structure – UML Class Diagram .. 117

Figure 47. Core Services Definition – XMLSpy WSDL Diagram .. 119

Figure 48. Delegate Services Definition – XMLSpy WSDL Diagram 120

Figure 49. Supervisor Services Definition – XMLSpy WSDL Diagram 121

Figure 50. Agent Information Structure – XMLSpy XSD Diagram 124

Figure 51. Supervision Operation Definition – XMLSpy XSD Diagram 126

Figure 52. General Request Definition – XMLSpy XSD Diagram 127

Figure 53. Request for Free Disk Space – XMLSpy XSD Diagram 127

Figure 54. General Response Definition – XMLSpy XSD Diagram 128

Figure 55. Response with Free Disk Space – XMLSpy XSD Diagram 129

Figure 56. PDR System Supervision Solution. .. 132

Figure 57. EDB System Monitoring Solution. ... 134

Figure 58. DIS-RVM System Supervision Solution. ... 135

Figure 59. Information Evaluation-Summarizing in Distributed Training Scenario. 140

Figure 60. A DIS-RVM Console Screenshot. .. 142

Figure 61. C++ Adapter – UML Class Diagram. ... 143

Figure 62. MÄK RTI Delegate Overall Architecture. ... 145

Figure 63. Performance Test Platform ... 150

Figure 64. System Monitoring Agent – Performance Measurements 154

Figure 65. System Control Agent – Performance Measurements .. 157

Figure 66. MÄK RTI Monitoring Agent – Performance Measurements 160

Figure 67. DIS-RVM Monitoring Agent – Performance Measurements 163

Figure 68. PDR Scenario Validation Platform ... 167

Figure 69. Distributed Training Scenario Validation Platform .. 171

Figure 70. Distributed Training Scenario Network Load Measurement 171

LIST OF ACRONYMS:
API Application Programming Interface

ATV Automated Transfer Vehicle

COM Component Object Model

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

DBMS Database Management System

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 38

DCE Distributed Computing Environment

DCOM Distributed COM

DIS Distributed Interactive Simulation

DIS-RVM Distributed Interactive Simulation of the Rendez-Vous Mission

DOM Document Object Model

EADS-ST EADS SPACE Transportation

EJB Enterprise Java Beans

ESA European Space Agency

GeneSyS Generic System Supervision

GIOP General Inter-ORB Protocol

GUI Graphical User Interface

HLA High Level Architecture

HMI Human Machine Interface

HTTP Hyper Text Transfer Protocol

IDL Interface Definition Language

IIOP Internet Inter-ORB Protocol

ISS International Space Station

JMF Java Media Framework

JMS Java Messaging Service

JNI Java Native Invocation

JMX Java Management Extension

LAN Local Area Network

MOM Message Oriented Middleware

MTS Microsoft Transaction Server

NTP Network Time Protocol

OMG Object Management Group

OSF Open Software Foundation

OSI Open System Interconnect

ORB Object Request Broker

PDR Preliminary Design Review

QoS Quality of Service

RID Review Item Discrepancy

RMI Remote Method Invocation

RPC Remote Procedure Call

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 39

RTI Run-Time Infrastructure

SAX Simple API for XML

SCS Supervision and Control System

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol

UDDI Universal Description, Discovery and Integration Protocol

UML Unified Modelling Language

URL Universal Resource Locator

WAN Wide Area Network

WSDL Web Services Description Language

WSFL Web Services Flow Language

XML eXtended Mark-up Language

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 41

Chapter 1. INTRODUCTION

1.1 PROBLEM STATEMENT

During the past years the Information Technology domain showed a continuous trend from

a single computer towards complex networks and from monolithic systems to multi-modular

distributed ones. The distributed systems require an appropriate supervision solution both on

network and application levels. For this purpose, several supervision distributed management

standards and frameworks are currently available, such as SNMP [9], JMX [10], Tivoli (from

IBM) [11], OpenView (from HP) [12] and NAGIOS [13]. They are aimed at different aspects

of monitoring starting from operating systems through network and up to some commercial

standard applications.

However most of them have several common constraints, some of them are mentioned in

the list below:

• Interoperability issues: Components written in different languages using different

toolkits, which are supposed to use the same architecture specification, may not be

capable to co-operate on a full scale.

• Component portability: Often components are built to work only under their native

operating systems like MS-Windows or Linux. They are very sensible to transport

mechanism and more generally speaking to low-level communication protocols.

• Development/deployment complexity: Many commercial applications have proprietary

APIs what makes it difficult to create new agents and plug them to existing

supervision system.

• Non-flexible architecture: When agent and visualisation tools are released in the same

component, upgrades of console impact agent functionality and visa versa.

• Dedication to a particular monitoring layer, lack of comprehensive solutions: There

exist many different solutions for monitoring of different individual aspects.

Meanwhile an integral supervision framework would allow to evaluate simultaneously

an overall system status. For instance, the health of an application heavily depends on

the health of an operating system. As monitoring of a single application would not

give a correct overview of a situation, it is necessary to integrate the information from

all the system components involved.

The above-mentioned constraints complicate integration between third-party monitoring

tools. This integration is essential to ensure system control on all the levels. Besides,

proprietary solutions slow down the pace of development of the whole domain.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 42

Therefore, the research objective is to investigate a possibility of an open, generic

modular and comprehensive supervision middleware concept, which would solve or

alleviate the above-mentioned limitations.

1.2 CONTRIBUTIONS

The current PhD research was performed in the frame of the GeneSyS project at

Laboratoire d’Informatique de l’Universite Paris 6 and at EADS SPACE Transportation.

The author’s contributions can be briefly summarized as follows:

• Investigation of two distributed systems in the space industry (a Collaborative

Engineering Application and a Distributed Interactive Simulation) in order to

determine common supervision requirements;

• Analysis of the state of the art in the distributed supervision domain in order to

study their applicability for the industrial systems;

• Analysis of the middleware technologies to bound possible solutions;

• Design of a supervision framework based on Web Services;

• Design and implementation of a prototype supervision solution for the

Collaborative Engineering Application and for the Distributed Interactive

Simulation;

• Demonstration of the concept applicability by means of two validation

scenarios;

• Evaluation of performance characteristics of the proposed solution.

1.3 METHODOLOGY AND OUTLINE

The contributions listed in the previous section are described by the current document,

which is logically structured as it is outlined below:

• Chapter 2: The section Problem Context intends to give the main Definitions

considered in the document: Complex Systems, Distributed Systems, Supervision

Systems. These definitions are illustrated with real life examples: Preliminary

Design Review application (Collaborative Engineering) and Distributed Training

Scenario (Interactive Simulation of the Rendez-Vous Mission). The goal of these

subsections is to provide representative requirements, i.e. evaluation criteria for the

resulting generic supervision middleware. In this way, all the analysis in the

document is conducted in the light of these criteria;

• Chapter 3: The State of the Art section provides a pass through existing

supervision technologies, frameworks and research projects. The chapter ends with

an analysis of the existing solutions and their applicability to the above-mentioned

industrial problems according to outlined requirements;

• Chapter 4: The Concept and Implementation sections focus on the innovation.

The chapter starts with a hypothesis, that the Web Services could be a good choice

to build the required architecture on top of it. The analysis of the available

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 43

middleware technologies intends to justify this choice. Afterwards the Web

Services technology section introduces the main basics of the technology for better

understanding of the proposed approach. The Proposed Architecture section

describes an approach that maps a supervision system (see. Definitions) to Web

Services. In the end, the Prototype section elaborates approaches and solutions for

supervision of the required industrial systems;

• Chapter 5: Finally, the Evaluation section is intended to discuss solution

limitations. First, it provides results of performance tests. Then, it describes the

validation process, which involved real users. In addition, this chapter argues about

compliance of the proposed concept with the problem criteria.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 45

Chapter 2. PROBLEM CONTEXT

2.1 DEFINITIONS

The purpose of this section is to define the main terms considered in this document:

Complex Systems, Distributed Systems, Supervision Systems, Supervision Middleware. The

second part illustrates these definitions by means of two industrial systems. These systems

serve as an important testbed for evaluation of the resulting concept. In order to define

evaluation criteria, the last part of this section summarises common requirements for a

supervision middleware.

2.1.1 COMPLEX AND DISTRIBUTED SYSTEMS

To proceed further with the problem definition, the “Complex System” term should be

clarified.

According to the WordIQ dictionary [2], “complex systems” have a number of properties,

some of which are listed below. It is also often used as a broad term addressing a research

approach, which includes ideas and techniques from chaos theory, artificial life, evolutionary

computation and genetic algorithms.

The representative properties of complex systems include:

• Emergence: What distinguishes a complex system from a merely complicated one

is that some behaviours and patterns emerge in complex systems as a result of the

patterns of relationship between the elements. Emergence is considered as the key

property of complex systems.

• Relationships are short-range: Typically, the relationships between elements in a

complex system are short-range, that is information is normally received from near

neighbours. The richness of the connections means that communications will pass

across the system but will probably be modified on the way.

• Relationships are non-linear: There are rarely simple cause and effect

relationships between elements. A small stimulus may cause a large effect or no

effect at all.

• Relationships contain feedback loops: Both negative (damping) and positive

(amplifying) feedback are key ingredients of complex systems. The effects of an

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 46

agent's actions are fed back to the agent and this, in turn, affects the way the agent

behaves in the future. This set of constantly adapting nonlinear relationships lies at

the heart of what makes a complex system special.

• Openness: Complex systems are open systems - that is, energy and information are

constantly being imported and exported across system boundaries.

• Complex systems have a history: The history of a complex system is important

and cannot be ignored. Even a small change in circumstances can lead to large

deviations in the future.

• Complex systems are nested: Another key aspect of complex adaptive systems is

a hierarchy of the components of the system. For example, an economy is made up

of organisations, which are made up of people, who are systems of organs

controlled by their nervous and endocrine systems, which are made up of cells - all

of which, at each level in the hierarchy, are complex adaptive systems.

• Absence of boundaries: It is usually difficult to determine the boundaries of a

complex system.

In the frame of this work, a “Complex System” is considered in the context of distributed

systems. A distributed system [3] is a collection of autonomous computers linked by a

network and equipped with distributed system software. It is the opposite of a centralized

system, which consists of a single computer with one or multiple powerful CPUs processing

all incoming requests. The distributed system software enables the comprising computers to

coordinate their activities and to share system resources. Well-developed distributed system

software provides the illusion of a single and integrated environment although it is actually

implemented by multiple computers in different locations. In other words, the software gives

a distribution transparency to the systems.

The systems of this kind comprise the following properties:

• Components are distributed: for example, systems that implement client/server or

peer-to-peer architecture and physically hosted on different computers;

• Heterogeneous components are involved: for example, often components are

coded on different languages and run under different operating systems;

• System involves several layers: for example, a system that is composed of

operating system, network, middleware and application layers.

• The number of components is high.

• The number of components relations is high.

A distributed system generally has several important characteristics [3], obtained in the

result of a careful design and implementation:

• Resource Sharing: Resources provided by a computer, which is a member of a

distributed system, can be shared by clients and other members of the system via a

network.

• Openness: Openness in distributed systems is the characteristic that determines

whether the system is extendible in various ways. This characteristic is measured

mainly by the degree to which new resource sharing services can be incorporated

without disruption or duplication of existing services. The opposite of an open

distributed system is a closed distributed system. The set of features and facilities

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 47

provided by a closed distributed system stay static overtime. New features and

facilities cannot be added into the system. This prevents the system from providing

any other new resources other than those, which have already been made available.

Systems with proprietary interfaces are often referred to as closed.

• Concurrency: Concurrency is the ability to process multiple tasks at the same

time. A distributed system comprises multiple computers, each having one or

multiple processors. The existence of multiple computation resources can be

exploited to perform multiple tasks at the same time. This ability is crucial to

improve the overall performance of the distributed system. For example, a

mainframe must handle requests from multiple users, with each user sending

multiple requests at the same time. Without concurrency, performance would

suffer, since each request must be processed sequentially.

• Scalability: Scalability in distributed systems is the characteristic where a system

and application software does not need to change in case the scale of the system

increases. Scalability is important since the amount of requests processed by a

distributed system tends to grow, rather than decrease.

• Fault Tolerance: Fault Tolerance in distributed systems is a characteristic where a

distributed system provides an appropriate handling of errors that occurred in the

system.

• Transparency: Transparency means that the separation of components in a

distributed system does not affect the way users and application programmers view

the system, which means that they perceive the system as a whole rather than a

collection of independent components. In other words, the separation is hidden.

The trend of distributed systems is motivated due to several potential benefits:

• Shareability: Shareability in distributed systems is the ability that allows the

comprising systems to use each other’s resources.

• Expandability: Expandability of a distributed system is the ability that permits

new systems to be added as members of the overall system.

• Local Autonomy: A distributed system is responsible to manage its resources;

therefore, it gives its components a local autonomy of their resources.

• Improved Performance: As the number of clients accessing a resource increases,

the response time starts to degrade. The conventional ways of maintaining the

response time, for example, upgrading the host machine, can be used to offset this

effect. The separate nature of distributed systems can improve under certain

conditions the situation by distributing and balancing the computation load.

• Improved Reliability and Availability: Distributing the computation load through

several stations makes the service still available in case when one of the stations is

down.

• Potential Cost Reductions: One of the most frequent examples of cost reduction is

a situation when a computation server is shared between several clients, contrarily

to monopoly occupation of the computation resource.

Architecture Basics:

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 48

Two following simplified models illustrate the above-mentioned properties. The first of

them, a generalised component model (Figure 1) is purposed to show a distribution aspect and

simple binary relations.

Communication Media

Client 1Client 1

Server 1Server 1

Client 2Client 2 Client NClient N

User

Server 2Server 2 Server NServer N

Figure 1. General Component Model of a Complex System

 The server component represents a module that provides some services, while the client

component is a service consumer. Communication media provides a means to interconnect

clients and servers. There can be different means of communication like network protocols

(TCP, UDP, HTTP, etc), inter process communication means (shared memory, pipes, etc) or

middleware (RPC, CORBA, JAVA RMI, Message Oriented Middleware, etc).

Figure 1 is very schematic. In reality, modern distributed systems usually implement more

complex relations, like one-to-many and many-to-many. In this case, a component may

represent a client for one group of components and be a server for another one, which is often

called the peer-to-peer communication model.

Regarding the PDR scenario, which will be described later in this section, there exist

several server components, like Tomcat Server, visio conference server (MCU), Oracle

database server, etc, as well as several client components (EDB client, visio conference client

- MCU, etc.). As for the Communication media, it is secured by the network protocols.

The next model, which is a generalised component deployment model (Figure 2), shows a

component execution platform, which is essential for the system operation.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 49

Operating System

Network

Middleware

Application

Deployment ModelLevels

Network

to other components

Operating system

Component Middleware

Figure 2. General Component Deployment Model

The components are classified hierarchically according to several levels:

• Operating system managing component execution and inter-process

communication;

• Network securing communication with other remote components;

• Middleware hiding details of system distribution;

• Application dealing with the application logic.

The above levels will also be used later to classify the supervision parameters and agents.

2.1.2 DISTRIBUTED SUPERVISION SYSTEMS AND SUPERVISION MIDDLEWARE

Beside advantages mentioned in the previous section, a distributed system has the

following disadvantages [3]:

• Network Reliance: Because all computers in a distributed system rely on a

network to communicate with each other, problems on the network could disrupt

activities in the system as a whole. This is true especially for physical problems

such as broken network cables, routers, bridges, etc. The cost of setting up and

maintaining the network could eventually outweigh any potential cost savings

offered by distributed systems.

• Complexities: Administrators must be able to deal with different errors that could

occur from all components of a distributed system and their deployment platforms

that make up the distributed system. It must also be capable to manipulate resources

of computers with a wide range of heterogeneities.

• Security: A distributed system allows its computers to collaborate and share

resources more easily. However, this convenience of access could be a problem if

no proper security mechanisms are put in place. Private resources would be

exposed to a wider range of potential hackers, with unauthorized accesses launched

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 50

from any computers connected to the system. In fact, a centralized system is

usually more secure than a distributed system.

In order to alleviate these issues, it is a common practise to use distributed supervision

systems.

In general, a supervision system is defined as an application providing following

functionality:

• Acquisition of monitoring data;

• Representation of management data on a GUI console;

• Support of supervised system control (manual, semi or fully automated).

A distributed supervision system acts via components called supervision agents sharing

properties of general use software agents. Basically, a software agent is an autonomous entity

with its own ontology and schedule. Each agent possesses the ability to act autonomously; this

is an important distinction because a simple act of obedience to a command does not qualify

an entity as an agent. An agent may interact or negotiate with its environment and/or with

other agents. It may make decisions, such as whether to trust or to cooperate with others. In

addition to these features, supervision agents implement particular functionality depending on

their purposes.

Figure 3 depicts a general architecture of a distributed supervision system.

Supervisor (agent)

GUI ConsoleGUI Console

Delegate (agent)

Interface Level

Management Logic
Level

HMI Level

Supervision
Middleware

Middleware Level

Supervised Entity

Figure 3. General Architecture of a Distributed Supervision System

A distributed supervision system generally has an interface to a supervised entity

(operating system, database server, etc). Via this interface supervision, an agent registers

parameters fluctuations, incoming events, executes commands and coopers with a GUI

console. The GUI console can be integrated or remote; in this case, specific communication

mechanisms are applied. They can be inter-process communication means (files, shared

memory, pipes, etc), network protocols (TCP, UDP, HTTP, SNMP, etc.), common use

middleware (JMX, CORBA, FIPA, etc.), or others. These mechanisms are actually of major

interest for this work.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 51

When distributed, supervision agents are classified as Delegates and Supervisors.

Delegates implement an interface to a supervised entity and act on behalf of Supervisors, as a

representative of the system administrator. In its turn, Supervisors operate with monitoring

data and control functionality implementing management logic, such as information

evaluation and summarising, behaviour patterns recognition, decision making and automated

entity control.

Graphic user interface console is purposed for a human machine (HMI) communication. It

represents the monitoring synoptics, global system status evaluation or summary. In addition,

it forwards administrator commands to the supervision system.

As for the supervision middleware, similarly to the general use middleware, its goal is to

centrally provide high-level abstractions and services to the agents, to ease agent

programming, integration, and system management tasks. In this sense, middleware moves

beyond transaction management to encompass database management systems, web servers,

application servers, content management systems, and similar tools that support the agent

development and data delivery process. Hence, the main purpose of the supervision

middleware is to provide developers with the following facilities:

• abstraction to the agents;

• a data (including monitoring information and commands) delivery mechanism;

• distribution services, for example, directory and repository services;

• agent development patterns.

The state of the art survey in the next sections supplies outlines for a better understanding

of the modern supervision middleware technologies and frameworks.

2.2 INDUSTRIAL PROBLEMS

This section is devoted to shortly describe two industrial examples of complex systems,

which require the supervision. Both of them are closely related to EADS SPACE Corporation

business on the design of the Automated Transfer Vehicle (ATV) spacecraft. Consequently,

the first subsection shortly describes the ATV mission. While the second subsection, called

Preliminary Design Review (PDR), presents one of the stages of ATV design and a support

system, which is to be supervised. The last problem is referred to as the Distributed Training

Scenario concerns distributed interactive simulation of the rendez-vous mission (DIS-RVM)

and illustrates the need of supervision in the domain of real-time simulators. The proposed

concept will be evaluated on these two systems. Hence, more detailed information can be

found in section 0.

2.2.1 AUTOMATED TRANSFER VEHICLE

The ATV (Automated Transfer Vehicle) is an unmanned spacecraft developed by ESA and

is to be launched by Ariane 5. It has three main mission goals: to deliver freight (scientific

payloads, propellant, water, etc.) to the International Space Station (ISS), to re-boost the

station and to take away any waste from the ISS. Figure 4 illustrates schematically a typical

ATV mission.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 52

Figure 4. ATV Mission

2.2.2 PRELIMINARY DESIGN REVIEW

The Preliminary Design Review (PDR) [4] is a major milestone in the development cycle

of complex systems like spacecraft in EADS-ST scope. The GeneSyS project took the

Automated Transfer Vehicle (ATV) PDR as a validation scenario (the real PDR has been

performed in a traditional way).

Figure 5. PDR process for ATV design

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 53

EADS-ST as a prime contractor on behalf of ESA (European Space Agency) leads this

programme. During the Program life-cycle several reviews have been planed. The PDR is one

of the first reviews among them [4]. During the PDR, engineers from different countries

collaborate on ATV design documentation, create Review Items Discrepancies (RID), meet

on-line to discuss RIDs and possibly release Change Proposals. To support these activities a

Distributed Engineering system, called PDR application, is applied (Figure 6).

Internet

Document

Repository

Clients

Visio Conference

Server

Win

Oracle

Win Win Win

Linux

NATISDN

Win

Figure 6. PDR Application

This system consists of a document repository, called Engineering Database (EDB) server,

and Visio conference server, which routes H.323 and T.120 protocol streams and manages

sessions (on-line meetings). The EDB server contains thousands of documents. Both servers

support up to one hundred users simultaneously. Review meetings involve up to fifty

engineers.

Although the servers are hosted on Linux, client applications, documentation front-end and

video chat are run under Windows. The network is heterogeneous, since reviewers are located

in different countries and they use various server access means, including ISDN and Ethernet

networks. Moreover, some client hosts are hidden by firewalls and network address

translation. As far as the application layer is concerned, the EDB was developed on the basis

of Java e-business solutions, while the conference server was developed on C++ and uses

PHP based application for session management. These constraints determine the supervision

solution.

To efficiently manage the PDR process, a specific supervision solution is required. The

supervision is needed to administrate operating systems, network and applications involved.

There exist numerous heterogeneous ways to monitor and control all aspects of the system,

such as specific APIs and plug-ins for Database Management System, Network Management

Protocols, Toolkits for system monitoring. Therefore, the generic way of the information

gathering, synthesising, and representation is actually required. This system should give us a

global view of the situation to simplify the management and maintenance.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 54

2.2.3 DISTRIBUTED TRAINING SCENARIO

This scenario deals with docking phase of the ATV mission. The selected spacecraft

rendezvous and docking scenario will focus on the final translation of ATV to ISS, which is

one of the most critical phases of the whole ATV mission. This phase starts at a waiting point

S3, at approximately 250 meters from the station. From this point, the ATV spacecraft follows

its docking procedures. The trajectory is represented below in Figure 7.

Approach

corridor

Waiting

points S2S3Vbar

Final

Translation

Closing Homing

S1

Rbar

KOZ Approach ellipsoid

S4S5

[40] [250m] [2500 meters]

Figure 7. Overall view of the ATV flight trajectory near ISS

Interoperability between ATV simulation and training facilities could greatly facilitate test

and training phases required for such complex operations. The distributed simulation

technology is considered as a solution for effective exchange of data between simulators and

simulations.

In the space domain, it is essential to prepare in advance the astronauts and the ground

team to the worst cases they might face during a mission, as statistics show that only 35% of

contingency situations are really predictable. Therefore, it is mandatory to train them

intensively on simulators, which are the most representative.

With regard to the training of geographically distributed groups of operators, it is of critical

importance to have capabilities to effectively supervise various components of such a

complex distributed training system.

DIS-RVM software is the main component of this training system. It represents distributed

interactive simulation of the ATV-ISS rendez-vous mission based on HLA (High Level

Architecture) middleware [5].

The following HLA federation of the DIS-RVM software is used (Figure 8):

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 55

ATV
federate

ISS
federate

ATV-CC
federate

Federation
Manager
federate

ISS

monitoring

ISS

teleoperation

recovery

procedurescontingency

situations

MCC
federate

authorization

to proceed

ISS crew,

subsystems development team
MCC

controllers

contingency

situations

ATV

monitoring

Training

Instructor
Contingency

Control

Communication infrasructure (RTI)

ATV-CC

controllers

ATV subsystems

development team

Figure 8. Architecture of the DIS-RVM Federation

All federates are independent Linux applications that can run within LAN (a local area

network) or WAN (a wide area network), which is due to provide the following minimum

quality of service:

• Latency of 300 milliseconds

• Bandwidth of 64 kbps

• Routing of multicast

DIS-RVM federates are “soft real time” applications with a maximum jitter of model

scheduling of less than 10 milliseconds on single CPU Linux hosts. The federates may run in

faster-than-real-time mode with a time factor of up to four.

To provide consistency of simulation data within the distributed simulator and the level of

fidelity necessary for training purposes, federates use uniform time reference obtained by

means of NTP (Network Time Protocol). Synchronisation of system clocks on simulation

hosts is necessary to run simulation (training) sessions.

ATV federate simulates the orbital flight of ATV and functioning of major ATV onboard

systems during the Rendez-Vous & Docking (RVD). In addition, it simulates essential

functionality such as an intervention of a remote operator into the control loop and

introduction of failures. The main functionality of the ATV federate is as follows:

• simulation of orbital flight of the ATV;

• monitoring of the progress of the RVD process;

• possibility to control the ATV motion during the simulation.

ISS federate simulates the orbital flight of ISS and functioning of the ISS attitude control

system. Regarding centre-of-mass control, the ISS is simulated as a passively moving space

vehicle. The main functionality of the ISS model is as follows:

• simulation of the orbital flight of a space station;

• monitoring of the progress of the RVD process;

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 56

• possibility to remotely control the ATV during the simulation.

ATV-CC federate represents the most important functionality of the ATV Control Centre

such as:

• monitoring the ATV parameters and variables;

• managing the RVD sequence in case of contingency situations.

• modifying the ATV flight plan parameters;

• controlling the ATV motion remotely by a ground operator.

MCC federate represents the most important functionality of the Mission Control Centre

such as:

• monitoring the ISS parameters and variables;

• controlling the RVD sequence in case of contingency situations due to ATV:

GO/NO-GO, etc;

• managing the ATV flight plan;

• managing the authority transfer process.

Federation Manager federate manages the distributed simulator and introduces

contingencies independently from any federate. Its functionality provides for the following:

• setting of exercise-specific input data;

• checking the process of loading and initialising of models;

• managing time factor during the exercise;

• issuing commands such as START, STOP, PAUSE;

• introducing off-nominal situations.

DIS-RVM can interoperate with number of image generation systems for realistic

visualization of ATV rendez-vous. Example of such a generated scene is given in Figure 9.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 57

Figure 9. Visual representation of DIS-RVM simulation

To effectively monitor and control this application, the supervision system should provide

information about parameters from all the system levels:

• Application: Simulation sessions, Simulation events, Federate state, Federate events,

Federate logs, Federate Activities on the HLA API and network level, RTI (Run-

Time Infrastructure) availability, RTI state, RTI events, RTI logs, etc;

• Network: Network resources load, Network connectivity, Network bandwidth,

Network interface load, System logs, Interfaces' Logs, Firewall Logs, etc;

• Operating system: System resources load, Disk load, CPU load, Memory load.

The supervision middleware should allow collecting the monitoring data from

heterogeneous sources. Moreover, as in the previous case, a global synthetic view of the

system status is the main goal for supervision.

2.3 REQUIREMENTS FOR SUPERVISION MIDDLEWARE

In addition to distribution management, the following requirements have been identified on

the basis of the analysis of the above-mentioned industrial problems:

• Interoperability: The supervision middleware should be capable to interconnect

heterogeneous agents. That includes agents, which have been coded in different

programming languages (for the above-described problems, the programming

languages include Java, C++, PHP), or/and agents which run under different

operating systems (like Windows and Linux).

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 58

• Portability: the middleware components should be portable to run under different

operating systems (like Windows and Linux) and to be capable to operate over

different network protocols (like UDP, TCP).

• Flexibility: the middleware should be capable to transport all types of data

including complex (arrays, lists, vectors, hash tables) and compound data.

• Support of intelligence: the middleware should be capable to transport additional

custom information dedicated to intelligent supervision.

• Reliability and security: the middleware operation should be reliable. It should

provide authentication, authorisation and data encryption functionality.

• Ease of agent development: The middleware should provide agent development

patterns, which should simplify integration with the middleware.

• Ease of middleware deployment: The middleware components should be easy to

install and configure.

To evaluate compliance to these requirements, it is a common practise to develop

prototypes dealing with representative systems. In the frame of this work, the requirements

are verified using prototypes for supervision of the PDR and DIS-RVM systems (see

Prototype section); therefore, the compliance is validated based on the following

requirements:

Requirement: PDR system DIS-RVM system

Interoperability Java, C++, C#, PHP agents

Windows, Linux platforms

Portability Agents should be able to develop using Java, C++, C#, PHP

and to run under Windows, Linux platforms

Flexibility Support of complex and compound types for supervision data

Intelligence - Global view: information

summarisation

Reliability and security Reliability of design is verified playing the validation

scenarios.

Authentication, authorisation and data encoding support.

Ease of development Design patterns for Java, C++, C#, PHP

Ease of deployment Regarding PDR execution

platform

Regarding DIS-RVM

execution platform

The further information about the validation process is given in the Evaluation chapter.

The following chapter is intended to overview and to evaluate current supervision

middleware technologies in accordance with the above-mentioned requirements.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 59

Chapter 3. STATE OF THE ART

This section describes the current situation in the domain of supervision middleware, their

architecture and application. It is followed by the analysis of advantages and limitations of the

existing supervisory solutions in regard to the industrial problems. This analysis is intended to

design a more appropriate solution. In addition, the analysis of the underlying middleware

technologies is provided in the next chapter.

3.1 NETWORK MANAGEMENT PROTOCOLS

Network management technologies have been developed during the whole history of

networks. The best known of them are:

• High-level Entity Management System (HEMS);

• Simple Gateway Monitoring Protocol (SGMP) ;

• Common Management Information Protocol (CMIP).

These technologies highly contributed to the development of the ICMP and SNMP

protocols described hereafter.

3.1.1 INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

ICMP is an error-reporting system. It is an integral part of IP and must be included in every

IP implementation. The complete specification of ICMP is RFC792 [8]. ICMP is responsible

for reporting errors and messages regarding the delivery of IP datagrams. It can also send

“source quench” and other self-tuning signals during the transfer of data between two

machines without the intervention of the user. These signals are designed to fine-tune and

optimise the transfer of data automatically. ICMP is the protocol that warns when a

destination host is unreachable, or how long it took to get to a destination host.

Some of ICMP's functions serve to:

• Announce network errors, such as a host or entire portion of the network being

unreachable, due to some type of failure. A TCP or UDP packet directed at a port

number with no receiver attached is also reported via ICMP.

• Announce network congestion. When a router begins buffering too many packets, due

to inability to transmit them as fast as they are being received, it will generate ICMP

Source Quench messages. Directed at the sender, these messages should cause the rate

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 60

of packet transmission to be slowed. Of course, generating too many Source Quench

messages would cause even more network congestion, so they are used sparingly.

• Assist Troubleshooting. ICMP supports an Echo function, which just sends a packet

on a round-trip between two hosts. Ping, a common network management tool, is

based on this feature. Ping will transmit a series of packets, measuring average round-

trip times and computing loss percentages.

• Announce Timeouts. If an IP packet's TTL (Time To Live) field drops to zero, the

router discarding the packet will often generate an ICMP packet announcing this fact.

TraceRoute is a tool, which maps network routes by sending packets with small TTL

values and watching the ICMP timeout announcements.

The ICMP protocol uses IP addressing because it is a protocol encapsulated within an IP

datagram. Figure 10 illustrates the fields of an ICMP message.

Data

Parameters

Type (8 bits) Code (8bits) Checksum(16 bits)

Figure 10. Layout of an ICMP message

The first field is the ICMP message type, which can be classified as either a query or an

error. The code field further defines the type of query or message. The checksum field is the

16-bit one's complement sum of the ICMP header. Finally, the ICMP contents depend on the

ICMP type and code.

ICMP messages can be broken down into two basic categories: the reporting of errors and

the sending of queries. Error messages include the following:

• Destination unreachable

• Redirect

• Source quench

• Time exceeded

ICMP also includes general message queries. The two most commonly used are the

following:

• Echo request

• Echo reply

The most familiar tool for verifying that an IP address on a network actually exists is PING

utility. The PING utility reports the existence of the IP address and how long it took to get

there.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 61

3.1.2 SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP)

Simple Network Management Protocol (SNMP) [9] is the most widely used protocol for

the management of IP based networks. Its concept also allows management of end systems

and applications using specific Agents and Management Information Bases (MIB). Although

SNMP version 3, covering security issues, was already released, the version 1, due to its

robustness, is still widely used.

Next section will present basics of the SNMP concept.

Architecture:

The SNMP is application level protocol on top of UDP. The SNMP managed network

consists of tree major components (Figure 11): managed devices, agents and network

management systems (NMS). The managed devices can be hosts, network interfaces, routers,

bridges, hubs and etc. The agents are the program components running in the managed

devices. Agents collect information about managed devices and make it available for NMS by

the mean of SNMP. The NMS executes the management applications to monitor and control

the managed devices.

M I B

Agent

Management Entity

NMS

Agent

M I B

Agent

M I B

Managed
Device

Managed
Device

Managed
Device

Figure 11. SNMP Managed Network

The management capability of the devices can be quite poor due to, for example, slow

CPU or memory limitations. That is why the agent should minimise its impact on the

managed device. Moreover, all calculation and monitoring data processing is centralised in

Network Management System, which, in addition, implements graphical user interface (GUI).

Communication between Agents and NMS is assured by the Network Management

Framework protocol. This protocol supports the Query/Response mechanism when Agents

send the parameters values upon the request from the NMS, as well as Subscribe mechanism,

which deals with asynchronous messages sent by Agent to NMS when a particular event

happens.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 62

The Managed Devices monitored and controlled using four basic SNMP commands are

read, write, trap, and traversal operations.

 The read command is used by an NMS to monitor managed devices. The NMS examines

different variables that are maintained by managed devices.

The write command is used by an NMS to control managed devices. The NMS changes

the values of variables stored within managed devices.

The trap command is used by managed devices to asynchronously report events to the

NMS. When certain types of events occur, a managed device sends a trap to the NMS.

Traversal operations are used by the NMS to determine which variables a managed

device supports and also to sequentially gather information in variable tables, such as a

routing table.

Management Information Base:

A Management Information Base (MIB) is a collection of information that is organised

hierarchically. MIBs are accessed using a network-management protocol such as SNMP.

They are comprised of managed objects and are identified by object identifiers.

A managed object (sometimes called a MIB object, an object, or a MIB) is one in a number

of specific characteristics of a managed device. Managed objects are comprised of one or

more object instances, most of which are variables.

Two types of managed objects exist: scalar and tabular. Scalar objects define a single

object instance. Tabular objects define multiple related object instances that are grouped in

MIB tables.

The monitoring parameters are strictly hierarchically classified when stored in MIBs. The

MIB structure is defined by SMI (Structure of Management Information) rules. They define

the hierarchy of the managed objects, which are identified by object identifiers. Figure 12

illustrates the object identification. The NMS requests the management objects by their id. For

example, the IP object has id 1.3.6.1.2.1.4.

iso(1)ccitt(0) iso-ccitt(2)

standard(0) registration-

authority(1)

member-

body(2)

identified-

organisation(3)

dot(6)

internet(1)

directory(1) mgmt(2) experimental(3) private(4) security(5) snmpV2(6)

mib-2(1)

system(1) interfaces(2) Address

translation(3)
IP(4) ICMP(5) TCP(6) UDP(7)

Figure 12. The Structure of the Management Information

SMI (Structure of Management Information) specifies that all managed objects have a

certain subset of Abstract Syntax Notation One (ASN.1) data types associated with them.

Three ASN.1 data types are required: name, syntax, and encoding. The name serves as the

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 63

object identifier (object ID). The syntax defines the data type of the object (for example,

integer or string). The SMI uses a subset of the ASN.1 syntax definitions. The encoding data

describes how information associated with a managed object is formatted as a series of data

items for transmission over the network.

SMI also defines several data types as follows:

• Network Addresses represent addresses from a particular protocol family

SNMPv1. They support only 32-bit IP addresses, but SNMPv2 can support other

types of addresses as well.

• Counters are non-negative integers that increase until they reach a maximum value

and then return to zero. In SNMPv1, a 32-bit counter size is specified. In SNMPv2,

32-bit and 64-bit counters are defined.

• Gauges are non-negative integers that can increase or decrease but always retain

the maximum value reached.

• Ticks represent a hundredth of a second since some event.

• Opaque represents an arbitrary encoding that is used to pass arbitrary information

strings that do not conform to the strict data typing used by the SMI.

• Bit strings are defined only in SNMPv2 and comprise zero or more named bits that

specify a value.

Operations:

SNMP is a simple request/response protocol. The network-management system issues a

request, and managed devices return responses. This behaviour is implemented by using one

of four protocol operations:

• Get operation is used by the NMS to retrieve the value of one or more object

instances from an agent. If the agent responding to the Get operation cannot

provide values for all the object instances in a list, it does not provide any values.

• GetNext operation is used by the NMS to retrieve the value of the next object

instance in a table or a list within an agent.

• Set operation is used by the NMS to set the values of object instances within an

agent.

• Trap operation is used by agents to asynchronously inform the NMS of a

significant event. The SNMPv2 Trap operation serves the same function as that

used in SNMPv1, but it uses a different message format and is designed to replace

the SNMPv1 Trap.

SNMPv2 also defines two new protocol operations:

• GetBulk operation is used by the NMS to efficiently retrieve large blocks of data,

such as multiple rows in a table. GetBulk fills a response message with as much of

the requested data as it can fit.

• Inform operation allows one NMS to send trap information to another NMS and to

then receive a response. In SNMPv2, if the agent responding to GetBulk operations

cannot provide values for all the variables in a list, it provides partial results.

Security:

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 64

SNMP lacks any authentication capabilities, which results in vulnerability to a variety of

security threats. These include masquerading occurrences, modification of information,

message sequence and timing modifications, and disclosure. Masquerading consists of an

unauthorised entity attempting to perform management operations by assuming the identity of

an authorised management entity. Modification of information involves an unauthorised entity

attempting to alter a message generated by an authorised entity so that the message results in

unauthorised accounting management or configuration management operations. Message

sequence and timing modifications occur when an unauthorised entity reorders, delays, or

copies and later replays a message generated by an authorised entity. Disclosure results when

an unauthorised entity extracts values stored in managed objects, or learns of noticeable

events by monitoring exchanges between managers and agents. Because SNMP does not

implement authentication, many vendors do not implement Set operations, thereby reducing

SNMP to a monitoring facility.

Interoperability:

As presently specified, SNMPv2 is incompatible with SNMPv1 in two key areas: message

formats and protocol operations. SNMPv2 messages use different header and protocol data

unit (PDU) formats than SNMPv1 messages. SNMPv2 also uses two protocol operations that

are not specified in SNMPv1. Furthermore, RFC 1908 defines two possible SNMPv1/v2

coexistence strategies: proxy agents and bilingual network-management systems.

A SNMPv2 agent can act as a proxy agent on behalf of SNMPv1 managed devices, as

follows:

• An SNMPv2 NMS issues a command intended for an SNMPv1 agent.

• The NMS sends the SNMP message to the SNMPv2 proxy agent.

• The proxy agent forwards Get, GetNext, and Set messages to the SNMPv1 agent

unchanged.

• GetBulk messages are converted by the proxy agent to GetNext messages and then

forwarded to the SNMPv1 agent.

The proxy agent maps SNMPv1 trap messages to SNMPv2 trap messages and then

forwards them to the NMS.

Bilingual SNMPv2 network-management systems support both SNMPv1 and SNMPv2. To

support this dual-management environment, a management application in the bilingual NMS

must contact an agent. The NMS then examines information stored in a local database to

determine whether the agent supports SNMPv1 or SNMPv2. Based on the information in the

database, the NMS communicates with the agent using the appropriate version of SNMP.

Products:

The following table aims at an overview of existing management applications both in the

public or commercial domains and is not at all intended to give a complete list of existing

applications.

Tool Description License

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 65

Tool Description License

MRTG A Tool that gathers counter values from managed systems

and displays these as graphs on WWW pages. This tool is

widely used for network load monitoring, logging and

statistics gathering. The Tool is using the PERL script

language (which has a SNMP built in API) and can

therefore be easily integrated on UNIX platforms. The

Integration into W2k based systems is also possible.

Open Source

SNMP Browser A tool that allows browsing a SNMP MIB through a

comfortable graphical user interface and displays the

gathered values as graphs. This tool was developed at

RUS in JAVA and is therefore available on all Java

enabled platforms.

Proprietary

NIFTY An IP traffic flow-monitoring tool. It allows the online

monitoring of IP traffic flows i.e. a traffic relation between

two BSD sockets. A network manager is able to monitor

in a time window of some minutes the duration and packet

rate of an existing IP traffic flow and its bandwidth.

Open Source

HP OpenView A very good tool for network monitoring that enables to

control and monitor large scale IP based networks

Commercial

(>20.000 €)

SUNNetManager Same as HP OpenView Commercial

(>20.000 €)

3.2 JAVA MANAGEMENT EXTENSION (JMX)

Java Management Extension [10] is a SUN specification describing the design patterns of

smart Java agents for application and network management. The specification includes the

architecture, the design patterns, APIs and core services. The JMX provides Java developers

with means to instrument Java code for creation of smart Java agents and manageable

applications. The JMX components also provide for extension of existing Java based

management middleware. It is already planned to integrate JMX into such systems as:

• WBEM (JSR-000048 WBEM Services Specification for CIM/WBEM manager and

provider APIs)

• SNMPI Manager API (currently reviewed by the Java Community Process)

Architecture: The JMX propose a three-layer architecture comprising:

• Instrumental level (interfaces to manageable resources),

• Agent level (Server),

• Distributed Services level (External Applications).

The following figure clarifies the relations between these levels and their components.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 66

Resource 1
(MBEAN)

Resource 2
(MBEAN)

MBean Server

Agent Service

(MBEAN)
Agent Service

(MBEAN)

Connector
Protocol
AdaptorConnector

JMX
Manager

Resource 1
(MBEAN)

Resource 2
(MBEAN)

MBean Server

Agent Service

(MBEAN)
Agent Service

(MBEAN)

Connector

Web
Browser

Proprietary

Management

Application

JMX

Compliant

Management

ApplicationDistributed
Service Level

Agent Level

Instrumentation
Level

Figure 13. Relationships between components of the JMX architecture

Instrumentation Level: This level deals with components to be managed. A JMX

manageable component can be an application, a service, a device, a user and etc.

Instrumentation can be done through a Java interface or thin Java wrapper, by means of

Manageable Beans (MBeans). An MBean is a special Java Bean that should be implemented

with stricter design pattern than a common Java Bean. The main aim of the instrumentation is

to provide services to the agent level, to MServer. This server manages all communications

between the MBeans.

Moreover, the instrumentation level support publish/subscribe communication model

(notification mechanism) standard for Java Beans, this mechanism is used to propagate the

notifications events to the upper levels.

The JMX is a quite portable system, since it requires that the resource should be

compatible only with JDK 1.1.x, EmbeddedJava, PersonalJava or Java2. It means that a wide

rage of resources can be administrated. Besides, the JMX ensures a high level of automation

of management for such instrumented resources.

Agent Level: This level deals with Management agents. The Agents can directly access the

instrumented resources to control them and to publish them to Management applications on an

upper level.

The JMX agents act as an MBean Server handling MBeans using a set of services. Due to

this separation, the agent and instrumented resources can be placed on different hosts. Similar

to the approach of the instrumentation level, the JMX agent is designed to be independent of

Management applications of an upper level.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 67

Distributed Services Level: The blue blocs in Figure 13 represent the Distributed Services

level, which deals with Management applications. However, this level is not yet well defined

in the JMX specification. This level determines the interfaces for implementation of JMX

managers that are purposed to integrate managed resources seamlessly to their environment.

In addition, the components named Connector and Protocol Adaptor are used to provide

information to different clients.

Companies and Products:

JMX is supported by a number of important and influential companies, including:

• Computer Associates

• GemStone Systems

• Inprise Borland

• IONA (leads the process to define the CORBA interface to the JMX specification,

since their clients require that both EJB/J2EE and CORBA applications should be

administrated from a single management console.)

• Motorola

• Powerware (provides scalable solutions, as well as enterprise-wide power and

foundation management in the distributed computer environment through Java

technology.)

• Schmid Telecommunication

• IPlanet

• TIBCO Software

• AdventNet (Delivered the first independent implementation of JMX. AdventNet

ManageEngine leverages JMX to offer standards-based business-oriented

manageability for business processes, applications and middleware infrastructure.

AdventNet's JMX technology is widely used by more than 150 customers in

various industries.)

The following products passed the compatibility tests and therefore were certified as JMX

Compliant:

• ManageEngine, AdventNet

• Agent Toolkit - Java/JMX Edition, AdventNet

• WebLogic Server 7.0, BEA Systems

• SonicXQ and SonicMQ, Sonic Software

• Java Dynamic Management Kit (JDMK), Sun Microsystems

The products below use the JMX technology:

• AdventNet: ManageEngine Applications Manager

• AdventNet: Web NMS

• Alignment Software: AppAssure

• BEA: WebLogic Collaborate

• ComArch: Tytan Mobile Portal

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 68

• Computer Associates: Unicenter

• Covalent Technologies: Covalent Application Manager

• Critical Path: System Console

• Hewlett Packard: OpenView

• IBM/Tivoli

• IBM: WebSphere Application Server

• IBM: WebSphere Business Components

• IBM: WebSphere Business Integrator

• IBM: WebSphere Voice Server

• Innovative Systems Design: ITVerify

• The Jakarta Project (Apache): Phoenix

• JBoss

• jNETx: Parlay/OSA Gateway

• Log4j

• Lutris: EAS

• Macromedia: FlashMX

• Sun Microsystems: Java Dynamic Management Kit (Java DMK)

• Sun Microsystems: Netra CT Managed Object Hierarchy (MOH)

• Sun Microsystems: Netra HA Suite

• Sun Microsystems: Netra T1

• Sun Microsystems: DReAM, Distributed Resource Allocation Manager

• Sun Microsystems: Sun Open Network Environment (Sun ONE) Application

Server

• Sun Microsystems: Sun ONE Portal Server

• Tomcat

3.3 DISTRIBUTED MANAGEMENT TASK FORCES STANDARDS

(DMTF)

Talking about standardisation systems, one cannot avoid DMFT initiatives. Although this

organisation works only on management information models, these standards are often used

in distributed supervision systems. The most interesting standards are outlined below:

• Common Information Model <http://www.dmtf.org/standards/cim> (CIM):

This is a common data model of an implementation-neutral schema for describing

overall management information in a network/enterprise environment.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 69

• Desktop Management Interface <http://www.dmtf.org/standards/dmi> (DMI):

These standards generate a standard framework for managing and tracking

components in a desktop pc, notebook or server.

• Directory Enabled Network Initiative <http://www.dmtf.org/standards/den>

(DEN): The Directory Enabled Network (DEN) initiative is designed to provide

building blocks for intelligent management by mapping concepts from CIM (such

as systems, services and policies) to a directory, and for integrating this information

with other WBEM elements in the management infrastructure.

• Web-Based Enterprise Management <http://www.dmtf.org/standards/wbem>

(WBEM): This initiative is a set of management and Internet standard technologies

developed to unify the management of enterprise computing environments.

• Alert Standard Format <http://www.dmtf.org/standards/asf> (ASF): This

specification defines remote control and alerting interfaces that best serve clients'

OS-absent environments.

• System Management BIOS <http://www.dmtf.org/standards/smbios>

(SMBIOS): The SMBIOS Specification addresses the way motherboard and

system vendors present management information about their products in a standard

format by extending the BIOS interface on Intel architecture systems.

3.4 EXISTING COMMERCIAL SUPERVISION FRAMEWORKS

This section presents an outline of the most famous supervision frameworks. The

architecture overview contains components description, their purpose, interaction models and

supervision approaches.

3.4.1 UNICENTER TNG (COMPUTER ASSOCIATED)

The Unicenter TNG (The Next Generation) is an enterprise management tool, which

provides agents for operating system and database management, as well as, user interface

facilities.

This tool is highly customisable and extensible thanks to well defined architecture allowing

integration of third-party agents and user interfaces.

Architecture:

The architecture of Unicenter TNG provides the means to implement a new paradigm of

Business Process Views. Although, it is a fully integrated architecture, three major levels can

be identified in it (Figure 14):

▪ World View including Real World Interfaces is a graphical user interface driven by

Common Object Repository (CORE). The Core is a central storage mechanism for all

components of Unicenter TNG, it is accessible via management functions and third-

party applications;

▪ Enterprise Management containing dedicated manager is the Core management

facility that provides resource management throughout an enterprise;

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 70

▪ Agents Factory comprises all the agents, which are the means to monitor and control

all the aspects of a business enterprise.

SNMP

Event
Manager

CORE DatabaseDatabase

Security
Manager

Workload
Manager

Third-Party
Manager

agentagent agentagent agentagent third-party
agent

third-party
agent

Real World
Interface

Real World
Interface

Real World
Interface

Real World
Interface

Real World
Interface

Real World
Interface

Agents

Enterprise
Management

World View

Figure 14. Unicenter TNG Architecture

World View

World View provides a seamless user interface, which is one of the strongest integration

capabilities of the Unicenter TNG. It allows each management application to identify the

objects it manages as well as the relationships between those objects. This enables the Real

World Interface to display, navigate, and manage objects from different applications in one

seamless environment. When object administration is desired, the management application is

invoked in context. Users can also customise the interface, without impacting the behaviour or

function of the management applications. The Real World Interface draws on the Common

Object Repository to generate management maps dynamically.

The Common Object Repository is the location where all management functions store

information about the managed objects, their properties, and relationships. Objects for the

common management services are also stored in the repository. Search and query capabilities

enable management functions to find relevant sets of objects to operate upon. Third-party

applications and all Unicenter TNG components access CORE. The CORE is database

independent and designed for multi-user and multi-system operations.

Enterprise Management

Enterprise Management is a collection of integrated system management functions

available through Unicenter TNG.

Unicenter TNG Enterprise Management permits to manage system resources and to add

policy-based automation, security, reliability, and integrity to the environment. This

management can be accomplished in a centralised fashion and be distributed throughout the

network. It can also use a hybrid approach combining these otherwise different approaches. It

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 71

allows management at a functional level to best match the unique structure of the business

enterprise.

Further, each enterprise management workstation can be customised to reflect the needs of

a particular administrator. For example, one workstation can manage backup and archiving of

storage, while security workstations can be placed throughout the network, bringing user

administration closer to each business unit.

The main components of this level are Managers, which may be located anywhere in the

network. They analyse the information sent to them by agents, correlate the various pieces of

information in the environment to discover trends and patterns, and determine how to best

control the managed resources in the context of management policies.

The following are examples that managers can perform:

• Event Management directs the messages to a centralised location and processes them

automatically, a task that would otherwise require manual intervention;

• Problem Management records, accesses and tracks problems related to the system and

end-user requirements;

• Workload Management automates repetitive or calendar-based processing;

• File Management performs backup and restores operations, and provides integrity and

reliability of the information stored on external media;

• Security Management secures the computing environment;

• Performance Management monitors, measures and reports on the usage and

performance of the system resources.

Agents

An agent, in the Unicenter terms, is an application that supports network management. An

agent typically resides on a managed software node, such as a Windows NT server or

workstation, and provides information to a management application (manager).

This information is interpreted according to a management protocol that is understood by

both managers and agents.

Both agent and management applications can view the collection of data items for the

managed resource. This collection is defined by the management information base (MIB - see

section Simple Network Management Protocol (SNMP). Each MIB describes attributes that

represent aspects of the managed resource. The network management platform accesses MIB

data using SNMP.

Due to open APIs and standard protocols, the agent technology makes it possible to

instrument practically any resource in an IT infrastructure. It provides facilities for creating

custom agents. The open architecture supports agents created by other software vendors who

have followed the Unicenter TNG agent specifications.

TNG Unicenter’s Distributed Management Approach

In TNG Unicenter’s manager/agent architecture, the functions that use management

information, control management actions, and delegate management authority are

architecturally separate from the functions that produce management data and act on behalf of

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 72

managers. Many managers can monitor a single agent, and vice versa. GUI can use the

Common Object Repository and multiple managers can update that repository.

Manager’s role - A manager is one of many software bosses in the enterprise management

system. Managers issue requests to agents for data, then perform analyses and correlations on

the data received about their management environment.

For example, Unicenter TNG has the following managers: a workload manager, a storage

manager, an asset manager, a problem manager, a software distribution manager, a

configuration manager, a file manager, a calendar manager, a report manager, a user/security

manager...

There is also a special manager called Distributed State Machine (DSM), which manages

groups of agents that instrument resources. This manager is essential to integration of third-

party agents.

Agent’s role - Agents monitor information about one or more resources and relay that

information to a manager under specific circumstances or criteria. Agents can periodically

report to their managers or be asked (polled) for information by managers.

TNG Unicenter offers several agents right out of the box: DB2 agent, DCE agent, Informix

agent, Ingres II agent, MVS agent, Netware agent, OpenEdition agent, OpenVMS agent,

Oracle agent, OS/2 agent, OS/390 System agent, SQL Server agent, Sybase agent, Tandem

NSK agent, Unix agent, Windows 3.1 agent, Windows 95 agent, Windows NT agent…

3.4.2 NAGIOS

Nagios [13] is a system and a network monitoring application distributed under the terms

of the GNU General Public License. It watches specified hosts and services and is able to alert

in case of alarm or state change.

The following features of Nagios include:

• Monitoring of network services (SMTP, POP3, HTTP, NNTP, PING, etc.);

• Monitoring of host resources (processor load, disk usage, etc.);

• Simple plugin design that allows users to develop their own service checks;

• Paralleled service checks;

• Ability to define network host hierarchy using "parent" hosts, allowing detection of

and distinction between hosts that are down and those that are unreachable;

• Contact notifications when service or host problems occur and get resolved (via

email, pager, or user-defined method);

• Ability to define event handlers to be run during service or host events for proactive

problem resolution;

• Automatic log file rotation;

• Support for implementing redundant monitoring hosts;

• Optional web interface for viewing current network status, notification and problem

history, log file, etc.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 73

Nagios was originally designed to run under Linux, although it should work under most

other Unix systems as well. This also means that, Nagios has been mainly build for

monitoring Unix networks.

Nagios is an example of a successful monitoring framework, due to its openness,

simplicity, portability and extensibility.

The following section concentrates on its architectural basics.

Architecture:

First of all, Nagios is designed to reside on a single monitoring host. However, it contains a

web interface compatible to most of the web-servers that allows remote access. Therefore,

Nagios itself consists of the core program logic, a CGI web interface and a set of

configuration files. The configuration files contain all monitoring services and hosts and a

number of directives that affect the way Nagios operates. Remote hosts and services are

monitored by means of specific plug-ins.

Unlike many other monitoring tools, Nagios does not include any internal mechanisms for

checking the status of services, hosts, etc. Instead, Nagios relies on external programs (called

plug-ins) to implement monitoring and control capabilities. Nagios executes a plug-in when

there is a need to check a service or a host that is being monitored. The Nagios concept does

not impose any requirements on plug-in monitoring functionality realisation. The only

requirements concern the interface to the Core Logic process. The plugin is required to send

standard formatted monitoring values to Linux standard output stream. The monitoring

parameters description, bounds, status change should also be defined.

Hence, the plug-in performs the check and then returns the results to Nagios. Nagios

processes the results received from the plug-in and takes necessary actions (running event

handlers, sending out notification, etc).

The Figure 15 below shows separation of plug-ins from the Nagios core program logic.

Plug-in

Local Resource
or Service

Local Resource
or Service

Nagios Process
(CORE Logic)

Plug-in

Remote Resource

or Service

Remote Resource

or Service

Monitoring Host

Remote Host

Web Front End

Figure 15. Nagios Plug-in Architecture

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 74

Plug-ins are compiled executables or scripts (Perl, shell, etc.) that can be run from a

command line.

Nagios executes the plug-ins, which then check local or remote resources or services of

some type. When the plug-ins have finished checking the resource or service, they pass the

results of the check back to Nagios for processing.

Monitoring Approach:

Passive and Active Service Check

One of the features of Nagios is that it can process service check results that are submitted

by external applications. Service checks that are performed and submitted to Nagios by

external applications are called passive checks. Passive checks can be contrasted with active

checks, which are service checks that have been initiated by Nagios.

In contrast to Active checks, Passive checks are useful for monitoring services that are:

• Located behind a firewall, and therefore cannot be checked actively from the host

running Nagios;

• Asynchronous in nature and therefore cannot be actively checked in a reliable manner

(e.g. SNMP traps, security alerts, etc.).

The only real difference between active and passive checks is that active checks are

initiated by Nagios, while passive checks are performed by external applications. Once an

external application has performed a service check (either actively or by having received a

synchronous event like an SNMP trap or security alert), it submits the results of the service

"check" to Nagios through the external command file. The next time Nagios processes the

contents of the external command file it will place the results of all passive service checks

into a queue for later processing. The same queue that is used for storing results from active

checks is also used to store the results of passive checks.

Nagios will periodically execute a service reaper event and scan the service check result

queue. Each service check result, regardless of whether the check was active or passive, is

processed in the same manner. The service check logic is exactly the same for both types of

checks. This provides a seamless method for handling both active and passive service check

results.

If an application that resides on the same host as Nagios sends passive service check

results, it simply writes the results directly to the external command file as it was outlined

above. However, applications on remote hosts cannot perform the same operation so easily.

Therefore, there is the NSCA add-on. This add-on allows remote hosts to send passive service

check results to the host that runs Nagios. The add-on consists of a daemon that runs on

Nagios hosts and a client that is executed from remote hosts. The daemon listens for

connections from remote clients, performs some basic validation on the submitted results, and

then writes the check results directly into the external command file (as described above).

The active checks are well suited for services that lend themselves to periodic checks

(availability of an FTP or web server, etc), whereas passive checks are used to handle

asynchronous events that occur at variable intervals (security alerts, etc.).

Indirect Service Check

Publicly accessible network services can be monitored directly using plug-ins, for

example, Web, POP, SMTP and FTP servers. However, there are "private" resources/services

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 75

like disk usage, processor load, etc. that are restricted to administrators. To monitor these

private resources, the Nagios framework supports Indirect Service Check. This approach

involves an intermediary agent, accessible via firewalls using secure protocols. That

intermediary agent operates on restricted hosts as an instance of Nagios Core Process

accessing locally exposed monitoring information.

Indirect checks are used for:

• Monitoring "local" resources (such as disk usage, processor load, etc.) on remote

hosts;

• Monitoring services and hosts behind firewalls;

• Obtaining more realistic results of checks of time-sensitive services between remote

hosts (i.e. ping response times between two remote hosts).

3.4.3 HP OPENVIEW

HP OpenView [12] is a supervision framework, which consists of several independent

products. Depending on the supervision requirements, these products can be integrated to a

powerful solution. These products are:

• IT operations (ITO);

• Node Manager;

• Performance Manager;

• Reporting;

• Etc.

ITO is a software application that provides central operations and problem management for

a multivendor, distributed, computing environment. ITO is event and message driven. An ITO

managed object typically supports some operations, for example, get value and reset, and is

able to emit unsolicited events (status change, error situation). Events which contain some sort

of text are called messages; those are the ones ITO is interested in. Messages may originate

from different sources and may have different formats. ITO message sources could be:

• Messages sent to the console

• Messages written to application log files

• SNMP traps sent by various applications

• Messages sent through scripts using the ITO open message interface

When a problem occurs or a threshold is reached in the computing environment, an ITO

managed object switches to a fault state. Typically, an error message is generated and fed to

ITO. Automated or operator-initiated actions can be defined for messages. Alternatively, ITO

can be configured to guide the operator to resolve problems by performing corrective actions.

Architecture:

ITO consists of a central management server in the form of a manager, which interacts

with intelligent software-agents installed on the managed systems (called nodes).

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 76

Management status information, messages, and monitoring values are collected from such

sources as system or application log files, SNMP traps, SNMP variables. Filters and

thresholds are applied, and the information is then converted into a standard format for

presentation to the central management server. Once the information is retrieved, ITO can

immediately initiate corrective actions, and provide individual guidance for problem

identification and further problem resolutions. Figure 16 illustrates this interaction model.

Managed
Nodes

1. Event Message

Managed
Nodes

Alarm

Management
Server

2. Action

Figure 16. ITO interaction model

All management information and associated records necessary for future analysis and audit

are stored in a central repository called the History Database. It allows the automation of

certain problem resolution processes.

More precisely, ITO software defines the following two high-level components:

• Management Server;

• Managed Nodes.

Below in the hierarchy, there exist the following components:

• Agents and sub-agents;

• Managers.

The agent and sub-agent are located on the managed nodes and are responsible for

generating messages, collecting and forwarding information, monitoring parameters.

The management software is located on the management server and communicates with,

controls and directs the agents. It stores the central database and runs the graphical user

interfaces.

The management server performs the central role of ITO. It collects data from managed

nodes, manages and re-groups messages, calls the appropriate agent to start actions or initiate

sessions on managed nodes, controls the history database for messages and performed actions,

forwards messages, installs ITO agent software on managed nodes, intercepts SNMP traps.

The communication between server and nodes is secured by the proprietary DCE

(Distributed Computing Environment) implementation. It provides distribution management,

as well as security services, standard for DCE.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 77

Integration capability:

Custom agents can be integrated into ITO, at different levels, through various interfaces with

the aim to provide diverse capabilities and advantages:

• Application Desktop integration – applications are registered within ITO and

represented by symbols in the application desktop window. Operators use these

symbols daily to start applications and resolve problems;

• Event Integrations – applications can write messages to log-files, use ITO API or send

SNMP traps in order to manage events through ITO;

• Action Integration – application start-ups can be incorporated into an automatic, or

operator initiated action;

• Monitor Integration – monitoring applications such as scripts, programs, programs

based on MIB variables can be started by ITO and use API to return values. The

monitored values can then be compared to threshold limits;

• ITO Developer's Toolkit – a C library providing a high-level API to the following

communication streams:

o Server Message Stream;

o Agent Message Stream;

o Legacy Link;

o Application Response;

o Message Event.

3.4.4 TIVOLI

The Tivoli Management Environment (TME) [11] is IBM products line which base

component is the Tivoli Management Environment Framework. Using the Tivoli Framework

and a combination of TME applications, it is possible to manage large distributed networks

with multiple operating systems, various network services, diverse system tasks and

constantly changing nodes and users.

The TME Framework provides a set of common services or features that are used by the

TME applications installed on the Framework. Examples of services provided by the

Framework are:

• The DHCP service;

• The Task library through which tasks can be created and executed on multiple

TME resources;

• A scheduler that makes it possible to schedule all TME operations including the

execution of tasks created in the TME Task library;

• The RDBMS interface module (RIM) that enables some TME applications to write

application specific information into relational databases;

• The query facility that allows search and retrieval of information from a relational

database.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 78

TME applications installed on the TME Framework are enabled to use the services

provided by the Framework.

TME provides centralised control of a distributed environment, which can include

mainframes, UNIX or NT workstations, and PCs. According to the TME architecture, all the

monitored entities (e.g. hosts) constitute Tivoli Management Region (TMR) that is managed

by the main TMR Server (see the next subsection for details). A single system administrator

can perform the following tasks for bunches of network systems:

• Manage user and group accounts;

• Deploy new or upgrade existing software;

• Maintain an inventory of the existing system configuration;

• Monitor the resources of systems either inside or outside the TME environment;

• Manage internet and intranet access and control;

• Manage third-party applications.

Architecture:

The TME Framework enables installation and creation of several management services

such as:

• TMR Server – It includes libraries, binaries, data files, and graphical user interface

necessary to install and manage a TME environment for the given TMR. TMR

servers maintain the TMR server database and co-ordinate all communications with

the TME managed nodes.

• Managed Node – A TME Managed Node runs the same software that runs on a

TMR Server. Managed nodes maintain their own databases, which can be accessed

by the TMR server. When managed nodes communicate directly with other

managed nodes, they perform the same communication or security operations

performed by the TMR Server. The primary difference between a TMR server and

a managed node is the size of the database.

• Endpoint gateway – An endpoint gateway controls all communications with and

operations on TME endpoints. A single gateway can support communications with

thousands of endpoints. A gateway can launch method on an endpoint or run

methods on the endpoint’s behalf. Created on an existing managed node, the

gateway is a proxy managed node that provides access to the endpoint methods and

provides communications with the TMR server that the endpoint occasionally

requires.

• Endpoint – An endpoint is a system that runs an endpoint service (daemon).

Typically, an endpoint is installed on a machine that is not used for daily

management operations. Endpoints run a very small amount of software and do not

maintain a database. The majority of systems in most TME installations are

endpoints.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 79

Managed
Node

Endpoint
Manager

Managed
Node

Managed
Node

Gateway Gateway

Gateway

TMR Server

Endpoints

Endpoints

Figure 17. TME Framework Nodes

As depicted in Figure 17, every TME framework installation begins with a TMR Server,

which is just a special case of a managed node with some additional responsibilities, such as

locating objects within the TME distributed database and performing authentication for

method invocations. For every method invocation, the TMR server must be contacted to

locate the object and authenticate the method invocation. In addition, the TMR server is the

point at which most of the inter-TMR communications take place.

TME provides a distributed environment on top of which a system management

application is run. This environment consists of one or more machines that perform operations

in a distributed and parallel fashion. Each machine in a TMR has a long-running service, or

daemon, called the oserv that communicates with other TME services, or daemons, on other

machines in a peer-to-peer based manner. An operation initiated on one machine may start

multiple operations on machines across the network, all running in parallel to complete their

portion of the overall task.

The configuration of TMRs and the location of file servers have a significant impact on the

performance of the TME installation. For example, if two sites are connected through a slow

line over which TME requests and operations are run, each site should then be a TMR and

have a local file server with the appropriate TME binaries. In this manner, the only traffic that

passes over the slow line between the sites are management requests, not large amounts of

data or requests for information from a remote TME server.

Due to the distributed architecture, it is important that the communications and network

function efficiently. The TME server speeds up error and timeout scenarios as well as ensures

reliable and accurate error handling and recovery (e.g. it can track machines that are

temporarily unavailable due to network problems).

TME provides a service called Multiplexed Distribution (Mdist) service to enable

synchronous distributions of large amounts of data to multiple targets in an enterprise. The

Mdist service is used by a number of TME applications, such as TME Software Distribution,

to maximise data throughput across large, complex networks.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 80

During the distribution of data to multiple targets, Mdist sets up a distribution tree of

communication channels from the source host to targets via repeaters. Mdist limits its own use

of the network, as configured through repeater parameters, to help prevent intense network

activity that can stress network bandwidth for periods of time.

There are fundamentally two types of network communication services available in TME,

with all the other communications using the TME Framework built on top of these two

communications services:

• Inter-Object Messaging (IOM): IOM represents a direct communication between

object implementations. Once two object implementations are running, they can

establish an IOM channel between them for the purpose of bulk data transfers. This

channel is preferred for bulk data transfers, since sending large amounts of data as

arguments to methods (via dispatcher) is slow and inefficient. An IOM channel

usually only lasts as long as it takes to transfer the data it was created to

accommodate. Examples of IOM usage are: software, profiles and tasks

distribution, file transfers between managed node files, TME database backups,

TME desktop (GUI) communications;

• Inter-dispatcher communication (objcall service): As the primary type of

communication in TME, the objcall service is used by all method invocations.

When two dispatchers communicate, inter-dispatcher connections are sustained: the

connection is not broken unless the network breaks it, or unless one of the

dispatchers is restarted.

3.5 ACADEMIC RESEARCHES

This section outlines current research projects in the domain of distributed supervision

systems. They are mainly aimed at application of distributed supervision in particular

domains, leaving supervision middleware problems apart. The following list outlines the

research projects which contributed to the distributed supervision subject:

ANDROID - The Active Distributed Open Infrastructure Development is an IST project

co-funded by the following academic partners: University College London (UK), National

Technical University of Athens (Greece) and Universidad Politecnica de Madrid (Spain). The

main outcome includes a manageable programmable infrastructure for active networks in the

context of IPv6. The following scientific problems were considered:

• Policy Based Resource Management [16];

• Integrity and Security of the Application Level Active Networks [17];

• Weakly Coupled Adaptive Gossip Protocols [18];

• Self-Organizing Resource Discovery Protocols [19];

• Adaptive Security Management [20].

AgentScape - Scalable Resource Management for Multi-Agent Systems. This project

provides a platform for large-scale agent systems, supports multiple code bases and operating

systems, and interoperability with other agent platforms. It was conducted by the Intelligent

Interactive Distributed Systems group of VRIJE Universiteit (Netherlands), which is headed

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 81

by professor Dr. Frances Braz. The project contributed to the following domains related to

distributed supervision:

• Agent Internet-Scale Management [21];

• Grid Management [22].

MANTRIP - The Management Testing and Reconfiguration of IP based networks project

is an example of Mobile Agent Technology (MAT) in the context of a Network Management.

The academic partners are National Technical University of Athens (Greece), University

College London (UK) and University of Surrey (UK). The contributions include:

• Automated Management of IP Networks [23];

• Mobile Agent Security Facility for Safe Configuration [24];

• Quality of Service Management [25].

OPENDREAMS - The “Open Distributed Reliable Environment architecture and

Middleware for Supervision” project intended to satisfy the needs of advanced Supervision

and Control Systems (SCSs) for the management of large equipment infrastructures such as

telecommunication networks, electricity and water distribution networks, large buildings, etc.

A Corba implementation was used as a backbone assuring interoperability and openness of

the platform architecture. Ecole Polytechnique Federale de Lausanne (Switzerland) and

Polytechnic of Milan (Italy) were the academic partners of the project. They contributed in the

following domains:

• Optimisation of object replication [26];

• Architecture for supervision and control systems [27];

• Real-Time CORBA [28].

This brief overview shows a lack of the researches devoted to supervision middleware

frameworks. This work is intended to fill in this gap.

3.6 ANALYSIS

The following table outlines a comparison of the parameters defined in the Requirements

section for the above-mentioned supervision standards.

Table 1 Distributed supervision standards comparison

Criteria: \

Standard:

ICMP SNMP JMX

Interoperability Full due to protocol

level implementation

Full due to protocol

level implementation

Full, since

implementation is for

Java platforms only

Portability TCP/IP networks UDP enabled

networks

Java enabled

platforms only

Flexibility Fixed number of

commands

Simple data types

only.

Float and compound

Java supports all

required types of data

including complex

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 82

types are not

supported

and compound ones

Intelligence No intelligence

support on protocol

level.

No intelligence

support on protocol

level.

All types of data can

be passed including

possible intelligence

parameters.

Reliability and

security

Reliable, no security

features

Reliable, the most

used SNMP v1 has

poor security.

Reliable, security

features are provided

for by Java services.

Ease of

development

Has stable standard

implementations for

all platforms

Has different APIs for

most of the languages:

C/C++, Java, etc. No

automatic agent

generation tools.

Has well defined

patterns for agent

development.

Ease of deployment Build-in Standard client/server

installation

Depending on use and

realisation, can be

build-in(Tomcat

server), stand alone or

can require

application server

installation

All this standards are reliable and have useful development facilities. However, network

management protocols have some flexibility and security constraints due to their dedication to

physical level of management. The only remarkable limitation of JMX is its devotion to Java

platform. This constraint could be possibly solved on Distributed Service Level, but,

unfortunately this level has not yet been well worked out.

The following table is intended to compare the current supervision frameworks.

Table 2 Supervision frameworks comparison

Criteria: \

Framework:

Unicenter

TNG

Nagios Tivoli OpenView

Interoperability Secured by

SNMP

Great, since the

communication

between agents

is in a text form.

However, the

agents should

run under Linux

only.

Only for

proprietary

Tivoli

components.

Secured by

SNMP.

Proprietary

DCE channel

has only C

interface.

Portability Multiple SNMP

APIs available.

Windows and

Linux platforms

All kind of

programming

languages

supporting text

output, but for

Linux platform

Windows and

Linux platforms

Multiple SNMP

APIs available.

Proprietary

DCE channel

has only C

interface.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 83

only. Windows and

Linux platforms

Flexibility The supported

data types are

limited by

SNMP

Only text data,

of a predefined

format, mainly

counters

All types of data

are supported

by proprietary

communication

mechanism.

However

custom agent

development is

difficult.

The supported

data types are

limited by

SNMP

Proprietary

DCE channel

supports all

types of data.

Intelligence Intelligence is

supported on

agent level.

There is no

mechanism to

pass additional

intelligence

parameters.

Intelligence is

supported on

agent level.

There is no

mechanism to

pass additional

intelligence

parameters.

Additional

intelligence

parameters can

be passed by the

Tivoli

communication

mechanism.

Additional

intelligence

parameters can

be passed by the

DCE only.

Reliability and

security

Reliable,

SNMP

dependent

security

Reliable,

Single host

architecture.

Security within

plug-ins

depends on

implementation

Reliable,

Security is

implemented on

a full scale.

Reliable,

Security is

provided only

for DCE

communication

channel, by its

services.

Ease of

development

Well

documented, no

automatic agent

generation tools

Well

documented, no

automatic agent

generation tools

no automatic

agent generation

tools, the

development is

complicated due

to proprietary

interfaces

Well

documented, no

automatic agent

generation tools

Ease of deployment Deployment

requires

sophisticated

customisation

Sophisticated

configuration

files, requires

web server

installation.

Deployment

requires

sophisticated

customisation

Deployment

requires

sophisticated

customisation

This table shows that the present supervision frameworks have several constraints

preventing them to solve the current industrial problems.

The Unicenter TNG major limitation is its usage of the SNMP for all inter-agent

communications, which makes it unusable for application supervision requiring compound

data transmission. Nagios has a limited portability and restricted message format for

communications between plug-ins and the core logic module. The Tivoli has a number of

services and agents for commercial standard applications, but its proprietary interfaces makes

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 84

it difficult to extend the system to a custom application supervision (PDR or DIS-RVM, in

this case).

The OpenView framework seems to be most suitable. However, it has a significant

disadvantage, i.e. support of APIs for the languages other than C is not provided.

3.7 CONCLUSIONS

To conclude one can point out that there exist various supervision standards that are used

in the commercial supervision systems like Tivoli (IBM), OpenView (Hewlett-Packard),

Unicenter TNG (Computer Associates). However, most of them have several common

constraints, which need to be overcome:

• proprietary interfaces;

• proprietary protocols;

• operating system dependent implementation;

• non-flexible architecture;

• obstinate dedication to a particular commercial application (Oracle, SAP, etc.);

• lack of portability and interoperability.

Although, these supervision systems use open standards (SNMP, JMX, Corba), the above-

mentioned constraints complicate integration with third-party monitoring tools to achieve

system control at all levels.

Hence, it is necessary to develop a new supervision middleware, which would overcome

these constraints on a new level.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 85

Chapter 4. CONCEPT AND IMPLEMENTATION

4.1 PROPOSED SOLUTION

As shown in the state of the art, the protocol based supervision architectures (ICMP,

SNMP) have most remarkable interoperability characteristics, i.e. their message format is

strictly fixed and they do not impose any limitations on a component implementation,

requiring only the protocol support. Consequently, their usage is independent from operating

systems and programming languages.

Their force is also their weakness. The strict message format makes it difficult and often

impossible to operate with a custom data necessary for modern supervision systems. The

network management protocols are inseparable from their transport protocols.

In contrast, the middleware based supervision frameworks like Tivoli or standards like

JMX can handle all types of data. However, they also have certain interoperability and

flexibility problems.

In the meantime, Web technologies provide with flexible means to build custom, XML

based protocols and portable transport mechanisms independent from network protocols (Web

Services). This permits to construct solutions that have flexibility in protocol and API.

As a solution this thesis proposes to combine Web technologies to build a supervision

middleware that would share advantages of protocol based architectures, i.e. operating

system and programming language independency and would provide a flexible and

customisable messaging protocol, as well as network portability.

The next section is intended to justify the choice of the Web technologies.

4.2 ANALYSIS OF MIDDLEWARE TECHNOLOGIES

The middleware domain has been developed for more than 20 years [3], [14]. The main

goal of the middleware is to hide complexity of distributed systems, in other words, to allow a

component to communicate with a distributed system in the same manner as with another

single, local component.

There are various middleware concepts that can be logically divided into several groups:

• Remote Procedure Call;

• Distributed Computing Environment;

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 86

• Object Oriented Middleware (Java RMI, DCOM, CORBA);

• Component Oriented Middleware (CORBA Component Model, Enterprise Java

Beans);

• Agent-Based Middleware (FIPA, ICM);

• Message Oriented Middleware (JMS, Message Queuing);

• Web Services (SOAP, Dot Net Framework, etc.).

This document does not provide a detailed survey of their architecture, which can be found

in multiple sources, like [3], [14], [15] and others. Instead, an analysis has been conducted to

find the most perspective ones, in regard to the declared requirements for supervision

middleware.

Portability and interoperability requirements, are the most difficult ones, and should

narrow the solution domain.

Portability is considered as a capability of middleware to run under different operating

systems, and over network protocols, in a seamless way. At the same time, interoperability is

considered as an ability of components to cooperate even if they run under different operating

systems and even if they are coded in different programming languages.

RPC has several implementations, like Cedar RPC and SUN RPC. Its strongest limitation

is dedication to procedural model, in this way, interoperability is also limited.

Java-based middleware [10] (Java RMI, Java Beans, Enterprise Java Beans, and Java

Message Service) has very portable implementations regarding operating systems, since they

all use Java Virtual Machine. However, they have a poor support for other programming

languages, even taking into account a possibility to use JNI (Java Native Invocation).

DCOM and .Net Framework [31] are developed to be run only under Microsoft Windows

platform. Although there are several open source projects to port .Net on Linux platforms,

they are still in an experimental phase. This shows their portability constraints.

FIPA-based agent middleware [32] has several architectural advantages, like well defined

autonomous components model, messaging protocol, etc, which can be reused by the

supervision systems. Nevertheless, its implementations have poor portability and

interoperability characteristics. That makes it difficult to use it in complex heterogeneous

systems.

Similarly to FIPA, Message Queuing frameworks are interesting due to their protocol-

oriented architecture. Meantime, their messaging protocol differs depending on

implementation. Therefore, interoperability is secured only for different components of a

single framework.

Contrarily, CORBA [30] and Web Services [42] rely on generic standard transport

protocols, GIOP and SOAP. They are quite portable and can operate over different network

protocols, like TCP, HTTP, or even FTP and SMTP. Therefore, different implementations of

these middleware are interoperable. The both involve component description languages (IDL

for CORBA and WSDL for Web Services), that makes it possible to implement components

on different programming languages.

CORBA has several advantages in comparison with Web Services. It is an enterprise-

focused middleware and provides multiple services:

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 87

• Naming Service provides an ability to bind a name to an object. It is similar to

other forms of directory service;

• Event Service supports asynchronous message-based communication among

objects. It also supports chaining of event channels, and a variety of

producer/consumer roles;

• Lifecycle Service defines conventions for creating, deleting, copying and moving

objects;

• Persistence Service provides a means for retaining and managing the persistent

state of objects;

• Transaction Service supports multiple transaction models, including mandatory

"flat" and optional "nested" transactions;

• Concurrency Service supports concurrent, coordinated access to objects from

multiple clients;

• Relationship Service supports the specification, creation and maintenance of

relationships among objects;

• Externalisation Service defines protocols and conventions for externalising and

internalising objects across processes and across ORBs.

In addition, Corba is more mature and has multiple implementations. It proved its

reliability for mission critical applications.

Web Services is a fast developing domain. It gained its popularity due to the usage of

XML-based protocols. These protocols are self-descriptive, which means that they can be

easily processed by both humans and computers. In addition, XML grammar is very flexible

and supports representation of complex data types and structures (enumerations, arrays, lists,

hash maps, choices, and sequences) that are required by the supervision systems. Therefore,

there are various toolkits implementing Web Services for more than 20 programming

languages, including scrip languages (PHP, Perl, etc) required for modern web application

management.

As for facilities, Web Services involves Directory Servers purposed to store service

location and description. Synchronous and asynchronous communication models are

supported. Multiple security mechanisms are available for transport and messaging protocols.

Besides, various tools for automatic source code generation are provided for different

programming languages.

This all makes CORBA and Web Services to be the most interesting candidates for the

supervision middleware to be based on.

Comparing these two technologies, CORBA, as many other traditional distributed

computing technologies, tightly couples the remote resource location to the client stub and

often requires end-to-end control of the network. On the contrary, Web Services have more

robust and transparent architecture, allowing resources (components) to discover each other

over wide area networks, which is often necessary for complex distributed applications (see

Introduction for examples). Additionally, Web-Service architecture is designed for

autonomous resources (components), which is one of the mandatory characteristics of

software agents used in supervision systems.

The following tables summarise the outlined properties of the middleware technologies in

regard to above-mentioned requirements.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 88

Technology: \

Criteria:

Portability Interoperability

RPC Limitated by procedural model. No interoperability between

implementations.

Java Middleware

(RMI, EJB, JMS)

Portable for all operating system

supporting Java Virtual Machine.

Java components only.

Microsoft

Middleware

(DCOM, .NET)

Limited to Windows platform. High Interoperability between

components written on different

programming languages

(Microsoft only).

FIPA Agent

middleware

Several implementations for

Linux, Windows and Java-

enabled platforms.

Lack of interoperability between

implementations.

MOM: Message

Queuing Systems

Several implementations for

different platforms.

Lack of interoperability between

implementations.

CORBA Several implementations for

different platforms and network

protocols.

Implementations are interoperable

due to GIOP.

Web Services Several implementations for

different platforms and network

protocols.

Messaging Protocol oriented

architecture, with standard

message format. The

Implementations are

interoperable. [51]

Criteria: \

Technology:

CORBA Web Services

General

Communication

Protocol

GIOP SOAP

Component

Description

Language

IDL WSDL

Communication

Mechanisms

Synchronous/Asynchronous

Asynchronous communication is

secured by Notification Service

Synchronous/Asynchronous

Directory Service Name Service Service Registry often secured by

UDDI service

Resource

distribution

Client subs should be tight to

remote resource

Designed for distribution over

wide area networks

Components

Autonomy

low high

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 89

Maturity +++++ ++

Taking into account all the properties of both technologies (CORBA and Web

Services), the present Ph. D. work intends to investigate applicability of Web

Technologies and, in particular, Web Services to Supervision Middleware domain.

The chapters below describe the proposed architecture in details. This description starts

with a basic overview of applicable Web technologies with the intention to introduce

conceptual aspects of the suggested architecture.

4.3 APPLICABLE WEB TECHNOLOGIES

4.3.1 XML

XML (eXtensible Markup Language) is descriptively identified in the XML 1.0 W3C

Recommendation [33] as a simple dialect (or 'subset') of SGML. Its goal "is to enable generic

SGML to be served, received and processed on the Web in the way that is now possible with

HTML". For this reason, "XML has been designed for ease of implementation and for

interoperability with both SGML and HTML."

XML is known to have helped to solve some difficult problems in data interchange, such

as data integrity. Data integrity can be ensured through schemas and validations, application-

specific business rules and internationalisation by requiring unicode in a variety of XML-

based languages, e.g. following ones:

• Web Services Conversation Language (WSCL);

• Web Services Description Language (WSDL);

• Web Services for Interactive Applications (WSIA);

• Web Services User Interface (WSUI) Initiative;

• Web Services for Remote Portals (WSRP);

• Web Services Experience Language (WSXL);

• Business Process Execution Language (BPEL) as successor of WSFL & XLANG.

XML is successful because it is a way to describe hierarchies. Anything that can be

represented in a tree can be represented in XML. XML is a simple, unambiguous meta-

language for describing arbitrarily complex, hierarchical relationships. The hierarchical data

description is well understood both in culture and development circles and XML can express

parent, child and sibling relationships, requiring little explanation, using any tag and any

language.

One of the main advantages of XML is that programmers can separate syntax (data

presentation in XML documents) and semantics (data structure), data storage (content of an

XML document) and data processing. The term "processing" means various ways of data use

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 90

in XML applications (data extraction, data change, data presentation in "human-readable"

form, etc.).

4.3.1.1 XML SYNTAX

XML document is the text file containing the set of markup tags.

Each element can have content (between the start <…> and end tag </…>) and attributes

(within the start-tag). While a single element can look like <…/> (<example/>).

To define tag sets, users must create a Document Type Definition (DTD) that formally

identifies (for the appropriate XML document): the elements, their attributes, the relationships

between the various elements. The DTD syntax is the part of the general XML standard (see

[33]).

XML is more than a language, it is a meta-language [34] in the following sense: different

user-defined DTDs establish different semantics over the set of well-formed XML documents.

4.3.1.2 XML SCHEMA VS. DTD

The XML DTD was specified in the XML 1.0 recommendation, published before

Namespaces in XML 1.0. The XML DTD ignores the notion of namespace and lacks the

flexibility necessary to support them in a simple way. The XML DTD is also a descendant of

the SGML DTD, which had been designed for document-oriented applications and lacks a

complete type system - a requirement for data oriented applications.

The W3C had a choice between updating the specification of the DTD and creating a new

specification; the committee chose to start anew.

In contrast to DTDs, schema documents are built in XML itself [35]. Validation using

schemas requires two documents: the schema document and the instance document.

The schema document is the document containing the structure and the instance document

is the document containing the actual XML data. The simplest way for an application to

determine the schema for an instance document is to use attributes and namespaces to point to

an external schema document (*.XSD file), instead of using DOCTYPE declaration to point

to an external DTD file.

XML Schema offers a powerful set of tools for defining acceptable document structures

and content. XML Schema is an alternative to DTDs as far as describing and validating of

data in an XML environment are concerned. In addition, it enables developers to create

precise descriptions with a richer set of data types – such as booleans, numbers, currencies,

dates and times essential for today’s applications.

Schemas are rather more powerful than DTD, but that power comes with substantial

complexity.

Nevertheless, the XML Schema approach provides much more capabilities than DTD does.

There are thirteen (13) kinds of components in all. The primary components, which may (type

definitions) or must (element and attribute declarations) have names are as follows: simple

type definitions, complex type definitions, attribute declarations, element declarations.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 91

Forty-two (42) simple types are defined as a part of the recommendation, including string,

int, date, decimal, boolean, timeDuration, and uriReference. One can also create new types

and data structures.

4.3.1.3 XML PROCESSOR (PARSER)

The next basic concept of XML technology is so called XML processor (or parser). The

point is that XML document itself is no more than a text file. The XML technology introduces

a concept of standard component (application) intended:

• to read and to examine (to parse) XML document in accordance with the rules of

XML syntax;

• to check for compliance with the structure defined in an appropriate DTD (if this

DTD is declared within the XML document).

If the XML document (and DTD) is compliant with syntax standard, namely:

1. an XML processing instruction identifying the version of XML being used,

the way in which it is encoded, and whether it references other files or not,

e.g. <?xml version="1.0" encoding="UTF 8" ?>;

2. the document is "fully-tagged" and consists of a root element, within which

all other mark-ups are nested,

then such a document is called well formed.

If, in addition, an XML document structure satisfies the given DTD or schema, then such a

document is called valid.

The aim of the XML processor is to check if the document processed is well formed and

valid.

There are two main kinds of XML processor: SAX (Simple API for XML) parser [36];

DOM (Document Object Model) parser [37].

In an event-based API like SAX, the parser sends events to a listener to process or ignore

them. While in a tree-based API like DOM, the parser builds a data tree in memory.

SAX analyses an XML stream as it goes by, much like a stream input.

The SAX API allows a developer to capture these events and act on them.

SAX processing involves the following steps:

• Create an event handler;

• Create a SAX parser;

• Assign an event handler to a parser;

• Parse a document by sending each event to a handler.

The advantages of this kind of processing are much like the advantages of streaming

media. In other words, analysis can get started immediately, rather than having to wait for all

of the data to be processed. Besides, because the application is simply examining the data as it

goes by, it does not need to store it in the memory. This is a huge advantage when it comes to

large documents. In general, SAX is also much faster than the other alternative, the DOM

parser.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 92

On the other hand, because the application is not storing the data in any way, it is

impossible to make changes to it using SAX, or to move "backward" in the data stream.

The Document Object Model is an API to process valid well-formed XML documents. It

defines a logical structure of documents and the way a document is accessed and manipulated.

In the DOM specification, the term "document" is used increasingly in a broad sense. XML is

used as a way of representing many different kinds of information that may be stored in

diverse systems and much of this would traditionally be seen as data rather than as

documents. Nevertheless, XML presents this data as documents and the DOM may be used to

manage this data.

As for the W3C specification, one important objective for the Document Object Model is

to provide a standard programming interface that can be used in a wide variety of

environments and applications. The DOM is designed to be used for any programming

language. In order to provide a precise, language-independent specification of the DOM

interfaces, it has been chosen to define the specifications in OMG IDL, as defined in the

CORBA 2.3.1 specification.

With the Document Object Model, programmers can build documents, navigate their

structure and add, modify or delete elements and content. Any information stored in an XML

document can be accessed, changed, deleted using this model.

DOM is a "traditional" way of handling XML data, by means of which data is loaded into

memory in a tree-like structure.

DOM, and by extension tree-based processing, has several advantages. First, as the tree is

persistent in memory, it can be modified. Hence, an application can make changes to the data

and the structure. It can also work its way up and down the tree any time, as opposed to the

stream handling of SAX. DOM can also be much simpler to use, than SAX.

On the other hand, there is a lot of overhead involved in building these trees in memory. It

is not unusual for large files to completely overrun a system's capacity. In addition, creating a

DOM tree for big XML documents can be a very slow process.

There exists a wide choice of different XML processor implementations in Java, C, Perl

and other programming languages. The list of the available free implementations may be

found on http://www.garshol.priv.no/download/xmltools/cat_ix.html#SC_XML (more then

30 items). In addition, the following table presents the best-known APIs.

API: \ Criteria: Prog.

Language

XML

version

XML

schema

support

Parsers Operating Systems

Xerces2 Java Java 1.0 1.0 SAX, DOM Java platforms

Xerces-C++ C++ 1.0 1.0 SAX, DOM Unix, Linux, Win32,

Mac OS, OS/390

Xalan-C++ C++ 1.0 1.0 SAX, DOM Unix, Linux, Win32

Xalan-J++ Java 1.0 1.0 SAX, DOM Java platforms

Microsoft XML

parser

Any

supporting

COM

interface

1.0 1.0 SAX, DOM Win32

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 93

SUN JAXP Java 1.0 1.0 SAX, DOM Java platforms

4.3.2 WEB SERVICES

The definition of a Web Service according to [42] is

“A Web service is an interface that describes a collection of operations that are network

accessible through standardised XML messaging. A Web service is described using a

standard, formal XML notion, called a service description. It covers all the details necessary

to interact with the service, including message formats (that detail the operations), transport

protocols and locations. The interface hides the implementation details of the service,

allowing it to be used independently of the hardware or software platform on which it is

implemented and also independently of the programming language in which it is written.”

The main properties of a Web Service are as follows:

• Language independent;

• Self describing;

• Communication by means of XML.

If applications are built on Web Services they consist very likely of multiple distributed

components that are loosely coupled and implemented in different languages. Web Service

components are not tightly connected to a specific application. However, they can be used in

multiple applications and can themselves employ other Web Service components for fulfilling

their task.

The web service architecture defines the three major roles:

• Service provider;

• Service registry;

• Service requestor.

A service provider hosts an implementation of the service. It defines a service description

that is published to a Service Registry. Service Requestors can query the service registry in

order to find a matching service. If such a service is located, the Service Requestor directly

calls the methods offered by the Web Service hosted by the Service Provider. The operations

and the involved protocols are shown in Figure 18.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 94

Directory
Server

Service Registry

Directory
Server

Service Registry

Service
Service Provides

Service
Service Provides

Client
Service Requestor

Client
Service Requestor

Service LookUp

Service List

Q
u

e
ry

R
e

s
p

o
n

s
e

SOAP-RPC
UDDI:
SOAP-RPC

Publish

WSDL

Figure 18. Roles within Web Service Architecture

The Service, also called Service Provider, is the platform that hosts the implemented Web

Service and offers it to the Service Requestors.

The Client, also referred to as Service Requestor, needs a specific functionality from a

third party. It uses the Service Registry to locate this service, and then employs the found

Service. The Service Requestor can be a client application of any kind or another service of a

higher complexity that uses another Web Service in order to fulfil its task.

The Directory Server plays role of a Service Registry. It is a searchable storage where

service providers publish their service descriptions. Service requestors find services and

obtain binding information in the service descriptions. This information is used during

development for static binding or during execution for dynamic binding.

For statically bound service requestors, the service registry is an optional role in the

architecture, because a service provider can send the description directly to service requestors.

Similarly, service requestors can obtain a service description from other sources besides a

service registry, such as a local file.

4.3.2.1 ARCHITECTURE OVERVIEW

The Web Service Protocol Stack is organised in multiple layers as depicted in Figure 19.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 95

Network Protocol

XML Protocol

Service Description

Service Publication

Service Discovery

Workflow

WSDL

SOAP,
XML-RPC,
Post

HTTP,
SMTP,
FTP

UDDI

WSFL,
XALAN,

BPEL4WS

Figure 19. Web Services Protocol Stack

The lowest layer, the network layer, offers basic transport functionality for messages sent

between entities. The protocol layer can be any network protocol, no matter stateless or

stateful, synchronous or asynchronous. This allows a wide range of well-established Internet

protocols to be used including the Hypertext Transfer Protocol (HTTP) and the Simple Mail

Transport Protocol (SMTP). On top of these protocols the Simple Object Access Protocol

(SOAP) builds the basis for a communication between distributed components. This protocol

enables other components and clients to execute methods on remote objects similar to the

Internet Inter ORB Protocol (IIOP) and the Simple Remote Method Protocol (SRMP) used by

CORBA and RMI. Another major aspect of the Web Service architecture is the service

description that enables dynamic binding to self-describing services. The service description

can be performed in the Web Service Description Language (WSDL). In order to obtain this

description another protocol is necessary for Service Discovery and Publication. The solution

used by Microsoft, IBM and others is the Universal Description, Discovery and Integration

Protocol (UDDI). However, in principle, other mechanisms such as publication of the WSDL

on a web server are also possible. With the above-presented protocol, a complete chain of

distributed components can communicate and realise complex workflows and applications.

In common practise, it often happens that complex services mutually cooperate with one

another. This cooperation is implemented using languages that describe orchestration between

simple and more complex services. The Web Services Flow Language (WSFL) or XLANG

serve as examples of such languages.

4.3.2.2 NETWORK LAYER

The base layer of the Web Services stack is the network. This layer can be implemented

using any number of existing network protocols such as SMTP, FTP, HTTP, RMI, IIOP or

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 96

others. One of the major advantages of the Web Service architecture is that the service

developers do not need to care about this underlying network protocol, as it is completely

transparent to the upper layers.

Despite a wide choice of network protocols that can be used, most Web Service

applications rely on HTTP. HTTP is widely deployed and is very likely the ideal choice for

Internet based applications. For applications with a limited audience for example within an

Intranet or specific requirements including security, performance and reliability other

protocols could be a better choice.

Hypertext Transfer Protocol (HTTP):

HTTP [46] is a simple stateless protocol that sends its request and response protocol data

units over TCP/IP. An HTTP client establishes a TCP connection with an HTTP Server

(usually port 80 is used). On this established connection, the HTTP client sends its HTTP

Request. The server sends back a response to the client on the same channel. Both the request

and response messages can contain arbitrary payload information, typically tagged with the

Content-Length and Content-Type HTTP headers. An example of an HTTP Request is shown

in Figure 20.

POST /foo HTTP/1.1

Host: 192.168.1.1

Content-Type: text/plain

Content-Length: 25

Example of a POST Request

Figure 20. Example of an HTTP Request

The HTTP header consists of a plain text. The payload is of the type specified in the

Content-Type section of the header. In the example the payload is also in the format of a plain

text. A potential answer must start with a return code indicating the type of result and

optionally additional information.

200 OK

Content-Type: text/plain

Content-Length: 21

Example of a Response

Figure 21. Example of an HTTP Response

As shown in Figure 21, a potential Response of the server in case of success could be

organised. A response contains also a header and optionally a content body. A Response starts

with a status code indicating the type of response and a descriptive text for this kind of

answer. Other examples for HTTP responses are shown in Figure 22 and Figure 23.

400 Bad Request

Content-Length: 0

Figure 22. Example of an HTTP Error Response

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 97

307 Temporary Moved

Location:

192.168.1.3/bar

Content-Length: 0

Figure 23. Example of an HTTP Redirect Response

4.3.2.3 XML PROTOCOL LAYER – SOAP

This layer is responsible for transport of method calls, its parameters and also the results of

operations. This layer is in most implementations of a Web Service stack realised by means of

the Simple Object Access Protocol (SOAP) (refer to [47]). The SOAP Protocol is expressed

using XML and defines within its specification how SOAP messages are transported using

HTTP and SMTP. Other mappings are subject to further development in the future.

SOAP offers different kinds of communication types between a service requestor and a

service provider. There exists a variety of client/server relations in a synchronous or

asynchronous ways. Moreover, one-way messaging (with no response) and notification (push-

style response) are also possible (Figure 24).

Client
Service Requestor

Client
Service Requestor

Service
Service Provider

Service
Service Provider

input

Client
Service Requestor

Client
Service Requestor

Service
Service Provider

Service
Service Provider

input

output

Client
Service Requestor

Client
Service Requestor

Service
Service Provider

Service
Service Provider

input

output

Client
Service Requestor

Client
Service Requestor

Service
Service Provider

Service
Service Provideroutput

One-Way

Request-Response

Solicit-Response

Notification

Figure 24. SOAP Communication Types

A SOAP message consists of several logical components. The Object Endpoint ID

uniquely identifies the destination of the request. The interface and method identifier

describes a method that should be called. The Extension Headers are headers of the SOAP

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 98

message and the Parameter DATA is the Body of the SOAP message. Figure 25 shows

mapping from logical components to a SOAP message transported via HTTP.

POST/objectURI HTTP/1.1

SOAP Envelope

SOAP Header

SOAP Method Name

Header 1

SOAP Body

Call Element

Object Endpoint ID

Interface Identifier

Method Identifier

Extention Header

Parameter Data

Figure 25. Logical Components of SOAP Message

As an example of a SOAP message, Figure 26 shows a message sent to a weather service

provided by Xmethods (http://www.xmethods.org), which hosts several Web Services for

public use. The weather service provide a temperature parameter for a location indentified by

a zip code (Weather-Temperature service). The following figures illustrate SOAP request and

response messages.

<?xml version=“1.0” encoding=“UTF-8” ?>
<SOAP-ENV: Envelope

xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:xsd=http://www.w3.org/2001/XMLSchema>

<SOAP-ENV:Body>
<ns1:getTemp

xmlns:ns1=“urnxmethods-Temperature”
SOAP-ENV:encodingStyle=http://schemas.xmlsoap.org/encoding/>

<zipcode xsi:type=“xsd:string”>10016</zipcode>
</ns1:getTemp>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Extension Header

Method Namespace

Parameter Data

Figure 26. Example of a SOAP Request message

<?xml version=“1.0” encoding=“UTF-8” ?>
<SOAP-ENV: Envelope

xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:xsd=http://www.w3.org/2001/XMLSchema>

<SOAP-ENV:Body>
<ns1:getTempResponse

xmlns:ns1=“urnxmethods-Temperature”
SOAP-ENV:encodingStyle=http://schemas.xmlsoap.org/encoding/>

<return xsi:type="xsd:float">68.0</return>
</ns1:getTempResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Extension Header

Method Namespace

Return Value

Figure 27. Example of a SOAP Response message

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 99

4.3.2.4 WEB SERVICE DESCRIPTION LANGUAGE (WSDL)

The Web Services Description Language (WSDL) [48] serves to explicitly define all

interfaces between a service provider (Web Service itself) and service requestors (Clients). A

service description in WSDL can be considered as a “communication” contract between these

two parties. It concerns the following important parameters:

• interface of a service, which is expressed through its public methods;

• data types for all message requests and responses;

• information about transport protocols;

• information for locating a specified service.

The WSDL definition is similar to a definition in CORBA Interface Description Language

(IDL). WSDL is also platform- and language independent and is used primarily (but not

limited to) to describe SOAP based services. Besides, WSDL allows a client to locate a

service and to invoke the public methods provided by its interface. Moreover, some of WSDL

aware toolkits allow execution of remote methods without writing any additional program

code.

The WSDL specification defines an XML grammar, which is divided into the following

major sections:

• definitions - The definitions element is the root element of a WSDL document. It

defines global elements for the service itself (e.g. the name of the service) and

declares the namespaces that will be used for the rest of the document;

• types - As part of the methods parameters or return values of methods, not only

simple data types can be used but also complex data types. This section contains a

description of these complex data types that may be referred to in other sections.

The WSDL is not limited by any specific typing system, but it is a common

practice to use the W3C XML Schema for this purpose;

• message - Within this section all request and response messages are described. For

each message, a separate element is required. A message contains at least the name

of the message and optionally message part elements. The message part elements

can refer to message parameters or message return values;

• portType -These elements group multiple message elements to one-way or round-

trip operations. Typically a portType defines more than one operation;

• binding - This section contains all the information necessary to specify the way

messages are transported over the network. Since WSDL was designed with SOAP

in mind, a special extension element service offers the possibility to specify SOAP

specific information;

• service – This block describes deployment properties of the Web Service.

In order to get a more detailed view on the elements of the WSDL specification, the

following section provides a WSDL definition for the Weather-Temperature example,

mentioned in the previous section (http://www.xmethods.org).

Figure 28 starts the description with a structure of WSDL definition in XML.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 100

<?xml version=“1.0” ?>
<definitions>

<types> This section describes custom types if any</types>
<message> Each message is describe between these tags </message>
<portType> This section defines service operation,

including pairs of input/output messages </portType>
<binding> This section declares communication paradigms,

including Extension Headers for each message</binding>
<service>This part describes service deployment parameters</service>

</definitions>

Figure 28. WSDL definition structure

Figure 29 depicts the definitions block for the Weather-Temperature example.

<definitions
name="TemperatureService"
targetNamespace="http://www.xmethods.net/sd/TemperatureService.wsdl"
xmlns:tns="http://www.xmethods.net/sd/TemperatureService.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/“>

…
</definitions>

Figure 29. WSDL:Example of a <definitions> block

The parameters of the <definitions> tag declare the name of the current service and

several namespaces that will be used throughout the rest of the WSDL document.

targetNamespace parameter defines the current namespace, thus all data (messages,

portTypes, bindings) defined in the document will belong to the

"http://www.xmethods.net/sd/TemperatureService.wsdl" namespace. xmlns:tns parameter

indicates a shortcut for the target namespace, hence all variables and types can be called using

the tns prefix. xmlns:xsd, xmlns:soap and xmlns are declarations of the main namespaces

indicating usage of XMLSchema, SOAP and WSDL.

The below example (Figure 30) defines different types of messages, including their

content. Here, the zipcode represent an input parameter whereas xsd:string type indicates

usage of a standard XML Schema type, which is an equivalent of the char* type in the ANSI

C notation. return has xsd:float type, which is a representation of the float type in the ANSI

C notation.

<message name="getTempRequest">
<part name="zipcode" type="xsd:string" />

</message>
<message name="getTempResponse">

<part name="return" type="xsd:float" />
</message>

Figure 30. WSDL:Example of a <message> block

In Figure 31, the portType block defines the main service operation getTemp, which is

defined by its input and output messages. Here, the tns: prefix in the message parameters

indicates that getTempRequest and getTempResponse are declared in the current document.

In addition, in this block, the messages are actually associated with input/output parameters.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 101

<portType name="TemperaturePortType">
<operation name="getTemp">

<input message="tns:getTempRequest" />
<output message="tns:getTempResponse" />

</operation>
</portType>

Figure 31. WSDL:Example of a <portType> block

The missing information concerns the means to invoke these methods using SOAP. This

specification is provided within the binding section (Figure 32).

<binding name="TemperatureBinding" type="tns:TemperaturePortType">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http" />
<operation name="getTemp">

<soap:operation soapAction="" />
<input>

<soap:body use="encoded"
namespace="urn:xmethods-Temperature"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

</input>
<output>

<soap:body use="encoded"
namespace="urn:xmethods-Temperature"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

</output>
</operation>

</binding>

Figure 32. WSDL:Example of a <binding> block

The binding section describes transport means (in this case Remote Procedure Call - RPC)

and for each operation, it defines additional information to be placed in the request/response

messages (compare with Figure 26 and Figure 27).

Finally, Figure 33 shows the parameters intended to facilitate the service location.

<service name="TemperatureService">
<documentation> Returns current temperature

in a given U.S. zipcode</documentation>
<port name="TemperaturePort" binding="tns:TemperatureBinding">

<soap:address location="http://services.xmethods.net:80/soap/servlet/rpcrouter" />
</port>

</service>

Figure 33. WSDL:Example of a <service> block

The service section lists deployment information and gives a readable description for the

service within <documentation> tags.

In order to simplify understanding of WSDL definitions, 3rd party companies provide

specialised tools. The most used one is XML Spy by ALTOVA (http://www.altova.com/).

This tool provides a diagram that depicts all major items of the WSDL document and their

interconnections in a useful form, as it is shown below in Figure 34.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 102

Figure 34. WSDL:XML Spy Diagram

This diagram will be used later in the thesis document to illustrate the proposed

architecture. In the meantime, complete description of designed services can be found in the

annex sections.

4.3.2.5 UNIVERSAL DESCRIPTION, DISCOVERY AND INTEGRATION (UDDI)

The Universal Description, Discovery and Integration (UDDI) specification is another

major part of the Web Service architecture. According to its name, the goal of UDDI is to

provide a system, which would enable users to find and publish Web Services [49].

It should be mentioned, that the term UDDI is actually used in two ways, i.e. specification

and implementation. Firstly, UDDI describes an XML-based format to store data and an API

to search and publish this data. Secondly, the UDDI (Business registry) is an existing

implementation of the UDDI specification, which was launched by IBM and Microsoft in

2001. The following description refers to the UDDI as a technical specification.

The UDDI consists of three parts:

• UDDI cloud service to provide synchronised implementations of the UDDI;

• UDDI data model to describe companies and web services;

• UDDI API to search and publish data.

UDDI cloud service: Searching existing web services requires registries to store

information about them. Although everyone can create his own, standalone registry, it would

be easier to use a centralised registry rather than perform searching in several storages for a

particular web service.

Therefore, UDDI cloud serves to provide a logically uniform, but physically distributed

registry, consisting of different nodes, which are synchronized automatically.

Hence, Microsoft and IBM promote UDDI Business registry in Version 1, while major

companies like HP, SAP or NTT prefer Version 2 of the same specification.

UDDI data model: This model determines a standard form to store and search for the

information. It is defined by an XML schema (http://uddi.org/schema/uddi_v3.xsd), which

describes the four main types of information:

• The business entity element includes some predominant information like its name,

address and most importantly a unique businessKey for a business entity structure.

Detailed information about services may be provided in the businessServices

element, which is a container for businessService structures;

• The businessService element contains information about a web service, like its

name, description or taxonomy codes. Each business service must have a unique

identifier called serviceKey. If a business service is not embedded inside a business

entity, it must refer to the businessKey of a business entity. In addition, the

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 103

business service contains a bindingTemplates structure, i.e. a container for zero or

more bindingTemplate elements;

• The bindingTemplate provides a more technical view of the service. Beside other

information, it describes an accessPoint of a service, i.e. an entry point of a web

service. Depending on the service, this could be an URL, an email address or even

a telephone number. Technical details are provided in the element called

tModelInstanceDetails, which is a simplified container for the tModel;

• The tModel structure represents a technical specification. Although the

requirements are very flexible (the tModel only must have a unique key, i.e. a

name, and can point to any kind of descriptions), it contains mostly a hyperlink to a

WSDL.

UDDI API: In the previous stage, the UDDI data model achieved describing of a web

service in a meaningful and systematic way, which is prerequisite for a successful searching.

Having described a web service, the major task is to provide this information to a consumer

that should be capable to search for it. Therefore, the UDDI API has two functional parts, i.e.

one for searching and requiring and the other for publishing.

The API functions are accessible via SOAP over HTTP. Although an inquiry call does not

require any authentication, publishing calls naturally ask for a user account, while being sent

via SSL. A detailed overview of supported methods can be found in [50].

As it was shown above, UDDI is a key element of an efficient web service infrastructure.

Its functionality is essential for web services, which interact automatically in a dynamically

changing environment.

4.3.2.6 BUSINESS PROCESS EXECUTION LANGUAGE FOR WEB SERVICES

(BPEL4WS)

BPEL provides an XML notation and semantics for specifying a business process

behaviour based on Web Services. A BPEL4WS process is defined in terms of its interactions

with partners. A partner may provide services to the process, require services from the

process, or participate in a two-way interaction with the process. Thus, BPEL orchestrates

Web Services by specifying the order in which it is meaningful to call a collection of services,

and by assigning responsibilities for each of the services to partners. One can use it to specify

both the public interfaces for the partners and to describe the executable process.

BPEL4WS represents a convergence of the ideas of the XLANG (Microsoft) and WSFL

(IBM) specifications. Both XLANG and WSFL are replaced by the BPEL4WS specification.

The first specification, v. 1.0, was published on 31 July 2002 by IBM, with the next

version 1.1 published on 05 May 2003.

In contrast to its predecessors, i.e. XLANG and WSFL, which were not adopted, BPEL

specification has very good perspectives to be accepted as a standard by the OASIS

consortium.

There exist already a number of implementations including IDE for visual BPEL

programming.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 104

4.3.2.7 PRODUCTS AND IMPLEMENTATIONS

There are many Web Services toolkits available for different programming languages. The

list below is a selection of existing toolkits, both commercial and open source products.

Product URL SOAP

Version

WSDL

Support

Language

GLUE http://www.themindelectric.com 1.1 Yes Java

SOAP::Lite http://www.soaplite.com 1.1 Yes Perl

nuSOAP http://www.nusoap.org 1.1 Yes PHP

IBM WSIF http://www.alphaworks.ibm.com/tech/wsif 1.1 Yes Java

axis http://xml.apache.org/axis/ 1.1 Yes Java

MS .NET http://www.gotdotnet.com 1.2 Yes VB, C#,

C++, Java

gSOAP http://www.cs.fsu.edu/~engelen/soap.html 1.2 Yes C/C++

Since the interoperability of these services is of a major concern to all the providers of

WebSevice and SOAP implementations, they agreed to conduct regular interoperability tests.

The results of these tests can be found in [51].

4.3.2.8 WEB SERVICES SECURITY

The W3C Web Services Architecture Requirements outline the following six important

security considerations for a comprehensive security framework:

1. Authentication, which guarantees that the service is accessible for anyone with a

verified identity;

2. Authorisation, which guarantees that the authenticated person has the right to

access the service or data;

3. Confidentiality, which guarantees that the data passed between a requester and a

provider is protected from eavesdroppers;

4. Integrity, which offers that the message was not modified in its path from a

requestor to a provider;

5. Non-repudiation, which guarantees that the sender of a message would not deny

that he/she has sent it previously;

6. Accessibility, which ensures that the service is always accessible and that it is not

affected by attacks, like denial-of-service (DoS), outside or inside of the system

hosting the service.

Nowadays, Web services security can be achieved at the following two levels:

• Security at the transport level. Security at the transport level uses the inbuilt

security features of transport technologies like HTTP Basic Authorization, HTTP

with secure socket layer (HTTPs), IBM WebSphere MQSeries, etc. ;

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 105

• Security at the SOAP or messaging level. This level is now a subject to an

extensive research with the specifications being developed by groups like W3C and

OASIS. They work upon usage of digital signatures, certificates, etc., at the XML

document level. In addition, their work concerns the way the standardised

framework includes XML-formatted security data into SOAP messages.

There are a lot of security-related activities going on in various standards organisations.

These are the most important ones:

• XML Digital Signature, a W3C/IETF activity hosted at the W3C. This group has

recently successfully defined an XML digital signature specification;

• XML Encryption, a W3C activity. This group has also completed its deliverable,

i.e. a definition of the way of encrypting (portions of) an XML document;

• XML Key Management, a W3C WG that is currently defining a specification, that

would allow clients to obtain crypto key information (keys, certificates, etc.) and to

perform key management such as initial registration, revocation, etc. The

requirements document is in the last call;

• OASIS Security Services TC develops SAML (Security Authorization Markup

Language). SAML is a framework for exchanging identification information; for

example, a trusted third-party (such as a PKI CA or a network login server) could

provide a signed set of assertions certifying someone’s identity. SAML is the basis

of the Liberty Alliance providing a single sign-on facility;

• OASIS Access Control Markup Language TC promotes XACML, which is a

framework for defining a set of privileges required to perform an operation,

including identity information and external factors (e.g. an access policy or the time

of the day). The XACML documents are also in the last call phase;

• OASIS Digital Signature Services TC is a new committee with the goal to define an

interface for a signature generation and verification service;

• OASIS Web Services Security TC is currently working on the WS-Security

document by IBM and Microsoft, which defines the way of signing of a SOAP

message. The group also intends to build a foundation for higher-level security

services, such as policy integration, automatic interoperability, etc…

In addition, the Web Services Interoperability Organisation works on a security profile to

ensure basic interoperability among vendors. IBM and Microsoft, along with other partners,

have issued a Security Roadmap [52] that includes seven new specifications.

Since the standards are mostly subject to a further development, the number of toolkits and

libraries available for developers is limited at the moment, reality that is beginning to change.

Major vendors such as IBM, Microsoft, Sun, and Verisign provide toolkits and products

supporting new and emerging standards. A number of relevant Java Specification Requests

(JSRs) were submitted to the Java Community Process (JCP) as well.

4.3.3 CONCLUSIONS

Taking into account the general requirements defined in the Introduction section, the Web

Services provide functionality covering the issues mentioned above:

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 106

• programming language independency;

• operating system independency;

• transparency on network protocol level;

• support of divers communication mechanisms: synchronous – request/response and

asynchronous – solicit response;

• available APIs and toolkits;

• automatic source code generation tools.

These characteristics are very interesting in the context of the supervision middleware.

Therefore, it was decided to investigate the Web Service applicability for supervision

systems. For this purpose, an attempt was made to develop an architecture based on Web

Services.

The following section describes in detail the proposed concept including a component

model and messaging protocol.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 107

4.4 PROPOSED ARCHITECTURE

While the technologies like WBEM concentrated on an information model expressed in

XML, this research focused on the transport and integration mechanisms. Having analysed the

Web technologies, we developed an architecture, which describes a supervision system in

terms of Web Services. Our hypothesis was that this approach would permit to build a highly

portable, interoperable and integrable infrastructure.

The work included:

• Determining of a general architecture: basic components and interactions between

them;

• Development of a communication protocol: messages and operations, message

format and data encoding;

• Determining of a transport mechanism.

This section explains the proposed architecture in details combining two approaches: UML

and Web Services. The UML class diagrams depict main components, their relations and

interfaces. Meanwhile the Web Services approach describes the components as services, i.e.

data types to define messages, operations that represent services as a collection of input and

output messages and transport for message delivery.

Considering the transport mechanism, our choice of SOAP was driven by the integrability

and interoperability requirements, since it is the most widely used protocol in the Web

Services. Describing the interfaces in UML, we resorted to an RPC notation of the operations,

which represents an interaction/operation as a call of a remote method.

The next section elaborates the Component Model of supervision systems, which was

briefly described in the Definitions section.

4.4.1 COMPONENTS AND OPERATIONS

The basic components of the distributed supervision system were determined in the

Definitions section. Beside the simple components (Supervisor and Delegate), a Compound

Agent should be identified to cover the situation when an agent combines properties of both

Supervisor and Delegate agents. In other words, a Compound agent serves as a Delegate

(Supervised Entity) for one group of agents and represents a Supervisor for another group. For

example, a Repository can be used for persistent storing of the monitoring data. This

Repository agent implements the Supervisor paradigm for agents that store their monitored

parameters in it. At the same time, it implements Delegate paradigm to provide remote

supervisors with the monitoring history. Thus, the Supervisor “delegates” its authority to a

Compound Agent to provide supervision functionalities on a required group of agents. Figure

35 illustrates the Compound Agent concept.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 108

Delegate Supervisor

Compound Agent

delegatedelegate

DelegateSupervisor

Figure 35. Compound Agent

In addition, working with multiple agents requires a discovery service. This service can be

implemented by introducing a Directory Server – Common Object Repository (CORE)

component. Hence, agents will store their capabilities, location and properties in a central site.

For this purpose, additional operations are required:

• Register agent information;

• Discover an agent by a reference (location, functionality provided, etc.).

On the basis of these characteristics, relations between the component interfaces are

identified, as depicted in Figure 36.

publishes, d iscovers

delegates

uses

supervisesinterface

SupervisorAgent

interface

Core

interface

DelegateAgent

interface

Agent

interface

CompoundAgent

interface

Repository

interface

Component

interface

SupervisedEntity

interface

SupervisionConsole

interface

ConsoleOperator

Figure 36. Component Interface Relations – UML Class Diagram

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 109

According to this diagram, Agent and Core classes inherit Component interface, in their

turn, Supervisor and Delegate classes inherit Agent interface. Compound Agent class, as it

was mentioned before, inherits both Supervisor and Delegate interfaces. Besides, Console

Operator, i.e. administrator, uses Supervision console plugged to a Supervisor Agent.

“Supervise” operations are defined depending on the interface of a Supervised Entity.

As for “delegate” operations, according to the requirements and the state of the art, one can

point out that a distributed supervision system should support the following operations

between a Supervisor and a Delegate:

• Query for supervision information;

• Request for command execution;

• Subscribe for an event;

• Response containing supervision information or a command execution return

code;

• Response on an event.

Supervisor
(agent)

Supervised Entity

Console (plug-in)Console (plug-in)

Delegate (agent)

CORE:
Directory

Server

CORE:
Directory

Server

In
te

rf
a
ce

M
a
n
a
g
e
m

e
n
t

L
o
g
ic

H
M

I Management
Facilities

2. Discover Agent

1.
 R

eg
ist

er

3. Agent List

4
.
Q

u
e
ry

 o
r

E
x
e
cu

te
 C

o
m

m
a
n
d

5
.
R
e
sp

o
n
se

6
.S

u
b
sc

ri
b
e

7
.
R
e
sp

o
n
se

O
n
E
v
e
n
t

Figure 37. Agents’ Life-Cycle.

Taking into account all the operations, an agents’ life-cycle (Figure 37) is presented as

follows:

• Initialisation (1,2,3 in Figure 37):

o Delegate registers its properties on the CORE;

o Supervisor discovers a list of agents corresponding to its needs.

• Functioning(4,5,6,7 in Figure 37):

o Query for information:

▪ Supervisor queries a particular agent for supervision information;

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 110

▪ Delegate returns supervised parameters values.

o Subscribe for information:

▪ Supervisor subscribes for an agent event (status change, out of

boundaries, etc.);

▪ On event, Delegate returns supervised parameters values.

o Perform action:

▪ Supervisor requests Delegate for a command execution;

▪ Delegate returns the acquired code after the command execution.

The next section thoroughly describes component interactions.

4.4.2 COMPONENT INTERACTIONS

Initialisation and functioning interactions mentioned above are described hereafter in

detail.

For the initialisation process, the Core supports several operations. Three of them, register,

update registration and unregister, are dedicated to keep the agent information up to date in

Directory Server. Meanwhile, the search operation is purposed for an agent discovery.

The following two figures (Figure 38 and Figure 39) show sequences of initialisation

operations.

CoreDelegateAgent

3: unregister

2: updateRegistration

1: component id:=register

Figure 38. Delegate-Core Interactions – UML Sequence Diagram

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 111

CoreSupervisorAgent

2: search

4: unregister

3: updateRegistration

1: component id:=register

Figure 39. Supervisor-Core Interactions – UML Sequence Diagram

During the first operation, i.e. “register”, agents send their identification information to

the Core and receive a unique Id. The identification information consists of:

• Agent location: it is an agent URL and, possibly, a place of the agent in a

directory, i.e. custom information, like business unit or department this agent

belongs to;

• Agent type: Delegate, Supervisor, Compound Agent;

• Supported supervision operations:

o Query/Response: This field defines a format of query and response

messages for each monitored parameter supporting this operation;

o Subscribe for an event: This field defines a format of subscribe and

“response on event” messages for each monitored parameter supporting this

operation;

o Perform: This field defines a format of the request for command execution,

as well as format of the response containing command return code.

• Custom identification information: This section can contain some custom

information, like agent dependencies, periodic events intervals, etc.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 112

On “update registration” request, an agent may update its identification information,

leaving its id, assigned by Core, unchanged. The “unregister” request removes the agent

information from the Directory Server.

As for agent functioning, Figure 40 and Figure 41 depict the supervision operation

interactions.

All interactions start with agents “handshake” (steps 1-2 in both figures), when they

identify each other by the Agent Information mentioned above. On this step, agents verify

their security certificates to decide whether to grant an access to their capabilities. It is an

administrator’s responsibility to set-up proper security policies for the supervision system

components. After this, acquisition of monitoring data and command perform processes can

be started.

mSupervisorAgent mDelegateAgent

2: requestComponentInformation

5:*[on event][subscribed] acceptMonitoringMessage

4:*[periodically][subscribed] acceptMonitoringMessage

1: requestComponentInformation

7: response:=query

6: unsubscribe

3: subscribe

Figure 40. Supervisor-Delegate Interactions – UML Sequence Diagram

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 113

Monitoring data acquisition can be achieved in a synchronous or an asynchronous manner.

A Supervisor can query (Figure 40 - 7) for necessary monitoring information. A Delegate

checks the monitored parameter right on request and returns the information to the

Supervisor.

“On subscription” interaction starts with a subscription request (Figure 40 - 3). Then

periodically or upon event, the Delegate sends monitoring information.

cSupervisorAgent cDelegateAgent

1: requestComponentInformation

3: status:=perform

2: requestComponentInformation

Figure 41. Supervisor-Delegate Perform Interactions – UML Sequence Diagram

In the meantime, the “perform” interaction occurs always in synchronous manner. A

Supervisor requests a Delegate for command execution and waits for a command return code.

The following section defines the component interfaces securing the described operations

in case this architecture is mapped to Web Services.

4.4.3 COMPONENT INTERFACES

Web Services concept assumes that each communication operation is supported by the

corresponding Service, which is a remote method (SOAP-RPC terminology [47]). The

following diagram (Figure 42) illustrates methods that secure operations for each component

of the architecture.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 114

interface
Component

getComponentInformation

interface
Agent

interface
Supervisor

interface
MDelegate

query
subscribe
unsubscribe

interface
CDelegate

perform

interface
MSupervisor

acceptMonitoringMessage

interface
CSupervisor

interface
Core

register
unregister
updateRegistration
findAgentsBySiteId
findAgentsBySupervisionMessageType
findAgentByComponentId
getSiteList

interface
Delegate

getSupervisionParameters

interface
Component

getComponentInformation

interface
Agent

interface
Supervisor

interface
MDelegate

query
subscribe
unsubscribe

interface
CDelegate

perform

interface
MSupervisor

acceptMonitoringMessage

interface
CSupervisor

interface
Core

register
unregister
updateRegistration
findAgentsBySiteId
findAgentsBySupervisionMessageType
findAgentByComponentId
getSiteList

interface
Delegate

getSupervisionParameters

Figure 42. Component Hierarchy and Interfaces – UML Class Diagram

This diagram shows that the Core and the Agent inherit a Component interface, which has

the only one method getComponentInformation. This method is used for mutual

identification of components, for example, in a “handshake” operation. The Core has several

methods for storing agent information and agent discovery. Registration operation is secured

by register, unregister, and update registration methods described earlier. In the meantime,

agent discovery operation is represented by several find methods. These methods allow

searching for agent information stored in the Core. This information corresponds to

identification information registered by agents themselves (will be addressed later).

The Supervisor and the Delegate extend the Agent interface. While the Supervisor has no

general methods, the Delegate has getSupervisionParameters method, which is purposed to

return types of supported supervision operations. This method can be used by a Supervisor to

discover Delegate’s capabilities.

The Control, Monitor Supervisor and Delegate (CSupervisor, MSupervisor, MDelegate

and CDelegate) are subclasses of the Supervisor and the Delegate, which support control and

monitor operations. The Monitor Supervisor supports acceptMonitoringMessage method,

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 115

which is required for asynchronous communication, in case a Delegate responds eventually to

a Supervisor. The Monitoring Delegate has several methods required for monitoring

operations. The query method is used for a monitoring information request, while the

subscribe/unsubscribe methods are used to subscribe to or resign from a given event.

The Control Supervisor is always originator of the request for a command execution.

Hence, it has no methods for the control operation. Contrarily, the Control Delegate, as a

service provider, has the perform method.

These methods are a transport mechanism for a messaging protocol. Incoming messages

are passed as parameters of the methods, while response messages are passed as return values

of these methods.

The following section describes the messaging protocol.

4.4.4 MESSAGES

A basic data communication unit is a Message. In this architecture, messages are classified

in two types: supervision and service messages. The Message hierarchy is depicted in Figure

43 below.

MessageMessage

Supervision MessageSupervision Message Service MessageService Message

Monitoring MessageMonitoring Message Control MessageControl Message

Figure 43. Message Hierarchy – UML Class Diagram

Supervision messages are data unites involved into monitoring data acquisition and into

requests for execution operations. Accordingly, monitoring and control messages are intended

to represent monitoring and control functions. Thus, these messages are involved only into

communication between a Supervisor and a Delegate for the following operations:

• Monitoring:

o Query/Response;

o Subscribe/Response on Event.

• Control:

o Perform Command execution.

A distinctive feature of these messages is that their contents are customised by developers

to meet specific supervision goals.

The Service messages are used for “service” operations, a group of operations required for

agent identification, discovery and “handshake”, as follows hereafter:

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 116

• Registration;

• Agent discovery;

• Component information exchange.

In addition, Service Fault messages belong to the type of service ones. These messages are

generated during communication in the result of a system error. Service Faults indicate that

the incoming message could not be processed due to some reasons, which are identified inside

of the message (i.e. malformed message, database error, etc). Service Faults are defined for

each operation and discussed later.

The service operations can be performed automatically, since Component Identification

information is defined similarly for all kinds of agents. Although the message format is fixed,

the encoding supports additional fields to allow message customisation.

The message structure is encoded using XML schema, that allows to validate resulting

XML document (message) using its schema. This topic will be addressed later in the next

chapter. XML does not impose specific requirements on the message format. However, a

common practice is to divide message content into Service Information (Header) and Payload

(Body) blocks. This structure is presented below in Figure 44.

1..*

Message

header
body

BodyHeader

HeaderBlock

Mandatory HeaderBlock

sourceComponentId
destinationComponentId
timestamp
category

Figure 44. Message Structure – UML Class Diagram

The message can contain multiple header blocks including the mandatory one. The

mandatory block consists of a small number of fields required for message identification,

while additional headers can contain custom identification information like security signatures

or others.

The minimum message identification information contains the following fields:

• sourceComponentId: A unique ID of the component from which the message

originated;

• destinationComponentId: A unique ID of the component for which the message is

destined;

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 117

• timestamp: A timestamp of message generation in UTC format;

• category: A message category that can be “monitoring”, “control” or “service”.

The Body block differs depending on the message category.

As depicted in Figure 45, the Supervision Message Body contains supervision information

type and payload fields. These fields are fully customisable and are dedicated to reflect user

needs concerning transition of some specific information. Payload type is defined by an agent

developer, as well as a payload block.

HeaderBlock

sourceComponentId

destinationComponentId

timestamp

category

SupervisionMessageBody

type

payload

Body

SupervisionMessage

header

body

Figure 45. Supervision Message Structure – UML Class Diagram

The Payload type is defined by an agent developer, as well as a payload block structure.

Although developers are invited to use XML schema for blocks definition, these blocks may

be fully customised, according to developers’ needs and can contain any binary data. In this

case, binary data handlers should be developed for both Supervisor and Delegate sides.

Service message structure, depicted in Figure 46, is similar to the one of a Supervision

message.

HeaderBlock

sourceComponentId

destinationComponentId

timestamp

category

ServiceMessageBody

operation

parameters

Body

Service Message

header

body

Figure 46. Service Message Structure – UML Class Diagram

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 118

The Service Message Body content is divided into two parts: Operation type and

Parameters to be passed. Operation types have been described above, while Parameters for

each operation will be outlined in the next section.

4.4.5 OPERATIONS – SERVICES ENCODING

The architecture supports various encoding types. In order to build a supervision

framework for industrial application supervision (see Introduction), an XML based encoding

has been developed to represent the above-mentioned system operations and messages.

The idea of this thesis is to map the proposed architecture to the Web Services concept. In

this case, all the described operations should be represented as services. Therefore, the

operation definitions should be encoded using Web Service Description Language (WSDL)

[48], that is a standard mechanism to describe a service interface. This description can be

helpful in automatic generation of an agent source code.

The operations, as well as service methods, were outlined in the previous sections. The

following sections are purposed to define in detail the involved operations by means of

WSDL.

Each service is bound to a corresponding operation and a transport mechanism. In the

present encoding, it was chosen to use rpc (SOAP-RPC) in the function of a transport

mechanism. The SOAP-RPC is the most widely supported communication model in Web

Services.

The operations are defined by their input, output and fault messages. This data will be

described later, after presentation of services.

4.4.5.1 CORE SERVICES

As it was described earlier, the Core provides the following services, depicted in Figure 47:

• register;

• unregister;

• updateRegistration;

• getSiteList;

• find.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 119

Figure 47. Core Services Definition – XMLSpy WSDL Diagram

“Register” operation takes agent information as a parameter and returns an agent identifier.

In case of an error, it returns a Registration Fault.

“Unregister” operation requires an agent identifier that allows the Core to release a

database entry.

“UpdateRegistration” operation deals with agent information entry to update the Core.

“GetSiteList” operation is specific for the chosen architecture implementation. Agent

Identifier (described later) is a compound value, containing identifier of a “site” and “owner”.

These characteristics are logical parameters to set up a hierarchy between agents.

“GetSiteList” operation returns a list of “sites” for a given “owner”.

“Find” operation is purposed to locate agents specified by a set of properties

(AgentProperty). These properties are part of the agent information definition.

For detailed information please refer to the annex section 9.1.

4.4.5.2 DELEGATE SERVICES

Figure 48 shows a general case of a Delegate.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 120

Figure 48. Delegate Services Definition – XMLSpy WSDL Diagram

The Delegate provides the following services:

• getAgentInfo service is used for an agent “handshake” mechanism, allowing the

agents to discover each other;

• query secures synchronous communication model (Query/Response mechanism);

• subscribe provides a mechanism for a Supervisor to express its interest in a

particular supervised parameter or event (part of an asynchronous communication

model);

• unsubscribe allows a Supervisor to resign a subscription;

• perform represents a control mechanism, allowing a Supervisor to command a

Delegate.

Communication messages contain the two main types of data: MultipleRequest and

MultipleResponse. They represent a general form of a supervision parameter. That includes a

capability to request and to pass a parameter with possibly multiple and nested entries. For

example, in a request one can define a necessary parameter using several values: “Give me a

disk load of the disk C: of host XXX of network YYY”. This concept is described later in

the Encoding section.

For further details concerning the Delegate services definition, please refer to the annex

section 9.2.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 121

4.4.5.3 SUPERVISOR SERVICES

The Supervisor supports only two services for communication with the environment

(Figure 49):

• getAgentInfo provides the same information as described for a Delegate;

• acceptMonitoringMessage allows a Delegate to asynchronously return values to

the Supervisor. This service requires “MultipleResponse” parameter, similar to the

value returned by the Query operation of a Delegate.

Figure 49. Supervisor Services Definition – XMLSpy WSDL Diagram

Detailed information about service definitions can be found in the annex, section 9.3.

The next section presents information that is exchanged between the components.

4.4.6 INFORMATION ENCODING

The messages are the only data entities exchanged in the supervision system. They are

composed of the header and body blocks. The header block is purposed to identify the

message. Although developers can customise this information, the MandatoryHeaderBlock is

required by the supervision system. The body block differs depending to the type of a

message: service or supervision. The service messages are fixed, while the supervision ones

are defined in a general way. The supervision messages need to be customised by the

developers.

In addition, the system data model can be easily changed overriding the basic types.

The message description starts with identification of the Mandatory Header Block.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 122

4.4.6.1 MANDATORY HEADER BLOCK

As described earlier, each message contains the Mandatory Header Block. Its data fields

are defined, as follows:

Name Type in XML schema Description

sourceComponentId ComponentId ID of the component from which

the message originated

destinationComponentId ComponentId ID of the component for which the

message is destined

timestamp xsd:long Timestamp of message generation

in UTC format; number of

milliseconds since January 1,

1970, 00:00:00 UTC

category xsd:string Message category: monitoring,

control or service.

In XML Schema language, this block can be defined, as follows:

 <xsd:complexType name="MandatoryHeaderBlock">

 <xsd:sequence>

 <xsd:element name="sourceComponentId" type="ComponentId"/>

 <xsd:element name="destinationComponentId" type="ComponentId"/>

 <xsd:element name="timestamp" type="xsd:long"/>

 </xsd:sequence>

</xsd:complexType>

In this definition the ComponentId type represents a component identifier, which is

described in the next section.

4.4.6.2 COMPONENT IDENTIFICATION

The Core and each agent have unique identifiers that are called Component Ids. This id is

purposed to establish a logical hierarchy within the agent group. Besides, this id is used, as

one of the criteria to locate a needed agent. It was decided to present the structure of this id, as

follows:

<Component Id> = <Core Id>.<Owner Id>.<Site Id>.<Agent Id>

All ids are string values that uniquely identify some aspects of agent distribution.

Core Id identifies the Core (Directory Server) of the supervision system. In order to

participate in particular supervision system installation, an Agent should be registered within

the Core of this system. For that purpose, each Agent should be aware about the Core host

address. Supervision System Administrator is supposed to set this address during the agent

deployment. Default Core Id value is “0”, which is set on the agents that have never been

registered (communicated with CORE).

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 123

Owner Id is intended to identify the owner of the component. The concrete semantics

depends on a given deployment model. Usually, the owner will correspond to a business unit

or a client in multi-client installations, like regions and nodes in the Tivoli framework. For

example, IBM Corporation has several supervised sites (groups of resources), in this case

Owner Id can be set to “IBM Corp”, etc. “0” value signifies that the owner Id is not

applicable.

Site Id is allocated to each site, group of supervised resources linked logically (i.e. Oracle

Server host, Distributed Simulation group of hosts). Based on a certain criteria, the

components can be logically grouped into collections referred to as sites, e.g. collections of

components belonging to the same security domain or being physically co-located. The

semantics depends on a given supervision model and is responsibility of Supervision System

Administrator. “0” value corresponds to the cases when site Id is not applicable (e.g. when

single-site installation is chosen).

Agent Id is unique for each Agent, which is automatically generated by the Core when a

component registers within the supervision system. “0” value corresponds to the cases when

Agent Id is not registered on the Core.

Agents should use “0.0.0.0” as a component Id, in case of referencing the default core.

Using XML schema, component id is defined, as follows:

 <xs:complexType name="ComponentId">

 <xs:sequence>

 <xs:element name="coreId" type="xsd:string"/>

 <xs:element name="ownerId" type="xsd:string"/>

 <xs:element name="siteId" type="xsd:string"/>

 <xs:element name="agentId" type="xsd:string"/>

 </xs:sequence>

 </xs:complexType>

The next section describes another important data entity, i.e. information about an agent.

4.4.6.3 AGENT INFORMATION

Defining the agent in WSDL is not explicit, since it defines the component in general,

leaving developing of supervision operations to a user. In addition, supervision system

functioning requires detailed information about agent and its capabilities. The supervisors

should be able to locate the right agent. That is why, almost all service operations, including

registration and discovery, require transmission of information specifying the agent. This

information comprises the following agent characteristics:

• Component Id described earlier;

• Location: URL to the agent services;

• Type: Delegate or Supervisor;

• Name: for example, “Linux System Monitoring Agent”;

• Description: a textual information about the agent, for example, its limitations;

• Supported Monitor and Control operations. For example, they can be

“Query/Response”, “Subscribe/ResponseOnEvent” or “Perform”;

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 124

• Availability: whether the agent is on and running;

• Definition of the Monitoring/Control operations: XML schema defining the

Monitoring/Control operations, including Interaction Models (Query/Response,

Subscribe/ResponseOnEvent, Perform) for each operation.

The following diagram illustrates agent information structure:

Figure 50. Agent Information Structure – XMLSpy XSD Diagram

In the form of an XML schema, this definition is presented as follows:

 <xs:complexType name="AgentInfo">
 <xs:annotation>
 <xs:documentation>Agent Information</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="description" type="xs:string"/>
 <xs:element name="componentId" type="sup:ComponentId"/>
 <xs:element name="url" type="xs:anyURI"/>
 <xs:element name="availability" type="xs:boolean"/>
 <xs:element name="agentType" type="sup:AgentType"/>
 <xs:element name="operations">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:sequence>
 <xs:element name="opDefinitionLocation" type="xs:anyURI"/>
 </xs:sequence>
 <xs:sequence>
 <xs:element name="opDefinition" type="sup:SupOperationDefinition"/>
 </xs:sequence>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 125

Where AgentType and operations are defined hereafter.

AgentType: Agent type can be both Supervisor and Delegate. Compound Agents possess

these two types simultaneously. Therefore the schema is as follows:

 <xs:complexType name="AgentType">
 <xs:annotation>
 <xs:documentation>Type of Agent</xs:documentation>
 </xs:annotation>
 <xs:choice>
 <xs:choice>
 <xs:element name="supervisor" type="SupervisorAgentType"/>
 <xs:element name="delegate" type="DelegateAgentType"/>
 </xs:choice>
 <xs:sequence>
 <xs:element name="supervisor" type="SupervisorAgentType"/>
 <xs:element name="delegate" type="DelegateAgentType"/>
 </xs:sequence>
 </xs:choice>
 </xs:complexType>

Operations: Each agent should explicitly define its operations, which are services, in

terms of Web Services. Therefore the operations are defined in wsdl format, and location of

these wsdl descriptions is necessary for agent information:

 <xs:element name="operations">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:sequence>
 <xs:element name="opDefinitionLocation" type="xs:anyURI"/>
 </xs:sequence>
 <xs:sequence>
 <xs:element name="opDefinition" type="sup:SupOperationDefinition"/>
 </xs:sequence>
 </xs:choice>
 </xs:complexType>

Example: The following example shows possible agent information in XML format:

<?xml version="1.0" encoding="UTF-8"?>
<agentInformation xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="D:\andrey\thesis\concept.xsd">
 <name> System Agent for Free Disk Space Check</name>
 <description>System Agent for disk space monitoring</description>
 <componentId>
 <coreId>MainCore</coreId>
 <ownerId>EADS</ownerId>
 <siteId>DISdepartment</siteId>
 <agentId>SystemAgentOnKing</agentId>
 </componentId>
 <url>http://eads.com/SystemAgent</url>
 <availability>1</availability>
 <agentType>
 <supervisor>Supervisor</supervisor>
 </agentType>
 <operations>
 <definitionLocation>http://eads.com/SystemAgent/diskEx.xsd/opDef</definitionLocation>
 </operations>
</agentInformation>

A more detailed definition of the Agent Information structure (AgentInfo) can be found in

the annex, section 9.4.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 126

4.4.6.4 SUPERVISION OPERATION ENCODING

The Supervision operations include monitoring information acquisition and command

execution. These operations are not defined by the WSDL and should be customised for each

agent type. In a general form, the operation definition is depicted in Figure 51:

Figure 51. Supervision Operation Definition – XMLSpy XSD Diagram

Each supervision operation is characterised by its input/output parameters, operation faults

and interaction models implemented for this operation. Although, all these parameters are

defined by the developers of each particular agent, a generic form of request/response

parameters is described in the nest section.

SchemaLocation field is used to indicate the schema, which describes input parameters,

while “namespace” field is provided to eventually distinguish parameters with the same name.

In addition, developers can define a list of faults that are used to signal about an illegal

state of an operation.

As it was mentioned earlier, the interaction models can be “Query/Response”,

“Subscribe/ResponseOnEvent” or “Perform”. They define which agent method (Web Service)

is used for operation processing. These methods may be “query”,

“acceptMonitoringMessage” or “perform”.

More detailed information about the Supervision Operation Definition structure

(SupOperationDefinition) can be found in the annex, section 9.4.

4.4.6.5 SUPERVISION REQUEST ENCODING

It is developers, who define details of requests for supervision operations. However, the

following general form of a parameterised request can be useful as an example. The

developers can simply override this definition according to their needs.

Figure 52 depicts a structure of a request.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 127

Figure 52. General Request Definition – XMLSpy XSD Diagram

A request contains a type of required information (requestParameterType), for example,

amount of a free disk space. In addition, the information identifying the requested parameter

should also be passed, for example, a name of the considered host and a name of the disk. In

order to reflect the hierarchy in the request, a nested parameter concept is introduced here.

Thus, all levels of information can be indicated in the request (i.e. Host : Disk :

DiskFreeSpace).

The following diagram (Figure 53) represents a structure of a request for the “Disk Free

Space” example.

Figure 53. Request for Free Disk Space – XMLSpy XSD Diagram

The first parameter of the request is a Host Name, while the second, nested parameter

contains Disk Name information.

In an XML form, this request can look, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<diskReq xmlns="http://disk.example.namespace" xmlns:fault="http://fault.types.namespace"
xmlns:sup="http://sup.types.namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://disk.example.namespace
D:\andrey\thesis\XSD\diskEx.xsd">
 <request>
 <requestParameter>
 <parameter>
 <type>sys:HostName</type>
 <value>King</value>
 </parameter>
 <nest>

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 128

 <parameter>
 <type>sys:DiskName</type>
 <value>C:</value>
 </parameter>
 </nest>
 </requestParameter>
 <requestParametreType>sys:FreeSpace</requestParametreType>
 </request>
</diskReq>

The nested parameters concept is similar to a mechanism of MIB access for the SNMP

architecture. Therefore, this architecture can be easily mapped to the proposed one.

A more detailed definition of the General Request structure (MultipleRequest) can be

found in the annex, section 9.4. For the definition of the “Disk Free Space” example, please

refer to the section 9.5.

4.4.6.6 SUPERVISION RESPONSE ENCODING

The response in general form is similar to the request parameter, depicted in Figure 54.

Figure 54. General Response Definition – XMLSpy XSD Diagram

Simple parameters, as well as nested ones can be passed as a response. The nested

parameters can identify a hierarchy of retuned data. For the “Disk Free Space” example

mentioned earlier, the nested parameters can be used to identify a particular disk characterised

by its Host Name and Disk Name.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 129

Figure 55. Response with Free Disk Space – XMLSpy XSD Diagram

In Figure 55, the first parameter is used for the HostName identification. The first nested

parameters contain DiskName, while the lower parameter indicates an amount of a FreeSpace.

In an XML form a request can look, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<diskRes xmlns="http://disk.example.namespace" xmlns:fault="http://fault.types.namespace"
xmlns:sup="http://sup.types.namespace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://disk.example.namespace
D:\andrey\thesis\XSD\diskEx.xsd">
 <response>
 <parameter>
 <type>sys:HostName</type>
 <value>King</value>
 </parameter>
 <nest>
 <parameter>
 <type>sys:DiskName</type>
 <value>C:</value>
 </parameter>
 <nest>
 <parameter>
 <type>sys:FreeSpace</type>
 <value>1235</value>
 </parameter>
 </nest>
 </nest>
 </response>
</diskRes>

A more detailed definition of the General Response structure (MultipleResponse) can be

found in the annex, section 9.4. For the definition of the “Disk Free Space” example, please

refer to the section 9.5.

4.4.7 CONCLUSIONS

This section presented our approach for an architecture of a supervision framework. Our

concern was about the communication transport and an integration mechanism providing for

the best interoperability and flexibility. For this reason, we developed our solution upon Web-

Services.

In order to explain the proposed architecture, we used UML diagrams to describe basic

components, their relations and interactions. In the meantime, Web Service Definition

Language served to transform the general architecture to Web Services.

It should be underlined, that we focused on communication keeping payload encoding out

of the scope. Hence, for the Supervision Messages, the architecture only defines an envelope

that then can encapsulate all kind of data according to developers’ supervision goals.

However, for the flat monitoring information, the architecture proposes an encoding, which

permits to incorporate various types of data including complex, compound and nested ones.

This flexibility is illustrated with the “Disk Free Space” example.

The next section describes in detail a prototype developed to show concept applicability in

real industrial systems, which were introduced in the section.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 131

4.5 PROTOTYPE

The main goal of the prototyping is to build means purposed to validate and to evaluate the

middleware concept in the context of the presented industrial problems (section 2.2).

Therefore, specific supervision solutions were designed for these industrial systems.

This section describes the author’s contributions in the frame of the GeneSyS project to the

development of supervision solutions:

• Design of the Supervision Solutions for the Preliminary Design Review and the

Distributed Training systems;

• Agent Collaboration for Generic Visualisation – a simple approach for description

of flat supervision operations in order to build a generic console;

• Summarising View – a simple intelligent approach for information summarisation;

• C++ adapter purposed to simplify integration with the supervision framework;

• Supervision Agents for PDR application and MAK RTI.

The description starts with a solution for supervision of the Preliminary Design Review

system.

4.5.1 PRELIMINARY DESIGN REVIEW SYSTEM SUPERVISION SOLUTION

The PDR system was described in section 2.2.2. The prototype of the supervision solution

for this system is purposed to evaluate applicability of the proposed concept (Web Services

for system supervision), as well as interoperability aspects.

Analysing requirements for supervision framework, it was identified that the solution

should provide means to monitor system usage and to detect operation failures.

This functionality is achieved using different agents, which were deployed in the system

components: operating systems, EDB and GTI6-DSE servers and routes as depicted in Figure

56.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 132

Internet

Document
Repository

Win

Oracle

Client

Visio Conference
Server

Generic ConsoleGeneric Console

Supervisor
(agent)

Supervisor
(agent)

Supervisor
(agent)

Public
Directory

Server

Public
Directory

Server

EDB agent RepositoryRepository

SNMP agent

Win agent

RTT agent

Win agent

RTT agent

Oracle agent

Linux agent

SNMP agent

RTT agent

GTI6-DSE agent

EADS ST

Figure 56. PDR System Supervision Solution.

The developed solution provides the monitored system parameters, which are listed in the

following table. The table consists of tree columns that give information about agent

capabilities, platform they are running on and means they are using to connect the supervision

framework.

Agent Name Platform /

Connection Means

Capabilities

System Monitoring

Agent

Windows /.NET,

Linux / C++ adapter

using gSOAP

Operating System Level parameters:

Disk: Used Space, Free Space

Memory: Free Memory, Load Ratio.

Processor: CPU load (User, System), Idle time.

Network Agents Java platforms / Java

adapter using Apache

AXIS

Network Level parameters:

Connectivity: Round Trip Time

SNMP Info

Tomcat Agent Java platforms / Java

adapter using Apache

AXIS

Tomcat server info: contexts, threads, used

memory.

EDB Agent Java platforms /

Apache AXIS for

Java

Engineering Database (EDB) usage info: users

on-line, documents created, modified,

downloaded/uploaded, operation events;

GTI6-DSE Agent Java platforms / Java

adapter using Apache

AXIS

GTI6-DSE video conference server info: users

on-line, bandwidths allocation for each user,

etc.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 133

The following failures can be detected by the agents:

• Operating System Level failures, e.g. Disk, Memory, CPU overloading;

• Network Level failures: connectivity failures, bandwidth overloading;

• Application Level failures: document repository access violation.

In this document, the EDB monitoring solution is the author’s contribution to the

development of this PDR prototype.

For more information about validation process, please refer to the next chapter.

4.5.1.1 ENGINEERING DATABASE AGENT

In the frame of the PDR scenario, the EDB Monitoring Agent collects log data from EDB

Server and Clients. The agent forwards the processed data in the form of supervision

messages, which are compliant with the proposed architecture.

The agent is dedicated to workflow supervision and can detect the following events:

• EDB server is started;

• User tries to enter the EDB using an EDB client;

• User enters EDB or enters a wrong password;

• User creates/reads/modifies/deletes a document;

• User leaves the EDB;

• The EDB server is stopped.

Implementation Details:

Figure 57 depicts internal structure of the Engineering Database (EDB) monitoring

solution. As it was mentioned before, the EDB system consists of:

• Oracle database, which contains a Documentation Repository;

• Tomcat web-server that hosts EDB server java application;

• EDB client – a graphic user interface implementing Preliminary Design Review

logic.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 134

Document

Repository

Win

EDB Client

Local
Repository

Local
Repository

EDB delegateEDB delegate

Tomcat

EDB Server

Monitoring EntityMonitoring Entity

Oracle
SQL Database

Java Servlet

To Console

Figure 57. EDB System Monitoring Solution.

The EDB agent works directly with the EDB server java application. A monitoring entity

was built-in to the server code. This module intercepts predefined server events (start-up, user

login, etc.) and stores them in a Local Repository, which is a relational database. The EDB

Delegate restores monitoring information from the Local Repository and forwards it to

Supervisors in compliance with the supervision framework rules.

The agent handles the following monitoring information:

• Transaction information: An information about events happened in the

Document Repository.

o Transaction ID: a transaction identificator;

o Transaction timestamp;

o Transaction owner: an identificator of a user, who committed the

transaction;

o Transaction mode: description of the event (EDB server started/closed,

user entered EDB, user entered a wrong password, user added a Review

Item Discrepancy, user deleted a RID, user modified a RID, user

downloaded a document)

o Transaction RID: when the transaction concerns a Review Item

Discrepancy, this parameter contains identificator of this RID.

• User information: recent information about users.

o User ID: a user identificator;

o User Name;

o Is the user on-line;

o Last time this user entered the EDB system;

o Number of times the user entered his password wrongly (to detect

access violation attempts);

o Last time the user entered a wrong password (to detect access violation

attempts);

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 135

o An IP of his EDB client.

4.5.2 SUPERVISION SOLUTION FOR DISTRIBUTED TRAINING

The Distributed Training scenario and DIS-RVM system are described in section 2.2.3.

The prototype of the supervision solution for the DIS-RVM system is purposed to evaluate

applicability of the proposed concept to the Interactive Simulation domain (performance

issues), as well as concept flexibility to integrate simple intelligence (summarising view).

Analysing requirements for supervision framework, it was identified that the solution

should provide means to monitor system usage, to detect service failures, to control systems

start-up, operation and close-down. Therefore, the supervision framework and components

should provide the following functionality:

• automate RTI, NTP service and DIS-RVM simulator set-up and configuration for a

training session;

• provide centralised monitoring on DIS-RVM (application), RTI (middleware), OS

(Linux) and network levels;

• provide Application Administrator (see section 2.4.4) with means for controlling

execution of DIS-RVM and RTI;

• monitor Federation Manager, ISS, ATV, MCC, and ATV-CC federates of DIS-RVM

federation.

This functionality is achieved using different agents, which are deployed in the system

components: operating systems, RTI execution and DIS-RVM system as depicted in Figure

58.

Internet

Win

Generic ConsoleGeneric Console

Supervisor
(agent)

Supervisor
(agent)

Supervisor
(agent)

Public
Directory

Server

Public
Directory

Server

EADS ST

Win AgentWin Agent

Linux

Linux AgentLinux Agent

Linux

Linux AgentLinux Agent

Linux

Linux AgentLinux Agent

Linux

Linux AgentLinux Agent

DIS-RVM
Agent

DIS-RVM
Agent

Linux

Linux AgentLinux Agent

RTI AgentRTI Agent

3d Viewer
ATV

simulator

ATV CC
simulator

Federation
Manager

ISS
simulator MÄK RTI

Linux

Linux AgentLinux Agent

MCC
simulator

Figure 58. DIS-RVM System Supervision Solution.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 136

The agent capabilities are listed in the following table. The table consists of tree columns

that give information about agent capabilities, platform they are running on and means they

are using to connect the supervision framework.

Agent Name Platform /

Connection Means

Capabilities

System Monitoring

Agent

Windows /.NET,

Linux / C++ adapter

using gSOAP

Operating System Level parameters:

Disk: Used Space, Free Space

Memory: Free Memory, Load Ratio.

Processor: CPU load (User, System), Idle time.

System Control

Agent

Linux and Windows /

C++ adapter using

gSOAP

Control Agent is enabled to configure RTI,

NTP, DIS-RVM and to control applications

execution running predefined system

commands.

MÄK RTI

Monitoring Agent

Linux / C++ adapter

using gSOAP

To monitor RTI Execution state, Federation and

Federate states.

DIS-RVM

Monitoring Agent

Linux / C++ adapter

using gSOAP

To monitor NTP synchronisation, Federate

states and to control simulator execution.

Thus the following failures are detected in addition to system and network failures:

• Abnormal federate termination;

• NTP is out of synchronisation.

To effectively manage the DIS-RVM system, a generic console with a summarising

interface was built to present system health status and all critical parameters in a single view.

The console capabilities are as follows:

• visualisation of all agent parameters described in a special format (see next

section);

• filtering of incoming messages using regular expression rules;

• creation of graphic plots;

• summarising GUI for DIS-RVM system (see intelligence section).

For more information about validation process, please refer to the next chapter.

The following sections give more details about the developed approaches and some

components worked out by the author of this thesis as a contribution to the DIS-RVM

prototype.

4.5.2.1 AGENT COLLABORATION FOR GENERIC VISUALISATION

Although the operation description mechanism (section 4.4.5) implies a generic format for

supervision data description sufficient for supervision framework, certain data processing

operations require more precise instructions. For example, supervision data visualisation

requires a comprehensive description of:

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 137

• operations (name, readable description, etc);

• parameters (name, readable description, units, measurement methods, etc);

• visualisation rules (lists, tables, graphics, charts, etc.).

The flexibility of the proposed architecture allows centralised storing of these custom

descriptions with the agent information. Thus, all interested agents have an access to this

information.

 Developing general format for visualisation rules description allowed building of a generic

console for DIS-RVM system, which can seamlessly work with the agents that provide a

correct description.

Implementation Details:

All the agents involved in the Distributed Training Scenario support a generic format for

description of visualisation rules as follows.

Similar to supervision messages, the visualisation rules are encoded using XML, in the

following format:
<?xml version="1.0" encoding="UTF-8"?>

<operation>
Starting description

<displayName>Some Operation</displayName> Name of the monitoring category to be shown

in the console
<description>Provides comprehensive information about
some monitoring category </description>

Each parameter has a textual description for

the end-users.
<request>
 Starting description of the input parameters.
<parameter>

Supervisors declare parameters to be passed

to Delegates with the request for this

information. For example, for disk

monitoring operations, we can precise disk

ids for which the information is required

(“/”,”/home”,”/usr” or ”C:”, “D:” and etc)
<name>memAvaMain</name>
<displayName>Available Memory</displayName>
<description>Size of availble RAM in bytes.</description>

Here, a parameter name is declared.

displayName tag contains parameter name to

be shown by the Console, while name tag

indicates an internal name of the parameter

used in message construction and in

processing.

description tag contains parameter

description in a human readable form.
<type>SomeType</type>

or

<list>
<type>SomeType</type>
</list>

type tag indicates a parameter type.

Analysing the monitoring data for the

Distributed Training scenario and in order to

simplify parsing of the description, the used

types are:

int – C style integer type

float – C style float type

string – any string

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 138

Optionally, list tag can indicate multiple

value entries. For example for a Federation

Name list:
<parameter>
 <name>FederationList</name>
 <list>
 <value>FirstFederation</value>
 <value>SecondFederation</value>
 <value>ThirdFederation</value>
 </list>
</parameter>

</parameter>
End of the parameter declaration block

…
Other input parameters

</request>
End of input parameters block.

<response>
Starting description of the output parameters

<parameter>…</parameter>
… Declarations of output parameters in the same

way as for the input parameters
</response>

End of output parameters block

This operation description allowed to set-up generic interface for all operations

(Monitoring Categories, Control operations, etc) in Distributed Training scenario. Thus the

console can seamlessly create an interface for any agent, which describes its capabilities in

this form.

For instance, the System Monitoring Agent describes Memory Information operation as

follows:
 <?xml version="1.0" encoding="UTF-8"?>
<operation>
 <displayName>Memory Information</displayName>
 <description>Provides information about Memory</description>
 <request>
 <!-- there is no special input parameters -->
 </request>
 <response>
 <parameter>
 <name>memAvaMain</name>
 <displayName>Available Memory</displayName>
 <description>Size of availble RAM in bytes.</description>
 <type>float</type>
 </parameter>
 <parameter>
 <name>memLoadRatio</name>
 <displayName>RAM load ratio</displayName>
 <description>Load ration of RAM.</description>
 <type>float</type>
 </parameter>
 <parameter>
 <name>memAvaSec</name>
 <displayName>Available secondary memory</displayName>
 <description>Size of availble secondary memory in bytes.</description>
 <type>float</type>
 </parameter>
 <parameter>
 <name>memSecLoadRatio</name>
 <displayName>Secondary memory load ratio</displayName>
 <description>Load ration of secondary memory.</description>
 <type>float</type>
 </parameter>
 <parameter>

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 139

 <name>HelthStatus</name>
 <displayName>Health Status</displayName>
 <description>Health Status parameter indicates status of the monitoring agent for monitoring information
evaluation and summarising, according the summariser monitoring approach. Its value is a choice between
green|yellow|red. </description>
 <type>string</type>
 </parameter>
 </response>

</operation>

4.5.2.2 INTELLIGENCE – SUMMARISING VIEW

The supervision of complex industrial systems often requires intelligent solutions. The

intelligence can be provided in several ways, some of which are outlined here:

• Hard coded behaviour: an “intelligent” reaction on a system status can be

implemented as a part of the program code of an agent.

• Parameter based solution: The rules can be configured through parameters. A

basic example is a “Threshold Miss Agent” where the parameters would be min

and max values.

• Rule Based Systems: In complex settings, the usage of rule based systems could be

an option where the rules can be expressed in an external file e.g. based on JESS.

• Workflow based systems: Another option could be to use workflow languages

such as BPEL4WS to define workflows that act depending on the events received.

• Trends prediction: A behaviour pattern recognition system could be developed to

react in advance according to system behaviour trends.

Besides, working with hundreds of critical parameters is an extremely difficult task. An

administrator can be easily flooded with low level warnings like “memory is running low” or

“maximum number of users is almost reached”. Instead, the administrator first needs a

general, summarised view about the health of the systems in general and then can go into

details as necessary.

The proposed architecture is flexible to combine supervision messages with the “health”

state evaluation metrics. This feature is used in the Distributed Training scenario to illustrate

flexibility of the proposed supervision concept in the context of intelligence.

Implementation Details:

In the Distributed Training Scenario a simple intelligence solution was developed. This

solution implements the summarising approach. The DIS-RVM system involves several hosts,

where many critical parameters should be evaluated to summarise the system health status.

The monitoring information is evaluated both on Delegate and Supervisor levels. The

agents provide specific status evaluation parameters that can be symbolically divided into 3

categories: green – best state (=1), yellow – satisfactory state (=2), red – failure state (=0).

The delegates calculate their status according to some predefined rules. For example

system=>memory state could be defined by thresholds (green, when memory load ratio is less

than 80%, yellow, when ratio is greater than 80%, but less than 90%, red, when the ratio is

greater than 90%). The Summary state is calculated in the Console, as a simple convolution of

all the states.

In this way, the summary state can be expressed by the following equation:

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 140

====
agentsall parametersallandagentsallcategoriesmonitoringall

red

yellow

green

statusparameterstatusagentstatuscategorymonitoringStatusGlobal
_ ______

0

1

1

The Figure 59 illustrates this equation.

In
fo

rm
a

ti
o

n
 S

u
m

m
a

ri
s
in

g

S
u

p
e

rv
is

o
r

L
e

v
e

l

In
fo

rm
a

ti
o

n
 E

v
a

lu
a

ti
o

n

D
e

le
g

a
te

 L
e

v
e
l

Viewer

System

Agent

Network

Agent

Herbert

ISS Federate

MCC Federate

System

Agent

Network

Agent

Lovecraft
ATV Federate

ATV-CC Federate

Federation Manager

System Agent

Network Agent

DIS-RVM

Agent

Tolkien King

EADS-ST Validation Platform

DIS-RVM

Console

Control Host V =
all agents

System status

Network status

Middleware status

Application status

Global Status

System agents

Network agents

RTI agent

DIS-RVM agent

Convolution

Internet

MÄK Rti Exec

System

Agent

Network

Agent

RTI Agent

Figure 59. Information Evaluation-Summarizing in Distributed Training Scenario.

The information is summarised in the Console, the Global Status is composed of

Monitoring Category Status (System, Network, Middleware, and Application) and it, in its

turn, is composed of agent status (System, Network, RTI, and DIS-RVM). Consequently, the

yellow system agent status at Herbert causes the System Status to be yellow, while red status

of the DIS-RVM and RTI agents cause Middleware, Application Statuses and, thus, Global

Status to be red.

The agents provide this information in the form of message parameters. For the Memory

Health Status the operation declaration looks like as follows:
<?xml version="1.0" encoding="UTF-8"?>
<operation>
 <displayName>Memory Information</displayName>
 <description>Provides information about Memory</description>
 <request>
 <!-- there is no special input parameters -->
 </request>
 <response>
 <parameter>
 <name>memAvaMain</name>
 <displayName>Available Memory</displayName>
 <description>Size of availble RAM in bytes.</description>
 <type>float</type>
 </parameter>
 <parameter>

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 141

 <name>memLoadRatio</name>
 <displayName>RAM load ratio</displayName>
 <description>Load ration of RAM.</description>
 <type>float</type>
 </parameter>
 <parameter>
 <name>memAvaSec</name>
 <displayName>Available secondary memory</displayName>
 <description>Size of availble secondary memory in bytes.</description>
 <type>float</type>
 </parameter>
 <parameter>
 <name>memSecLoadRatio</name>
 <displayName>Secondary memory load ratio</displayName>
 <description>Load ration of secondary memory.</description>
 <type>float</type>
 </parameter>
 <parameter>
 <name>Health Status</name>
 <displayName>Health Status</displayName>
 <description>Health Status parameter indicates status of the monitoring agent for monitoring information
evaluation and summarizing, according the summarizer monitoring approach. Its value is a choice between
green|yellow|red. </description>
 <type>string</type>
 </parameter>
 </response>

</operation>

Therefore, each Memory Information message contains the Memory Health Status, as

illustrated in the following example:
 <response>
 <parameter>
 <name>memAvaMain</name>
 <value>325454387.0</value>
 </parameter>
 <parameter>
 <name>memLoadRatio</name>
 <value>98.0</value>
 </parameter>
 <parameter>
 <name>memAvaSec</name>
 <value>0.0</value>
 </parameter>
 <parameter>
 <name>memSecLoadRatio</name>
 <value>0.0</value>
 </parameter>
 <parameter>
 <name>HealthStatus</name>
 <value>red</value>
 </parameter>
 </response>

In this way, all agent messages contain evaluation information. Then, the DIS-RVM

console summarises the whole status and shows it to an operator (Figure 60).

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 142

Figure 60. A DIS-RVM Console Screenshot.

4.5.2.3 C++ ADAPTER

C++ Adapter was developed to simplify agent creation. It takes charge of service

operations and allows developers to concentrate on supervision logic. In these terms, the

adapter represents the major component of the supervision middleware.

The adapter functionality involves all the aspects of an agent life-cycle in the supervision

framework and includes:

• Automatic Registration / Update Registration / Unregistration in the supervision

framework;

• Management of Query requests;

• Management of Subscribe requests, including handling of the list of subscribers;

• Handling of periodic events;

• Notification Service for handling of asynchronous events;

• XML Factory Service to create and parse supervision messages;

• SOAP server based on gSOAP library engine.

The following scenario agents use this C++ Adapter:

• Linux operating system agent and Windows control agent;

• DIS-RVM agent;

• MÄK RTI agent.

From the developer’s point of view, the adapter represents a stand-alone component and an

API to connect with. The implementation details are provided hereafter.

Implementation Details:

The following UML class diagram (Figure 61) shows the overall structure of the C++

Adapter.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 143

Core Interface

soap

DoRegister

DoUnregistger

DoUpdateRegistration

GetUrlByAgentId

Notification Service

soap

delegate

Notify

Delegate Stub

soap

core

delegate

DoPerform

DoQuery

DoSubscribe

GetSubscribers

DoUnSubscribe

DoPeriod icMonitoring

SOAP Server

delegate

ReceiveMessage

SendMessage

Delegate

notificationService

DoOperation

EventHandler

Im
p
le

m
e
n
te

d
 i
n
 C

+
+

 A
d
a

p
te

r
U

s
e
r

D
e
fi
n
e

d

P
a
rt

Figure 61. C++ Adapter – UML Class Diagram.

The adapter has the core interface for service operations and implements the delegate

paradigm for supervision operations. The Notification Service class provides a mechanism of

an asynchronous communication with a supervisor.

Agent developers implement supervision logic in the stand-alone Delegate module. The

predefined methods (DoOperation, EventHandler) are the place where developers should

put their code to process supervision operations. EventHandler method uses the Notification

Service to transmit asynchronous events to a supervisor.

During start-up the adapter registers the delegate in the Core using Core Interface, which in

its turn uses SOAP server engine for communication with the Core.

Upon a supervision request the SOAP server process an incoming message. Depending on

the type of the message the server passes this request to a corresponding method of the

Delegate Stub.

Upon query/perform request, the DelegateStub invokes Delegate’s DoOperation method,

which returns output information, which then is encoded in the DelegateStub and is passed

back to a supervisor.

Upon a subscribe/unsubscribe request, the DelegateStub handles a subscriber list. If there

is a request on periodic supervision, DoPeriodicMonitoring method periodically invokes

DoOperation method.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 144

 Upon an event, the Delegate invokes the Notify method of the Notification Service,

which, in its turn, verifies subscribers for this event, encodes the message and sends it via

SOAP server.

For a better performance, the adapter generates messages using simple patterns. This

permits to avoid DOM model that highly consumes computation resources.

4.5.2.4 MÄK RTI AGENT

The MÄK RTI is an implementation of the HLA RtiExec service [7] purposed to run

interactive simulations. This software was used in the Distributed Training scenario to run the

Rendezvous Federation mentioned in the introduction concerning industrial problems.

As it was mentioned above, the Distributed Training scenario requires a permanent

supervision of all the levels (system, network, middleware, application). The RTI Agent

(Delegate) was designed to provide supervision functionality on the middleware level

(RtiExec). Besides, the RTI Delegate is a general purpose agent that can be used with any

federation that does not utilise Lightweight Mode of MÄK RTI [53].

The agent functionality includes:

• RtiExec state monitoring. The RTI Delegate detects whether RtiExec is running

or not. It also processes an event on RtiExec load/close down.

• Federation monitoring. The delegate retrieves a list of registered federations and

notifies about federation creation/destruction.

• Federate monitoring. The agent retrieves a list of the registered federates for each

available federation and notifies on federate joining/resigning.

• Connection Errors. The agent notifies when a connection between an RtiExec and

Federate is abnormally closed.

The following section describes implementation details.

Implementation Details:

The RTI Supervision Solution consists of two independent modules, as depicted in Figure

62 :

• RTI Delegate communicates with the supervision framework via C++ Adapter for

the Linux platform. It is an independent module that is implemented outside of

MÄK RTI code with the aim to monitor Rti Execution state;

• RTI Monitoring Plugin is built in the MÄK RTI and monitors Rti execution.

These two modules communicate using a custom protocol, which is purposed to transmit

Rti heartbeats (for a state detection), supervision commands (a query for particular monitoring

data) and asynchronous events (state, federation and federate events).

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 145

RTI Monitoring

Plugin

MÄK RTI

RTI Delegate

h
e
a
rt

b
e
a
t

co
m

m
a
n
d
s

e
v
e
n
ts

To Adapter

Tcp Socket
custom protocol

Adapter API

Plugin API

To Federates

HLA

S
u

p
e

rv
is

io
n

A

g
e

n
t

S
u

p
e

rv
is

e
d

E
n

ti
ty

Figure 62. MÄK RTI Delegate Overall Architecture.

The RTI Monitoring Plugin uses MÄK RTI Plugin API [53] that allows attaching

additional handlers to HLA events, as well as retrieving of particular information concerning

Rti Execution.

Meanwhile, the RTI Delegate collects the monitoring information and communicates with

the supervision framework (DIS-RVM Console) via the C++ adapter described in the

previous section.

The RTI Delegate provides the following supervision operations:

• Query operations:

o Rti State: State of the Rti Execution indicates whether Rti is ON or OFF;

o Federation List: Provides a list of available federations;

o Federate List: Provides a list of available federates.

• Event-based subscribe operations:

o Rti State Event: happens when Rti Execution gets ON or OFF;

o Federation Event: happens when a federation is created or destroyed in the Rti

Execution;

o Federate Event: happens when a federate joins or resigns a federation

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 146

o Connection Dropped Event: happens when a Federate abnormally closes a link to

a Federation.

These operations provide all the necessary information to monitor MÄK Rti Execution in

the Distributed Training scenario.

4.5.3 CONCLUSIONS

In this section a prototype solution has been presented. Two supervision solutions were

developed to evaluate the proposed concept in the context of the industrial problems. These

solutions implement all major elements of the proposed architecture (The Core – Directory

Server, Delegate, and Supervisor) and several approaches for intelligent supervision.

The C++ adapter developed by the author provides a simple way to create agents, while

EDB and MÄK RTI agents are application specific and intended to help to evaluate the

solutions.

The next chapter describes the evaluation process.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 147

Chapter 5. EVALUATION

The goal of evaluation activities is to verify applicability of the proposed solution to the

domain of distributed supervision. In this way, the prototype developed for completely

different distributed applications should show flexibility and comprehensiveness of the

proposed concept. The evaluation section starts with the development lessons learned to

evaluate the concept from a developer’s point of view. The development permitted to evaluate

the following requirements:

• Interoperability and Portability;

• Flexibility;

• Ease of Development.

Then, the performance tests section gives an idea about overall performance of the

supervision middleware in the case of Distributed Training supervision. In addition, these

activities permitted to estimate the following issues:

• Impact of the supervision agents to operating system and network load;

• Applicability to supervision of the DIS-RVM system;

• Limits of applicability;

• Fault Tolerance and Reliability.

Finally, the validation scenario sections elaborate the concept evaluation from an end-

user’s point of view. In the industrial domain, it is widely accepted to hold user validation,

when real users participate in real-life validation sessions. During these sessions, users imitate

normal work playing scenarios, and evaluate an impact of new enhancements on the system.

This process clearly shows the features that are difficult to “calculate”:

• Applicability;

• Impact of the Supervision Solution to the Overall System Performance;

• Comprehensiveness ;

• Fault Tolerance concerning platform faults inserted by users;

• Ease of Deployment;

• Usability.

The subsequent section elaborates development issues during prototyping.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 148

5.1 DEVELOPMENT LESSONS LEARNED

While developing the prototype, at first, Web Services interoperability issues arose. A

common practice in the Web Services domain is to design a WSDL description for each

service and then to use special toolkits to create a client and server code. The tests showed

that for the simple services this mechanism generates interoperable code for different kinds of

programming languages: C/C++, C#, Java, PHP [51]. However, in complex cases, developers

use low-level SOAP features, like literal encoding. As a result, the interoperability of

automatically generated code is questionable. While implementing the current architecture,

the .Net, Axis and gSOAP toolkits showed lack of interoperability in regard to encoding of

custom message headers and a literal message body. This problem was solved during

development of the adapters, which provide an interface for the supervision framework. This

permitted to avoid these interoperability issues in a further development. In addition,

development of the adapters permitted to diminish efforts for an agent development.

From a developer’s point of view, usability is assured by the adapters and sample agents,

which provide means to rapidly develop new agents. At the same time, these means simplify

concept learning for newcomers. For example, the C++ adapter provides an empty agent that

implements all service operations and is ready to integrate with a supervised entity. Therefore,

development duration depends on complexity of interface implementation, integration and

testing. For the agents of DIS-RVM supervision system, it took about 1-2 weeks to integrate

the supervised entities (operating system, MÄK RTI, DIS-RVM) with the C++ adapter.

Taking into account that this integration was performed during experimentation with C++

adapter and its debugging, it should be pointed out that under normal conditions

implementation of the interface is supposed to take even less time.

The proposed architecture proved its flexibility, since all the required types of data and

supervision operations were successfully implemented into the prototype. For example, the

MÄK RTI monitoring agent provides information about federations and federates in a form of

a list. Besides, this agent implements an event based subscription, which proves an ability to

implement asynchronous communication by means of Web Services. In comparison with the

periodic subscription implemented in the System Control, Monitoring and DIS-RVM agents,

the event-based subscription (MÄK RTI Agent) can significantly diminish the network load,

which is the most critical point of Web Services. Additionally, development of approaches for

generic visualisation and for information summarising resulted into a ready-to-use solution for

an intelligent supervision. This is because the developed Supervision Console supports any

custom agents that implement the above-mentioned approaches. Therefore, all these aspects

contributed to simplification of the development of new agents.

 The developed prototype revealed portability of the architecture, allowing interoperation

of the components programmed in C++, C#, Java, PHP, which had been intended to be used

in different operating systems, such as Windows and Linux. For instance, the System Control

agent designed for Linux and developed in C++ was successfully ported to the Windows

platform. Also, a PHP based agent which can be run on any Web server that supports PHP

scripts, while Java-based agents can be run on any Java compliant platform. This allows

developers to choose a programming platform according to their needs.

It should be mentioned that the Web Services performance has always been an inevitable

question of this technology, since XML parsing is a heavy task for computation resources. As

it was mention before, there are two most widely used methods of XML parsing, DOM and

SAX. To alleviate performance issues the C++ adapter uses a parser similar to SAX, which

has incontestably better characteristics in regard to performance. The following section

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 149

elaborates these aspects concerning the supervision solution for the DIS-RVM system.

Besides, the limits of the concept applicability will also be considered there.

5.2 PERFORMANCE TESTS

The performance tests evaluate the major parameters that can affect applicability of the

supervision middleware:

• System resource load and, in particular, CPU load;

• Network load and Throughput;

• Response time.

These parameters were measured for the DIS-RVM system supervision solution, since the

distributed simulation, in this case, has strict performance requirements:

• Latency of 300 milliseconds

• Bandwidth of 64 kbps

Therefore, the main goal of the performance tests is to evaluate a possible impact of the

supervision on calculation environment.

The following section describes measurement means and approach.

5.2.1 MEASUREMENT APPROACH

The performance tests bring out a question of how using of the Web Services for

supervision affects the supervised environment. The below-described measurements are

intended to answer this question.

The test platform consists of three hosts: Test Tool Host, Agent Host, Network Spy

depicted in Figure 63.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 150

Agent:
SMA, SCA, RTIA, DRA

Agent:
SMA, SCA, RTIA, DRA

CPU
Monitor Tool

CPU
Monitor Tool

Agent Host

Test Tool:
JMeter

Test Tool:
JMeter

Test Tool Host

Network Spy:
Ethereal

Network Spy:
Ethereal

Test Samples

Request/Response

Figure 63. Performance Test Platform

As a test tool, Apache JMeter [54] provides means to send message samples and to

measure the response time. It returns results in the form of an XML file, which are analysed

lately. For the test purposes, the JMeter issued only heartbeat request samples. This permitted

to better evaluate supervision middleware performance characteristics, since this operation

does not involve interaction with a supervised entity. Thus, these tests show efforts to marshal

and to unmarshal XML messages only. In other words, the agent responsiveness, in this case,

is affected by the XML parsing only and, therefore, shows efficiency of the middleware

components (C++ adapter).

The following heartbeat message request illustrates test samples:

POST / HTTP/1.0

Content-Type: text/xml; charset=utf-8

Accept: application/soap+xml, application/dime, multipart/related, text/*

User-Agent: Axis/1.1

Host: 212.234.91.65

Cache-Control: no-cache

Pragma: no-cache

SOAPAction: ""

Content-Length: 1756

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Header>

 <ns1:genesysHeaderBlock soapenv:mustUnderstand="1" xsi:type="ns1:GenesysHeaderBlock" xmlns:ns1="http://genesys-

project.org/GMP">

 <ns1:sourceComponentId xmlns="http://genesys-project.org/GMP">

 <ns1:coreId>1</ns1:coreId>

 <ns1:ownerId>0</ns1:ownerId>

 <ns1:siteId>0</ns1:siteId>

 <ns1:agentId>e473fbcd-ffffff81-15d533d-2b52c35e</ns1:agentId>

 </ns1:sourceComponentId>

 <ns1:destinationComponentId xmlns="http://genesys-project.org/GMP">

 <ns1:coreId>1</ns1:coreId>

 <ns1:ownerId>e44b6f1e-ffffff81-11a0070-947524fd</ns1:ownerId>

 <ns1:siteId>e44cf3da-ffffff81-11a0070-45735803</ns1:siteId>

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 151

 <ns1:agentId>e4744809-ffffff81-15d533d-588d3b2d</ns1:agentId>

 </ns1:destinationComponentId>

 <ns1:timestamp xsi:type="xsd:long">1099049882225</ns1:timestamp>

 </ns1:genesysHeaderBlock>

 </soapenv:Header>

 <soapenv:Body>

 <ns2:Query soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xmlns:ns2="http://genesys-

project.org/GMP">

 <monitoringEncodingName xsi:type="xsd:string">http://genesys-

project.org/xsd/encoding/gse/GenesysEncoding</monitoringEncodingName>

 <monitoringRequest xsi:type="xsd:string"><?xml version="1.0" encoding="UTF-8"?>

<supervisionRequest xmlns="http://genesys-

project.org/xsd/encoding/gse/GenesysEncoding"><typeName>http://genesys-

project.org/xsd/monitoring/gse/common/Heartbeat</typeName></supervisionRequest>

</monitoringRequest>

 </ns2:Query>

 </soapenv:Body>

</soapenv:Envelope>

To summarise, the JMeter tests provided information about response time and throughput

(number of complete request/response interactions per second). These parameters were

measured under the following conditions:

• Normal load: the JMeter requests an agent once per 20 milliseconds (1000

cycles in total for each agent);

• Heavy load: 20 concurrent test components request an agent once per 20

milliseconds (20000 cycles in total for each agent).

It should be mentioned, that that the provided frequencies are JMeter settings only. The

actual frequencies are characterised by the throughput parameter. In reality, the JMeter uses a

best-effort approach, i.e. it sends samples as fast as it can. Hence, the throughput parameter is

an important metric to evaluate real performance.

All tests were conducted separately for each agent involved in the DIS-RVM scenario

(System Monitoring, System Control, MAK RTI and DIS-RVM agents).

The Agent Host has the following characteristics:

Operating system: Mandrake Linux 10.0

Kernel: 2.4.26-mdk

CPU: Inter Pentium IV 1,80 GHz

Network connection: LAN 10Mbit

Memory: 384 MB of RAM

In order to measure how the supervision system affects the local operating system, the

native Linux tools measured the CPU load on the Agent host.

Meanwhile, the Ethereal Network Protocol Analyser [55] registered the

incoming/outcoming network traffic for the Agent Host. This data allowed calculating of the

real bandwidth statistics.

The following section presents the measurement results for the agents involved in

Distributed Training scenario.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 152

5.2.2 TEST RESULTS

As it was mentioned before, the major parameters that were gathered are:

• Response time (for the Heartbeat Operation);

• Throughput (number of complete request/response interactions per second);

• Network load (in kbits per second);

• CPU load on the Agent Host.

The following subsections show this statistics for every agent involved in Distributed

Training scenario.

5.2.2.1 SYSTEM MONITORING AGENT

The following table points out the average and maximum values in sets of measured

parameters:

Category Average Maximum

Response time (in milliseconds):

Normal Load (1000 cycles) 0,031 31

Heavy Load (20000 cycles) 59,13 9922

Throughput (samples/second):

Normal Load (1000 cycles) 30,27 31

Heavy Load (20000 cycles) 142,85 196

Network Load (kbits/second):

Normal Load (1000 cycles) 1073,37 1205,37

Heavy Load (20000 cycles) 5116,57 7436,3

CPU load (in %):

Normal Load (1000 cycles) 5,81 7,9

Heavy Load (20000 cycles) 32,52 38,5

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 153

The following plots depict performance measurements for the System Monitoring Agent.

Normal Load Heavy Load

0

5

10

15

20

25

30

35

0 200 400 600 800 1000

Samples

R
e
s
p

o
n

s
e
 T

im
e
 (

m
il

li
s
e
c
o

d
s
)

Normal Load

0

2000

4000

6000

8000

10000

12000

0 5000 10000 15000 20000

Samples

R
e
s
p

o
n

s
e
 T

im
e
 (

m
il

li
s
e
c
o

d
s
)

Heavy Load

25

26

27

28

29

30

31

32

0 5 10 15 20 25 30 35

Time (seconds)

S
a

m
p

le
s

 C
o

u
n

t

Normal Load

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160

Time (seconds)

S
a

m
p

le
s

 C
o

u
n

t

Heavy Load

0

200

400

600

800

1000

1200

1400

0 10 20 30 40

Time (sec)

N
e
tw

o
rk

 L
o

a
d

 (
k
b

it
s
)

Bandwidth (Normal Load) Moving Average

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150

Time (sec)

N
e
tw

o
rk

 L
o

a
d

 (
k
b

it
s
)

Bandwidth (Heavy Load) Moving Average

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 154

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30 35 40

Time (seconds)

C
P

U
 L

o
a

d
 i
n

 %

Normal Load

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140

Time (seconds)

C
P

U
 L

o
a

d
 i
n

 %

Heavy Load

Figure 64. System Monitoring Agent – Performance Measurements

These results show good performance characteristics of the System Monitoring Agent.

Even for the heavy load case, the average response time was no more than 60 milliseconds.

However, there were several peaks taking more than three (3) seconds for a response. In the

meantime, in the normal case the response time was always acceptable in regard to the latency

requirement for the DIS-RVM system. Besides, the response time was mostly less than one

millisecond, which is comparable to responsiveness of middleware using binary protocols.

Concerning the throughput, the normal use-case pointed out to an ability of the agent to

successfully manage at least 30 messages per second. This result seems to be quite acceptable,

since it is planned to use maximum two consoles in the real supervision system.

It should be highlighted that, as tests showed, JMeter was capable to process up to 200

outcoming/incoming message pairs only. Thus, the throughput parameter shows actual

number of interactions. The measurements showed that under heavy load conditions, JMeter

could stop for some moment to process all pending messages. This problem surely concerns

implementation of JMeter, since it is a multi-thread Java application. However, it noticeable,

that the agent itself is quite faster than the tester, considering that there was no lost messages

signalled by the JMeter.

According to network load measurements, request/response sample takes about 35,82 kbits

in total. This parameter was calculated as a ratio of the average network load parameter to the

average throughput. Considering that a timestamp itself takes 32 bits, the overhead looks

enormous. It is a predictable result in the XML world, however the tests show real evaluations

of the consumption. In the LAN, this overhead is rather acceptable, but it is obviously not the

case for the DIS-RVM system, which requires a bandwidth of 64 kbits/s. Thus, the

supervision solution is good enough for using in LAN or broadband WAN. Tests of network

load for the whole supervision system will be provided in the section 5.4.2, which describes

validation sessions of the Distributed Training Scenario. These measurements will indicate

real bandwidth consumption.

As for the CPU load tests, the agent showed suitable results for the both normal and heavy

load cases. The CPU load did not exceed 8% with the normal load and 40% with the heavy

load. However, one can consider moving heavily loaded components like a supervision

console to a separate PC.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 155

In a view of fault tolerance and reliability, the tests showed that even for the heavy load

case, all the data was correctly delivered with no corrupted messages. Considering that, there

were more than 20000 cycles, this result may be assumed as satisfactory.

5.2.2.2 SYSTEM CONTROL AGENT

The following table points out the average and maximum values in sets of measured

parameters:

Category Average Maximum

Response time (in milliseconds):

Normal Load (1000 cycles) 0,155 78

Heavy Load (20000 cycles) 105,14 3391

Throughput (samples/second):

Normal Load (1000 cycles) 20,83 22

Heavy Load (20000 cycles) 80 163

Network Load (kbits/second):

Normal Load (1000 cycles) 743,78 852

Heavy Load (20000 cycles) 3110,83 5956,68

CPU load (in %):

Normal Load (1000 cycles) 16,43 17,9

Heavy Load (20000 cycles) 84,14 99,9

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 156

The following plots depict performance measurements for the System Control Agent.

Normal Load Heavy Load

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000

Samples

R
e
s
p

o
n

s
e
 T

im
e
 (

m
il

li
s
e
c
o

d
s
)

Normal Load

0

500

1000

1500

2000

2500

3000

3500

4000

0 5000 10000 15000 20000

Samples

R
e
s
p

o
n

s
e
 T

im
e
 (

m
il

li
s
e
c
o

d
s
)

Heavy Load

0

5

10

15

20

25

0 10 20 30 40 50 60

Time (seconds)

S
a

m
p

le
s

 C
o

u
n

t

Normal Load

-20

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

Time (seconds)

S
a

m
p

le
s

 C
o

u
n

t

Heavy Load

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60

Time (sec)

N
e
tw

o
rk

 L
o

a
d

 (
k
b

it
s
)

Bandwidth (Normal Load) Moving Average

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250 300

Time (sec)

N
e
tw

o
rk

 L
o

a
d

 (
k
b

it
s
)

Bandwidth (Heavy Load) Moving Average

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 157

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35

Time (seconds)

C
P

U
 L

o
a

d
 i
n

 %

Normal Load

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160

Time (seconds)

C
P

U
 L

o
a

d
 i
n

 %

Heavy Load

Figure 65. System Control Agent – Performance Measurements

This series of measurements showed less impressive results than for the System

Monitoring Agent in regard to the response time. The average response time was no longer,

than 80 milliseconds for the normal load case, while in the heavy load case there were many

peaks of more than 3 seconds. However, considering a real use-case with no more than two

requests per second, the response time seems be acceptable.

As for the throughput and network load, the results are comparable with the ones of the

System Monitoring Agent. The overhead could not change and it is equal to 38,89 kbits. The

small difference between the values is due to some fluctuations, which do not change the

overall situation.

The CPU load in these tests is greater than for the System Monitoring Agent and is close to

100%. This means that the heavy load case is a critical one and it is very close to the

satisfactory limit. One can note that although both the System Monitoring and Control Agents

are based on the C++ adapter, there is a considerable difference in the CPU usage in the heavy

load case. This can be explained by differences in internal structure of the agents, e.g. using of

forked process for handling of concurrent requests.

In the supervision solution for the DIS-RVM system, it is planned to use both the System

Monitoring and System Control Agents on each machine. Taking into account that there will

be no more than two messages per second for each agent, the CPU load parameters can be

assumed as acceptable.

Considering fault tolerance and reliability, even for the cases, the load is close to the limit,

the agent manages to process the communication, since there were no corrupted or dropped

messages. This proves reliability of the concept implementation.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 158

5.2.2.3 MÄK RTI MONITORING AGENT

The following table points out the average and maximum values in sets of measured

parameters:

Category Average Maximum

Response time (in milliseconds):

Normal Load (1000 cycles) 18,41 2797

Heavy Load (20000 cycles) 329,60 2563

Throughput (samples/second):

Normal Load (1000 cycles) 18,18 23

Heavy Load (20000 cycles) 55,86 81

Network Load (kbits/second):

Normal Load (1000 cycles) 707,12 838,02

Heavy Load (20000 cycles) 2172,69 2637,14

CPU load (in %):

Normal Load (1000 cycles) 34,16 37,8

Heavy Load (20000 cycles) 67,32 92,3

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 159

The following plots depict performance measurements for the MÄK RTI Agent.

Normal Load Heavy Load

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000

Samples

R
e
s
p

o
n

s
e
 T

im
e
 (

m
il

li
s
e
c
o

d
s
)

Normal Load

0

500

1000

1500

2000

2500

3000

0 5000 10000 15000 20000

Samples

R
e
s
p

o
n

s
e
 T

im
e
 (

m
il

li
s
e
c
o

d
s
)

Heavy Load

0

5

10

15

20

25

0 10 20 30 40 50 60

Time (seconds)

S
a

m
p

le
s

 C
o

u
n

t

Normal Load

-10

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400

Time (seconds)

S
a

m
p

le
s

 C
o

u
n

t

Heavy Load

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60

Time (sec)

N
e
tw

o
rk

 L
o

a
d

 (
k
b

it
s
)

Bandwidth (Normal Load) Moving Average

0

500

1000

1500

2000

2500

3000

0 100 200 300 400

Time (sec)

N
e
tw

o
rk

 L
o

a
d

 (
k
b

it
s
)

Bandwidth (Heavy Load) Moving Average

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 160

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

Time (seconds)

C
P

U
 L

o
a

d
 i
n

 %

Normal Load

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500

Time (seconds)

C
P

U
 L

o
a

d
 i
n

 %

Heavy Load

Figure 66. MÄK RTI Monitoring Agent – Performance Measurements

The MÄK RTI Monitoring Agent is more complex than the previous agents. It has two

independent modules that are interconnected by means of sockets. In addition, it uses

multithreading to manage communication streams between the modules. These

implementation details explain the difference of the results for the response time measurement

in the normal load case (18 milliseconds in average). Nevertheless, in the heavy load case, the

response time is quite similar to the above-provided results.

The throughput is less for this agent than for the other ones, i.e. completion of the 20000

requests/responses took up to three times more than for the other agents. This means that the

complexity of the internal structure highly affects productivity of message handling.

Considering the CPU load, the results are similar to results for the System Control Agent.

In the heavy load case, since there was more time for message handling, the CPU load was

rather less than for the System Control Agent. However, it is still not comparable with the

results for the System Monitoring Agent.

The fault tolerance and reliability characteristics are similar to ones of the other agents,

since all the cycles were successfully completed and there were no broken or dropped

messages.

Equally to the other cases, network load parameters do not feet requirements for the DIS-

RVM system. Nevertheless, other results can be assumed as acceptable for the DIS-RVM

supervision, taking into account that there will be maximum two supervision requests for this

agent.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 161

5.2.2.4 DIS-RVM MONITORING AGENT

The following table points out the average and maximum values in sets of measured

parameters:

Category Average Maximum

Response time (in milliseconds):

Normal Load (1000 cycles) 10,35 150

Heavy Load (20000 cycles) 88,86 540

Throughput (samples/second):

Normal Load (1000 cycles) 31,25 34

Heavy Load (20000 cycles) 161,29 179

Network Load (kbits/second):

Normal Load (1000 cycles) 1254,32 1318,7

Heavy Load (20000 cycles) 6271,43 69,0518

CPU load (in %):

Normal Load (1000 cycles) 18,59 35,6

Heavy Load (20000 cycles) 92,43 99,9

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 162

The following plots depict performance measurements for the DIS-RVM Agent.

Normal Load Heavy Load

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000

Samples

R
e
s
p

o
n

s
e
 T

im
e
 (

m
il

li
s
e
c
o

d
s
)

Normal Load

0

100

200

300

400

500

600

0 5000 10000 15000 20000

Samples

R
e
s
p

o
n

s
e
 T

im
e
 (

m
il

li
s
e
c
o

d
s
)

Heavy Load

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

Time (seconds)

S
a

m
p

le
s

 C
o

u
n

t

Normal Load

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140

Time (seconds)

S
a

m
p

le
s

 C
o

u
n

t

Heavy Load

0

200

400

600

800

1000

1200

1400

0 10 20 30 40

Time (sec)

N
e
tw

o
rk

 L
o

a
d

 (
k
b

it
s
)

Bandwidth (Normal Load) Moving Average

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150

Time (sec)

N
e
tw

o
rk

 L
o

a
d

 (
k
b

it
s
)

Bandwidth(Heavy Load) Moving Average

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 163

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

Time (seconds)

C
P

U
 L

o
a

d
 i
n

 %

Normal Load

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

Time (seconds)

C
P

U
 L

o
a

d
 i
n

 %

Heavy Load

Figure 67. DIS-RVM Monitoring Agent – Performance Measurements

Internal structure of the DIS-RVM Monitoring Agent is much simpler than of the MÄK

RTI Monitoring Agent. It uses a shared memory mechanism for communication with the DIS-

RVM system. Consequently, the results are better than for the MÄK RTI Monitoring Agent.

Although the response time for the normal case is close to the one of the MÄK RTI

Monitoring Agent, the responsiveness in the heavy load case is quite close to the one of the

System Monitoring Agent (100-200 milliseconds in average).

Besides, the throughput is again about 30/160 messages per second, which is very similar

to the measurements for the system agents.

The CPU load is also comparable to the results of the System Control Agent. It is not

greater than 40% for the normal load case and it is close to 100% for the heavy load.

In the same way, the reliability and fault tolerance were reconfirmed.

5.2.3 CONCLUSIONS

The performance tests showed limits of the proposed approach. The average response time

varies up to 30 milliseconds, for the normal load case, while in the heavy load case, it does

not exceed 350 milliseconds. Meanwhile for the heavy load, the 3 second peaks in response

time are quite often. That means that message-handling engine was often overloaded in this

case. On the other hand, in the normal load case, the responsiveness is comparable to

middleware based on binary protocols (CORBA, JAVA RMI).

Considering the CPU load tests, 150 requests per second charge heavily a CPU and can

block a supervised system. Therefore, heavily loaded components like supervision consoles

are better to deploy in separate hosts.

In the supervision solution for the DIS-RVM system, it is planned to use two-three

monitoring agents per host maximum, and, in average, three supervision operations per agent.

Thus, considering one-second periodic subscription, there will be, in general, six-nine

outcoming messages per second for each host. In this way, this load is much less than the one

in the “normal” load scenario and, thus, in regard to responsiveness and CPU load, it can be

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 164

assumed that the developed prototype can be used for supervision of the Distributed Training

scenario.

However, the network tests pointed out that the overhead is about 38 kbits per

request/response message pair (calculated as a ratio of the average network load parameter to

the average throughput), which is critical for applications with strict bandwidth requirements,

like the DIS-RVM system. Hence, for the DIS-RVM system, the supervision approach can be

applied only locally. As the result of this evaluation, the validation session for the Distributed

Training was conducted in LAN and, in addition, involved remote hosts with a fast Internet

access. One can refer to section 5.4.2 for more details. Besides, one can find the results of the

measurements of an overall network load during Distributed Training validation sessions

there.

The importance of bandwidth issues is diminished in LANs and broadband WAN. Besides,

the test approach concerned only periodic monitoring, therefore the network load can be

optimised using event based subscription mechanism. Moreover, the situation can be

improved by means of intelligent summarisers that locally collect the monitoring information

and eventually send reports or alarms. In addition, in critical cases one can consider to use

supervision approaches based on a binary protocol and to use the proposed concept as a

gateway for communication with third party frameworks.

It is worth mentioning that even for the heavy load case, there were no corrupted or

dropped messages during all the tests (more than 80000 cycles). This undoubtedly confirms

reliability and fault tolerance of the proposed concept.

In the next section a description of the user validation process starts with the Preliminary

Design Review scenario.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 165

5.3 PRELIMINARY DESIGN REVIEW SCENARIO

As it was mentioned above, this scenario deals with a Collaborative Engineering system. In

this case, an end-user application scenario provides an important method to verify how the

supervision concept does actually meet the user expectations and needs. In particular, the

PDR scenario should check the middleware capabilities in a widely distributed application.

Besides, the end-users will evaluate the following aspects:

• Comprehensiveness: an ability to simultaneously supervise multiple parameters –

operating systems, network and applications;

• Interoperability: an ability of heterogeneous components to cooperate among

themselves. In this case, it is an ability of the C++ adapter agents to cooperate with

Java based consoles;

• Portability: an ability of the agents to run under different operating systems;

• Ease of deployment.

The end-user validation activities have been organised in the context of the Preliminary

Design Review (PDR) scenario. The PDR scenario is based on real processes handled in the

space domain called program reviews. Descriptions of these processes and of the real projects

(for example, the Automated Transfer Vehicle) PDR applies on are given in the Introduction

and Prototype sections.

The following sections describe the validation activities in detail.

5.3.1 SCENARIO DESCRIPTION

The developed supervision system provides functionality to enhance the existing PDR

application to:

• Supervise distributed PDR system including: EDB server and clients, groupware,

logs, etc.

• Supervise PDR sessions live including: user management, session logs, etc.

• Supervise the PDR application execution environment including: operating systems

and network accessibility of the involved hosts.

The validation scenario verifies the requirements by means of scenario rehearsals

involving different groups of users:

Actors:

PDR scenario has the following actors representing different entities in a PDR process:

• The Reviewers - their role is to review RIDs (Review Item Discrepancy), to

recommend corrective actions, etc.;

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 166

• The Review Manager - he will invite the participants for a review and supervise the

session in terms of document management during the session (supervision of a

review session);

• The Application Administrator - he is in charge of all PDR application and

GroupWare tools on application level. He uses the supervision system to retrieve

specific information about PDR application. In case of a system problem, he reports

it to the System Administrator;

• The System Administrator - he is in charge of the operating system level of the

entire system. It includes system installation and maintenance. He uses the

supervision system to determine and solve problems.

The RID Review use-case was selected for the PDR scenario. During this use-case,

Reviewers comment on documents according to the issued RIDs using PDR application and

discuss modifications using groupware tools. Meanwhile, administrators monitor and

maintain PDR system and groupware tools.

These actions are outlined in the following table in detail.

PDR Process Actions: Administrators Actions:

1. Establish video conference

session.

The reviewers arrange a video

conference session and try to join the

conference server.

The administrators check the network status,

connectivity and servers status using supervision

system. In case of emergency, they try to recover the

PDR Process.

2. Video conference session.

The reviewers discuss agenda of the

meeting.

The administrators check the network status,

connectivity and servers status using supervision

system. In case of emergency, they try to recover the

PDR Process.

3. EDB session.

The reviewers enter EDB system and

chose a document to review. After the

RID discussion, they leave their

comments in the system.

The administrators check the network status,

connectivity and servers status using supervision

system.

Application administrator verifies permanently the

EDB system status.

5.3.2 VALIDATION PROCESS

The validation sessions involved all GeneSyS partners from France, Germany, Hungary

and Russia. The Figure 68 shows the PDR and supervision elements repartition.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 167

EDB Client

System Agent

Network Agent

System Console

Generic Console

Console host:

GTI6-DSE

Server

System Agent

Network Agent

DSE Agent

VisioConf Server:

Tomcat Server

Oracle Database

System Agent

Network Agent

Tomcat Agent

EDB agent

EDB server:

EADS-ST Paris, France

Internet

Firewall

EDB Client

System Agent

Network Agent

System Console

Generic Console

Console host:

EDB Client

System Agent

Network Agent

System Console

Generic Console

Console host:

EDB Client

System Agent

Network Agent

System Console

Generic Console

Console host:

EDB Client

System Agent

Network Agent

System Console

Generic Console

Console host:

CORE

System Agent

GeneSyS core:

HLRS Stuttgard, GermanyNAVUS St. Petersburg,

Russia

D3Group Moscow,

Russia

MTA SZTAKI Budapest,

Hungary

Firewall

Figure 68. PDR Scenario Validation Platform

The participants at each platform played the scenario several times according to the plan

described earlier. In addition, in order to check the supervision system reaction, the reviewers

inserted some failures, while administrators tried to detect them. These failures included:

• CPU, Memory, Disk overload;

• network overload, connection break;

• improper video tool settings;

• EDB server access violation attempts, faulty operations with the documents.

All users reflected their observations in the evaluation forms for post-analyses.

5.3.3 RESULTS

The PDR scenario illustrated the applicability of the proposed middleware to the

collaborative systems supervision. The validation activities and user evaluation forms showed

the following situation concerning the compliance of the supervision system:

Requirement: Validity is tested by:

Interoperability/Portability The System Monitoring Console, the EDB, Tomcat, GTI6-

DSE,RTT and SNMP agents are Java based, while System

agents are native applications, built on C++. In addition, the

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 168

supervision system is deployed on hosts using Windows,

Linux operating system. These components working together

prove interoperability and portability of the proposed

middleware.

Flexibility The agents use complex messages that contain different kind

of data in different forms (complex parameters, lists, etc.).

The communication mechanism supports Query/Response

and Publish Subscribe for periodic events. These aspects

show certain flexibility of the supervision middleware.

Reliability Users imitated fault simulations that were successfully

detected. However, reaction time was rather long due to

supervision system settings.

Ease of deployment The components are easy to deploy. However, deploying and

maintaining of tens of the components are rather time-

consuming tasks.

The following section elaborates the applicability in another industrial context – distributed

interactive simulations.

5.4 DISTRIBUTED TRAINING SCENARIO

As it was mentioned earlier, this scenario deals with a distributed interactive simulation for

training of astronauts and ground controllers. In this case, an end-user application scenario

provides an important method to verify how the supervision concept does actually meet the

user expectations and needs. In particular, the Distributed Training scenario is intended to

verify the middleware capabilities in systems with strict responsiveness constraints. Finally,

the end-users validate the following aspects at a new level:

• Comprehensiveness: an ability to simultaneously supervise multiple parameters –

operating systems, network and applications;

• Interoperability: an ability of heterogeneous components to cooperate among

themselves. In this case, it is an ability of the C++ adapter agents to cooperate with

Java based consoles;

• Portability: an ability of the same agents to run under different operating systems.

In the scenario the System Control agent for Linux operating system, which is C++

adapter based, was also successfully used for the Windows operating system;

• Control: The scenario introduces an ability of agents to react, while the PDR

scenario involved supervision system for monitoring only;

• Simple Intelligence: A summarising view concept, presented in the Prototype

section, implements a simple intelligence solution that highlights a system health

status and allows a simple error detection;

• Flexibility: The supervision system operation involved different types of data,

which were successfully encoded according to the architectural requirements.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 169

The end-user validation activities have been organised in the context of the Distributed

Training scenario and are elaborated in the following sections in detail.

5.4.1 SCENARIO DESCRIPTION

The validation process involves different groups of actors:

• The trainees: they are plugged to their simulation application through their

specific GUI: for example, for the astronauts, it is the International Space Station

control panel, while for the ground controllers it is the Flight Controller Position

Workstation from the Control Room;

• The instructors: they interact together to select and run a given exercise. For

instance, they introduce a contingency situation to verify that the trainees recognise

the event and timely react to it by applying a proper procedure;

• The technical operators: they are in charge of controlling their local infrastructure

as well as the network access. They should constantly monitor it and immediately

react to prevent or correct a contingency situation. For these purposes, the technical

operators use the developed supervision system.

The validation scenario is divided into 3 different phases that are described below.

Simulator Start Up

During this phase, technical operators perform the following tasks:

• System configuration: All the simulation hosts should have NTP service (process)

running, NTP configuration should be properly set-up (single NTP server should be

used as a time reference on all the simulation hosts)

• RTI Configuration and Startup: RTI shall be configured by means of:

o RTI Initialisation Data File (RID file). Such a file should be identical on all

the simulation hosts.

o Environment variables to be set depending on installation of RTI

components on a particular host.

In addition, RTI should be started on a pre-defined host before a simulation

session.

• Federation Configuration: This configuration should be performed by putting an

appropriate Federation Execution Data (FED) file to the predefined directories on

the simulation hosts.

• Application Configuration and Start-up: DIS-RVM uses a certain number (up to

20) of configuration files and most of them should be identical on all the simulation

hosts. Some of those files are specific for each simulation (training) session and

have to be properly set-up each time a new session is scheduled. Besides, the

federates-simulators should be started in a particular order.

The technical operators use DIS-RVM console to accomplish the DIS-RVM system start-

up and to check overall system health status. When the system reports a “ready” status, the

operators launch the simulation sessions for the instructors and the trainees.

Simulation Session

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 170

During this phase, the trainees play the Rendez-Vous and Docking mission scenario

performing ATV approach and docking manoeuvres, while the Instructor inserts

contingencies to the ATV and ISS federates behaviour.

The technical operators monitor system health status, detect system failures and try to

recover them. To check this functionality, users emulate the following system failures:

• System Failures: CPU, Memory, Disk overloads;

• Network Failures: Connection break;

• Application failure: termination of the Federates.

Closedown and Post-analysis

Upon completion of a simulation session, technical operators should perform the following

tasks:

• Shutdown DIS-RVM federates

• Shutdown RTI

• Retrieve (over network) Simulation Data Recorder files and log files of each

federate for further post-analysis by training instructors.

These tasks are performed by the operators via the DIS-RVM console.

5.4.2 VALIDATION PROCESS

The DIS-RVM software and supervision system were deployed in the EADS Space

Transportation premises, while Control Host and the Public Core (Directory Server) were

accessed via the Internet. The repartition of the components is depicted in Figure 69.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 171

3D Viewer

System Agent

Herbert

ISS Federate

MCC Federate

System Agent

Lovecraft

ATV Federate

ATV-CC Federate

Federation Manager

System Agent

DIS-RVM Agent

Tolkien King

EADS-ST Validation Platform

Internet

MÄK Rti Exec

System Agent

RTI Agent

Public Core

Directory

Server

DIS-RVM Console

DIS-RVM

Console

Control Host

Figure 69. Distributed Training Scenario Validation Platform

Although the simulation process and training were conducted locally, the supervision was

held both locally at EADS-ST premises and remotely accessing the validation platform via the

Internet.

In addition to stand-alone performance tests, the network load was measured during the

scenario rehearsals. The results of one of these tests can be found in Figure 70.

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900 1000

Time (sec)

N
e
tw

o
rk

 L
o

a
d

 (
k
b

it
s
)

Bandwidth Moving Average

Figure 70. Distributed Training Scenario Network Load Measurement

The average network load was about 200kbit/s, which does not actually meet the

requirements of the DIS-RVM system. This result is rather predictable according to the results

of the performance tests. Most of the traffic consumption concerned periodic monitoring of

the system, middleware and application parameters. Therefore, one can consider to use more

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 172

intelligent summarising and event based monitoring. This would visibly diminish the network

load.

Nevertheless, even 200kbit/s seems to be acceptable consumption for a wide range of

application, since nowadays 512kbit/s is a usual bandwidth guaranteed by Internet Service

Providers. 2Mbits/s and a larger bandwidth are available for a reasonable price and cannot be

viewed as extraordinary. Telecom operators provide faster and faster Internet services and

thus the outlined consumption issues will not be a stop factor for future distributed systems.

In addition, the above-mentioned consumption is quite acceptable in LANs. Hence, one of

the options could be to locally deploy the proposed supervision approach and to diminish

remote supervision by event-based summary and corrective commands.

As for the user validation sessions, the scenario rehearsals were performed in the same way

as for the PDR scenario, i.e. different users played the all three phases of the scenario and

inserted some faults that were successfully detected. Remarks of the actors were collected in

evaluation forms for a post-analysis.

5.4.3 RESULTS

In spite of the above-mentioned consumption issues, the Distributed Training scenario

showed applicability of the proposed supervision concept in another context of distributed

applications – HLA compliant Distributed Interactive Simulations.

In addition, this scenario evolved performance aspects of the supervision approach,

showing applicability limits. Agents could handle about 30 supervision requests per second

without overcharging the hosting operating system. Even with 150 requests per second, there

were no broken or missing messages, though the response time decreased considerably, as

well as CPU load increased. This undoubtedly proves fault tolerance and reliability of the

developed solution.

Considering the end-user validation, after analysis of the validation sessions and evaluation

forms, the following requirements can be assumed as validated from a user’s point of view:

Requirement: Validity is tested by:

Interoperability/Portability DIS-RVM Console is Java based, while all agents are native

applications, built on C++. In addition, the supervision

system is deployed on hosts using Windows, Linux operating

system. This all proves interoperability and portability of the

proposed middleware regarding programming languages and

operating systems.

Flexibility The agents use complex messages that contain different

kinds of data in different forms. The communication

mechanism supports Query/Response and Publish/Subscribe

for periodic and asynchronous events.

Intelligence The DIS-RVM console implemented special GUI that

provided summarising view for status evaluation of the

system health.

Reliability Users imitated fault simulations that were successfully

detected. However, reaction time was rather long due to

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 173

supervision system settings.

Ease of deployment The components are easy to deploy. However, deploying and

maintaining tens of the components are rather time-

consuming tasks, because of multiple configuration files to

be managed.

The distributed supervision system relies on network services. However, the validation

sessions showed that the detection of a connection break took a lot of time. This fact is an

implementation issue, which could be identified only during user validation. It concerns the

underlying Web Services middleware, which is based on SOAP-RPC protocol over HTTP.

This protocol is stateless, in other words, a link is brought up every time a message is sent.

Thus, a network connection failure can be detected only by sending periodically “ping”

messages. Therefore, the reaction time cannot be greater than the period of ping messages.

Consequently, to manage this issue, a solution can consist in involving network agents that

permanently maintain connectivity and detect abnormal termination of a link.

The following section summarises the overall evaluation results.

5.5 CONCLUSIONS

The evaluation activities contained three phases representing different points of view:

development lessons learned, performance tests and validation by end-users. These activities

considered all the requirements for the supervision middleware as outlined below:

• Comprehensiveness: the developed solutions provided supervision on all the

levels, i.e. system, network, middleware and application;

• Interoperability: during development interoperability issues were successfully

solved. This resulted in adapters for C++, Java and PHP that will be reused for a

further development;

• Flexibility: the supervision solutions required encoding of different data structures

in supervision messages. The XML permitted to effectively manage this task.

Besides, various communication mechanisms were implemented, i.e. single

query/response, periodic notification, event-based notification;

• Support of Intelligence: A simple intelligence solution was implemented to

demonstrate the flexibility. The summarising concept involved monitoring

information evaluation at a delegate level and generic visualisation on a supervisor

level. Although, it required additional specialised fields in each message, this

confirms comprehensiveness and flexibility of the proposed approach;

• Reliability and fault tolerance: The performance tests verified the ability of the

agents to work under a stress load. The supervision system behaved predictably

and no messages were missing or corrupted. Moreover, end-users inserted

contingencies during validation sessions, which were successfully detected;

• Ease of development: several adapters were developed for connection with the

supervision framework. These adapters provide a paradigm for fast agent

development and help to avoid interoperability issues. Besides, existing agents

(freely available at [56]) may serve as examples;

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 174

• Ease of deployment: all the agents are stand-alone and do not require any

additional libraries. Also, the agents can be deployed in web and application

servers as web applications. However, deploying and configuring multiple agents

may be a difficult task, which is a subject to further development.

The concept did not elaborate security aspects, because the Web-Service security is a well-

developed domain with multiple implementations as described in the section 4.3.2.8. These

specifications were constantly developing at the moment of prototyping, thus application level

security implementation on an up-to-date level was blocked. Meanwhile, a transport level

security (HTTPs) is a matter of configuration of Web Servers, hosting supervision agents.

The main added-value of this work is an investigation of the applicability limits of the

concept. The performance elaborates this question, in regard to the responsiveness and system

resources load. Although, the overhead of about 38 kbits is a usual situation in the XML

world, this characteristic is unacceptable for the DIS-RVM system as it was specified.

However, locally or in a broadband WAN, the supervision solution can still be applied and

shows rather acceptable results, as it was demonstrated in section 5.4.2.

The performance tests consisted of two general cases: the normal load (1 request per 20ms)

and the heavy load (20 concurrent requests per 20ms). The normal load case represents an

estimation of a usual situation, while the heavy load case represents a stress test.

Considering the responsiveness in the normal load case, the most important result is that

the prototype showed response time (1-20 ms) comparable to middleware based on binary

protocols. The throughput in this case was about 20-30 handled requests per second

depending on agent realisation. While CPU load varied from 8% for the System Monitoring

Agent and up to 40% for other agents.

In the stress case, the response time varied up to three-second peaks, while throughput did

not exceed 200 handled requests per second. The CPU load also depended on agent

implementation. Although for the System Monitoring Agent it was rather acceptable (40%),

for the other agents a CPU was heavily charged (100%) that inevitably affected the operating

system. However, the most important result of this series of tests is that, even under stress

conditions, all the requests were successfully processed and there were no abnormal

interruptions of the handling and no missing or broken messages. This explicitly proves

reliability and fault tolerance of the prototype in regard to stress situations.

In the meantime, the validation by the end-users demonstrated the concept applicability to

collaborative engineering and distributed interactive simulation domains from a user’s point

of view. The actors played the predefined scenarios and inserted some faults that were

detected in time. They pointed to usability issues in the PDR scenario that were solved in the

Distributed Training scenario. They also evaluated an impact of the supervision to an overall

system responsiveness to be acceptable.

All this permits to assume that the Web Services are applicable to distributed supervision

systems to solve a wide range of problems.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 175

Chapter 6. CONCLUSIONS

This section provides a work summary and outlines directions of possible further

researches.

6.1 SUMMARY

The first part of this document introduces the context – complex systems, distributed

systems, system supervision. The industrial problems present two complex systems in the

spacecraft manufacturing domain (PDR and DIS-RVM systems) that illustrate the definitions

and provide motivation for the present research. In addition, these examples serve to specify

requirements for the supervision middleware and give particular details. These requirements

were heavily used lately to evaluate the concept on the developed prototype.

The third chapter presents a state of the art in supervision technologies and frameworks. It

identifies that the protocol based (SNMP) and interface/middleware based standards (JMX)

determine the architectures of the major supervision frameworks (Unicenter TNG, OpenView,

Tivoli etc.). This section also provides an analysis of the frameworks capabilities in regard to

the identified requirements. In this way, the constraints of the available solutions motivate

further research in the domain of the supervision middleware.

The fourth chapter starts with a comparison of middleware technologies. As a result, this

analysis permits to assume that a Web Services based solution could provide advantages of

the protocol based and middleware based frameworks. Therefore, it was decided to

investigate the applicability of the Web Services for a supervision middleware.

The overview of the Web Services in the continuation shows flexibility of this technology

and contributes to a better understanding of the architecture section. It outlines basic aspects

of the XML technologies and provides a road map of Web Services security.

Further on the chapter presents the key value, i.e. a generic architecture of a supervision

system based on the Web Services. It includes description of the basic components,

operations, encoding of service information and a general example of a payload encoding.

This architecture is the main innovation of this work and it was implemented in the GeneSyS

project during the prototyping.

The fourth chapter ends with the description of the author’s contribution to the prototyping,

which allowed verifying of the proposed concept in the context of real industrial problems.

The developed supervision systems for collaborative engineering (PDR system) and

distributed interactive simulations (DIS-RVM system) implement the proposed supervision

approach. Besides, the simple approaches for agent collaboration and information

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 176

summarising demonstrate the concept flexibility and its comprehensiveness. The C++ adapter

effectively solves interoperability issues and provides means to rapidly develop new agents.

The fifth chapter presents another important added-value of the current work, i.e.

evaluation of the concept applicability. The main results of the performance tests are that the

average overhead of the proposed solution (service information encoding) is about 38 kbits

per request/response message pair. Although this result is usual for the XML world, it clearly

indicates that the supervision solution is not acceptable for the DIS-RVM system according to

its specification (64kbps). However, as it showed lately, in local area networks and broadband

wide area networks, the result is rather acceptable, since for the DIS-RVM system the average

bandwidth consumption was about 200kbps. Moreover, the applied approach mostly relies on

a periodic monitoring, while the intelligent event-based solution would significantly decrease

the network load. Besides, the event-based approach has already been implemented in the

MÄK RTI Monitoring Agent and, thus, it is available for further investigation.

In addition, the performance tests showed that under certain conditions (1 request per

20ms) the Web Service based solution shows the responsiveness (1 ms) comparable to

middleware based on binary protocols. Moreover, even under the stress tests that charged

CPU in 100%, the agents behaved correctly, though the response time decreased significantly.

No corrupted or missing messages were detected. Hence, this proves reliability and fault

tolerance in regard to a stress usage.

In the meantime, the end-user validation activities demonstrated concept usability. They

were organised in validation scenarios making real actors evaluate middleware operation from

a user’s point of view. Besides, the system successfully resisted to contingencies that were

inserted by actors, i.e. network connection breaks, operating system overload, application

abnormal terminations and etc. The reviewers positively evaluated the proposed approach,

which was noted in the validation forms.

All these actions confirmed the compliance with the requirements outlined in the

introduction chapter. In this way, the performance tests permit to assume that the current

approach is applicable for a wide range of problems, where flexibility and interoperability are

of major interest.

6.2 TECHNOLOGICAL IMPACT

The current section elaborates industrial impact of the Web Services for the distributed

system supervision.

Recently, several workgroups provided their specifications for the Web Services dealing

with system supervision. These specifications include:

• OASIS MUWS - Management Using Web Services;

• OASIS-WSRF - WS-ResourceDescription, WS-Notification;

• WS-Management - WS-Eventing, WS-Enumeration from Microsoft;

• WSLA - Web Service Level Agreements.

The architectures proposed in these specifications are surprisingly similar to the concept

architecture considered in this thesis and implemented in the GeneSyS project. Besides, the

above-mentioned initiatives are still in the early stages, without any real implementation or a

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 177

use-case, while the validation activities of the GeneSyS project resulted in supervision

systems for:

• Collaborative Engineering – EADS-ST PDR System;

• Distributed Interactive Simulation – EADS-ST DIS-RVM System;

• Web Servers – MTA SZTAKI Dictionary.

In addition, the GeneSyS results are planned to be used in the following projects in

scientific and industrial domains:

• EU IST FP6 projects ASPIC and BROADWAN;

• Collaborative robotics (University of Würzburg);

• MMOG middleware (Fraunhofer Gesellschaft);

• Mobile game platform (University of Turin);

• SMASH supercomputers based on FPGA devices;

• Tallisys CRUK project.

All this permits to assume that a considerable success of the GeneSyS project explicitly

proves applicability of the proposed concept.

6.3 DIRECTIONS FOR FUTURE RESEARCHES

The work has raised multiple questions that can be shortly summarised in the following

list:

• A common architecture for the middleware adapters should help to develop

generic design patterns for supervision agents;

• Investigation of an efficient encoding of service information and payload would

help to optimise network traffic;

• Supervision agents choreography would elaborate auto-discovery, auto-

configuration capabilities and improve agents collaboration;

• Researches in peer-to-peer networks of supervision agents seem to be a logical

continuation of the agents choreography;

• Further research in the intelligence for system supervision would permit to

establish automatic recovery based on system reactions and trends;

• Collaboration with the standardisation groups like WBEM (CIM) and WSDM

(OASIS) would move the concept towards standardisation.

6.4 AFTERWORD

According to SUN Microsystems, the computer is a network. According to Intel, the

distributed systems move towards the peer-to-peer networks. According to Microsoft, the

Web Services are a panacea. In any case, the distribution problems evolve the need of the

system supervision.

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 179

Chapter 7. BIBLIOGRAPHY

[1] The GeneSyS project official web-site. http://genesys.sztaki.hu

[2] WordIQ dictionary http://www.wordiq.com

[3] Zhir Tari, Omar Bukhres. “Fundamentals of Distributed Object Systems: The CORBA

Perspective”, John Wiley&Sons, Inc. 2001.

[4] ECSS Space Engineering, System Engineering (ECSS-E-10A). ESA-ESTEC

Requirements & Standard Division, Noordwijk, The Netherlands.

[5] IEEE standard 1516: IEEE Standard for Modelling and Simulation (M&S) High Level

Architecture (HLA) - Framework and Rules. 2000.

[6] IEEE standard 1516.2: HLA OMT -- High Level Architecture Object Model Template

Spec. 2000

[7] High Level Architecture Federation Development and Execution Process (FEDEP)

Model. Version 1.0. 6 September 1996

[8] RFC-792 – ICMP. http://rfc.net/rfc792.html

[9] Simple Network Management Protocol, http://www.snmp.org

[10] Sun Java web-site, http://java.sun.com

[11] IBM Tivoli, http://www 306.ibm.com/software/tivoli/

[12] HP OpenView, http://www.openview.hp.com/

[13] Nagios, http://www.nagios.org/

[14] Andrew Tanenbaum, “Distributed Operating Systems”, Prentice Hall, 1994, ISBN:

0132199084

[15] Gunter Rackl, “Monitoring and Managing Heterogeneous Middleware”, Ph.D. thesis,

Technische Universitat Munichen, 2001,

 http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2001/rackl.pdf

[16] I. Liabotis, O. Prnjat, L. Sacks, “Policy-Based Resource Management for Application

Level Active Networks”, Second IEEE Latin American Network Operations and

Management Symposium LANOMS 2001; Belo Horizonte, Brazil, August 2001

[17] O. Prnjat, T. Olukemi, I. Liabotis, L. Sacks, “Integrity and Security of the Application

Level Active Networks”, IFIP Workshop on IP and ATM Traffic Management

WATM’2001 and EUNICE’2001; Paris, France, September 2001

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 180

[18] Wokoma, I. Liabotis, O. Prnjat, L. Sacks, I. Marshall, “A Weakly Coupled Adaptive

Gossip Protocol for Application Level Active Networks”, IEEE 3rd International

Workshop on Policies for Distributed Systems and Networks - Policy 2002, Monterey,

CA, USA, June 2002;

[19] I. Liabotis, O. Prnjat, L. Sacks; “Self-Organizing Resource Discovery Protocol for

ALAN”, IFIP Fifth Annual International Working Conference on Active Networks

(IWAN), December 10-12, 2003 at Kyoto Research Park, Kyoto, Japan

[20] A. A. Sebyala, T. Olukemi, L. Sacks, “Active Platform Security through Intrusion

Detection Using Naïve Bayesian Network for Anomaly Detection”, London

Communications Symposium, London, UK, 2002

[21] Wijngaards, N.J.E., Overeinder, B.J., Steen, M. van and Brazier, F.M.T., “Supporting

Internet-Scale Multi-Agent Systems”, Data and Knowledge Engineering (2002), Vol. 41,

Number 2-3, pp. 229-245

[22] Overeinder, B.J., Wijngaards, N.J.E., Steen, M. van and Brazier, F.M.T. (2002),

“Multi-Agent Support for Internet-Scale Grid Management”, Proceedings of the AISB'02,

Symposium on AI and Grid Computing, pp. 18-22, 2002

[23] Kun Yang, Alex Galis, Telma Mota, Stelios Gouveris, “Automated Management of IP

Networks Through Policy and Mobile Agents”, Proceedings of the 4th International

Workshop on Mobile Agents for Telecommunication Applications, 2002, ISBN:3-540-

00021-6

[24] K. Yang, A. Galis, T. Mota, A. Michalas, “Mobile Agent Security Facility for Safe

Configuration of IP Networks”, Second International Workshop on SECURITY OF

MOBILE MULTIAGENT SYSTEMS (SEMAS-2002), Bologna, Italy, 2002

[25] T. Mota, S. Gouveris, G. Pavlou, A. Michalas, J. Psoroulas, “Quality of Service

Management in IP Networks Using Mobile Agent Technology”, Mobile Agents for

Telecommunication Applications : 4th International Workshop, MATA 2002, Barcelona,

Spain, October 23-24, 2002

[26] P. Felber, X. Defago, P. Th. Eugster, A. Schiper, “Replicating CORBA objects: a

marriage between active and passive replication”, Proceedings of the IFIP WG 6.1

International Working Conference on Distributed Applications and Interoperable Systems

II, 1999, ISBN:0-7923-8527-6

[27] R. Capobianchi, A. Coen-Porisini, D. Mandrioli, A. Morzenti, “A framework

architecture for supervision and control systems”, ACM Computing Surveys (CSUR)

archive, Volume 32 , Issue 1es, March 2000, ISSN:0360-0300

[28] F. Marotta, A. Morzenti, D. Mandrioli, “Modeling and Analyzing Real-Time CORBA

and Supervision & Control Framework and Applications”, The 21st International

Conference on Distributed Computing Systems, Mesa, AZ, USA, April 16 - 19, 2001

[29] The Open Group. The Open Group Portal to DCE. http://www.opengroup.org

[30] The Object Management Group. http://www.omg.org

[31] Microsoft Corporation. http://www.microsoft.com

[32] Foundation for Intelligent Physical Agent http://www.fipa.org

[33] XML Specification, http://www.w3.org/TR/REC-xml

[34] XML Design and Implementation, by Paul Spencer, Wrox Press Ltd., 1999

http://www.opengroup.org/
http://www.omg.org/
http://www.microsoft.com/

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 181

[35] XML Schema Standard, http://www.w3.org/TR/xmlschema-2/

[36] SAX Parser Specification, http://www.saxproject.org/

[37] DOM Parser Specification, http://www.w3.org/TR/DOM-Level-2-Core/

[38] World Wide Web Consortium specifications http://www.w3c.org and UDDI

organisation http://www.uddi.org

[39] Agentlink project http://www.agentlink.org

[40] Web Services organisation http://www.webservices.org

[41] James Snell, Doug Tidwell, Pavel Kulchenko: “Programming Web Services with

SOAP” O’Reilly&Associated, Inc. January 2002

[42] Heather Kreger: “Web Services Conceptual Architecture” IBM Software Group, May

2001. http://www-3.ibm.com/software/solutions/webservices/pdf/WSCA.pdf

[43] Luis Arguello, Alexander Vankov, Petr Chliaev, Vladimir Voloshinov, Valery

Krivtsov, Oleg Estehin, Alexander Alyoshin, Alexander Vislotsky, Andrey Sadovykh :

"Distributed Learning with Online Simulations for ISS Payload Training" ESA/ESTEC

Conference, Noordwijk, The Netherlands, November 2002

[44] A. Sadovykh, S. Wesner, J-E Bohdanowicz: "GeneSyS: A Generic Architecture for

Supervision of Distributed Applications" EuroWeb 2002 Conference Proceedings, pp. 38-

42, Oxford, UK, December 2002

[45] Birrell, A.D. & Nelson, B.J. "Implementing Remote Procedure Calls." ACM

Transactions on Computer Systems 2, 1 (February 1984): 39-59.

[46] RFC 2616, Hypertext Transfer Protocol - HTTP/1.1, June, 1999.

http://www.normos.org/ietf/rfc/rfc2616.txt

[47] Simple Object Access Protocol specification, W3C, http://www.w3.org/TR/SOAP/

[48] Web Service Description Language, W3C, http://www.w3.org/TR/WSDL/

[49] UDDI Version 3.0. Published Specification, 19 July 2002. http://uddi.org/pubs/uddi-

v3.00-published-20020719.htm

[50] UDDI Programmers API, http://www.uddi.com/pubs/ProgrammersAPI-V1.01-Open-

20010327_2.pdf

[51] Apache Soap 2.3+ and Apache Axis Client Interoperability Results

http://www.apache.org/~rubys/ApacheClientInterop.html

[52] Security in a Web Services World: A Proposed Architecture and Roadmap, 2002.

http://www-106.ibm.com/developerworks/library/ws-secmap/

[53] MÄK RTI Reference Manual, Revision RTI-2.0.1-1-030530, 2003.

http://www.mak.com

[54] Apache JMeter homepage, http://jakarta.apache.org/jmeter/

[55] Ethereal Network Protocol Analyser homepage, http://www.ethereal.com/

[56] The GeneSyS project SourceForge file repository,

http://www.sourceforge.net/projects/genesys-mw

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 182

Chapter 8. LIST OF PUBLICATIONS

1. Luis Arguello, Alexander Vankov, Peter Shlyaev, Vladimir Voloshinov, Valery

Krivtsov, Oleg Estehin, Alexander Alyoshin, Alexander Vislotsky and Andrey

Sadovykh: “DISTRIBUTED LEARNING WITH ONLINE SIMULATIONS”,

ESA/ESTEC Conference: 7th International Workshop on Simulation for European

Space Programmes, Noordwijk, The Netherlands - November, 2002

2. A. Sadovykh, S. Wesner, J-E Bohdanowicz: "GeneSyS: A Generic Architecture for

Supervision of Distributed Applications", EuroWeb 2002 Conference Proceedings,

pp. 38-42, Oxford, UK, December 2002

3. Jean-Eric Bohdanowicz, Antoine Laydier, Peter Shlyaev, Alexander Vankov,

Vladimir Voloshinov and Andrey Sadovykh: “GeneSyS Project: Supervision of

Distributed Systems”, EuroSIW03: European Simulation Interoperability Workshop

2003, Stockholm, Sweden - June, 2003

4. Andrey Sadovykh, “Innovative Concept of Generic System Supervision”, DAIS

FMOODS 2003 Conference: PhD Workshop, Paris, France - November, 2003

5. Jean-Eric Bohdanowicz, Antoine Laydier, Peter Shlyaev, Vladimir Voloshinov,

Alexander Vankov and Andrey Sadovykh, “GeneSyS Project: Supervision of

Distributed Training System for Astronauts and Ground Controllers (04E-SIW-

023)”, EuroSIW04: European Simulation Interoperability Workshop 2004,

Edinburgh, UK (Scotland) - June, 2004

6. Jean-Eric Bohdanowicz, Stefan Wesner, Laszlo Kovacs, Hendrik Heimer and

Andrey Sadovykh, “THE PROBLEMATIC OF DISTRIBUTED SYSTEMS

SUPERVISION - AN EXAMPLE : GENESYS”, IFIP WCC 2004 congress,

Toulouse, France – August, 2004

7. J.E. Bohdanowicz, L. Kovacs, B. Pataki, A. Sadovykh and S. Wesner, “GeneSyS:

Innovative Framework for Comprehensive Supervision

in Multiple Domains”, IADIS WWW / Internet 2004 Conference, Madrid, Spain –

October, 2004

8. J.-E. Bohdanowicz, L. Kovacs, B. Pataki, A. Sadovykh and S. Wesner, “On

Distributed System Supervision - A Modern Approach: GeneSyS”, Network Control

and Engineering for QoS, Security and Mobility, IFIP TC6 Conference, Palma de

Mallorca, Spain - November, 2004

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 183

Chapter 9. ANNEXES

9.1 CORE WEB SERVICES DEFINITION

WSDL Core.wsdl

WSDL location: \XSD\Core.wsdl

targetnamespace: http://core.namespace

services bindings porttypes messages

find find_SOAP_BINDING find_PORT_TYPE find_FAULT

getSiteList getSiteList_SOAP_BINDING getSiteList_PORT_TYPE find_REQUEST

register register_SOAP_BINDING register_PORT_TYPE find_RESPONSE

unregister unregister_SOAP_BINDING unregister_PORT_TYPE getSiteList_FAULT

updateRegistration updateRegistration_SOAP_BIN
DING

updateReqistration_PORT_TYP
E

getSiteList_REQUEST

 getSiteList_RESPONSE

 headerBlock

 register_REQUEST

 register_RESPONSE

 registration_FAULT

 unregister_REQUEST

 unregistration_FAULT

 updateRegistration_FAULT

 updateRegistration_REQUEST

service register

ports register_PORT

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 184

bin
ding

y:register_SOAP_BINDING

exte
nsibility

<soap:address location="No Target Adress"/>

source <service name="register">

 <port name="register_PORT" binding="y:register_SOAP_BINDING">

 <soap:address location="No Target Adress"/>

 </port>

</service>

service unregister

ports unregister_PORT

bin
ding

y:unregister_SOAP_BINDING

exte
nsibility

<soap:address location="No Target Adress"/>

source <service name="unregister">

 <port name="unregister_PORT" binding="y:unregister_SOAP_BINDING">

 <soap:address location="No Target Adress"/>

 </port>

</service>

service updateRegistration

ports updateRegistration_PORT

bin
ding

y:updateRegistration_SOAP_BINDING

exte
nsibility

<soap:address location="No Target Adress"/>

source <service name="updateRegistration">

 <port name="updateRegistration_PORT" binding="y:updateRegistration_SOAP_BINDING">

 <soap:address location="No Target Adress"/>

 </port>

</service>

service getSiteList

ports getSiteList_PORT

bin
ding

y:getSiteList_SOAP_BINDING

exte
nsibility

<soap:address location="No Target Adress"/>

source <service name="getSiteList">

 <port name="getSiteList_PORT" binding="y:getSiteList_SOAP_BINDING">

file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link029C7348

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 185

 <soap:address location="No Target Adress"/>

 </port>

</service>

service find

ports find_PORT

bin
ding

y:find_SOAP_BINDING

exte
nsibility

<soap:address location="No Target Adress"/>

source <service name="find">

 <port name="find_PORT" binding="y:find_SOAP_BINDING">

 <soap:address location="No Target Adress"/>

 </port>

</service>

binding register_SOAP_BINDING

type y:register_PORT_TYPE

extensibi
lity

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

operatio
ns

Register

exte
nsibility

inp
ut

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/><soap:body parts="agentInfo"
use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

out
put

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/><soap:body parts="agentId"
use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

used by Service register in Port register_PORT

source <binding name="register_SOAP_BINDING" type="y:register_PORT_TYPE">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="Register">

 <input>

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:body parts="agentInfo" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <output>

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:body parts="agentId" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </output>

 <fault name="registrationFault">

 <soap:header message="y:headerBlock" part="header" use="encoded"

file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02ABE860
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02B76DB8
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link0733ED30
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link0280FDC0

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 186

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:fault name="registrationFault" use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </fault>

 </operation>

</binding>

binding unregister_SOAP_BINDING

type y:unregister_PORT_TYPE

extensibi
lity

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

operatio
ns

Unregister

exte
nsibility

<soap:operation soapAction="urn:#Unregister"/>

inp
ut

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

out
put

used by Service unregister in Port unregister_PORT

source <binding name="unregister_SOAP_BINDING" type="y:unregister_PORT_TYPE">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="Unregister">

 <soap:operation soapAction="urn:#Unregister"/>

 <fault name="unregistrationFault">

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:fault name="unregisterFault" use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </fault>

 <soap:operation soapAction="urn:#Unregister"/>

 <input>

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 </operation>

</binding>

binding updateRegistration_SOAP_BINDING

type y:updateReqistration_PORT_TYPE

extensibi
lity

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

operatio
ns

UpdateRegistration

exte
nsibility

<soap:operation soapAction="urn:#UpdateRegistration"/>

inp
ut

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/><soap:body parts="agentInfo"
use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02B675F8
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02B0D6C8
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02B1CD08
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02AE9AC0

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 187

out
put

used by Service updateRegistration in Port updateRegistration_PORT

source <binding name="updateRegistration_SOAP_BINDING" type="y:updateReqistration_PORT_TYPE">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="UpdateRegistration">

 <soap:operation soapAction="urn:#UpdateRegistration"/>

 <input>

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:body parts="agentInfo" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <soap:operation soapAction="urn:#UpdateRegistration"/>

 <fault name="updateRegistrationFault">

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:fault name="updateRegistrationFault" use="literal"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </fault>

 </operation>

</binding>

binding getSiteList_SOAP_BINDING

type y:getSiteList_PORT_TYPE

extensibi
lity

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

operatio
ns

GetSiteList

exte
nsibility

<soap:operation soapAction="urn:#GetSiteList"/>

inp
ut

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/><soap:body parts="ownerId"
use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

out
put

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/><soap:body parts="siteList"
use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

used by Service getSiteList in Port getSiteList_PORT

source <binding name="getSiteList_SOAP_BINDING" type="y:getSiteList_PORT_TYPE">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetSiteList">

 <soap:operation soapAction="urn:#GetSiteList"/>

 <input>

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:body parts="ownerId" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <soap:operation soapAction="urn:#GetSiteList"/>

 <output>

 <soap:header message="y:headerBlock" part="header" use="encoded"

file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02A86F00
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link0280C8A0
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02A8D5E0
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02B9CD58
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02844668

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 188

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:body parts="siteList" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </output>

 <fault name="getSiteListFault">

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:fault name="getSiteListFault" use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </fault>

 </operation>

</binding>

binding find_SOAP_BINDING

type y:find_PORT_TYPE

extensibi
lity

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

operatio
ns

Find

exte
nsibility

<soap:operation soapAction="urn:#Find"/>

inp
ut

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/><soap:body
parts="agentPoperty" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

out
put

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/><soap:body parts="agentList"
use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

used by Service find in Port find_PORT

source <binding name="find_SOAP_BINDING" type="y:find_PORT_TYPE">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="Find">

 <soap:operation soapAction="urn:#Find"/>

 <input>

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:body parts="agentPoperty" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <soap:operation soapAction="urn:#Find"/>

 <output>

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:body parts="agentList" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </output>

 <fault name="findFault">

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:fault name="findFault" use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </fault>

 </operation>

file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link027DFA28
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link07314D80
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02AD8F30

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 189

</binding>

porttype register_PORT_TYPE

operatio
ns

Register

inp
ut

y:register_REQUEST

out
put

y:register_RESPONSE

faul
t

y:registration_FAULT

used by binding register_SOAP_BINDING

source <portType name="register_PORT_TYPE">

 <operation name="Register">

 <input message="y:register_REQUEST"/>

 <output message="y:register_RESPONSE"/>

 <fault name="registrationFault" message="y:registration_FAULT"/>

 </operation>

</portType>

porttype unregister_PORT_TYPE

operatio
ns

Unregister

faul
t

y:unregistration_FAULT

inp
ut

y:unregister_REQUEST

used by binding unregister_SOAP_BINDING

source <portType name="unregister_PORT_TYPE">

 <operation name="Unregister">

 <fault name="unregistrationFault" message="y:unregistration_FAULT"/>

 <input message="y:unregister_REQUEST"/>

 </operation>

</portType>

porttype updateReqistration_PORT_TYPE

operatio
ns

UpdateRegistration

inp
ut

y:updateRegistration_REQUEST

faul
t

y:updateRegistration_FAULT

used by binding updateRegistration_SOAP_BINDING

source <portType name="updateReqistration_PORT_TYPE">

file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02A7FCF0
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link07339ED8
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link07339F30
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02ABCDA8
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link029DEDC8
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link073075C0
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02B0FA48
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link0283C800
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02B4D448
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02ADCF38

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 190

 <operation name="UpdateRegistration">

 <input message="y:updateRegistration_REQUEST"/>

 <fault name="updateRegistrationFault" message="y:updateRegistration_FAULT"/>

 </operation>

</portType>

porttype getSiteList_PORT_TYPE

operatio
ns

GetSiteList

inp
ut

y:getSiteList_REQUEST

out
put

y:getSiteList_RESPONSE

faul
t

y:getSiteList_FAULT

used by binding getSiteList_SOAP_BINDING

source <portType name="getSiteList_PORT_TYPE">

 <operation name="GetSiteList">

 <input message="y:getSiteList_REQUEST"/>

 <output message="y:getSiteList_RESPONSE"/>

 <fault name="getSiteListFault" message="y:getSiteList_FAULT"/>

 </operation>

</portType>

porttype find_PORT_TYPE

operatio
ns

Find

inp
ut

y:find_REQUEST

out
put

y:find_RESPONSE

faul
t

y:find_FAULT

used by binding find_SOAP_BINDING

source <portType name="find_PORT_TYPE">

 <operation name="Find">

 <input message="y:find_REQUEST"/>

 <output message="y:find_RESPONSE"/>

 <fault name="findFault" message="y:find_FAULT"/>

 </operation>

</portType>

message headerBlock

file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link027B4C70
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02A8A030
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02A9C348
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link029C7348
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02B8EA88
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02B97618
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link0733F1E8
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02ABE860

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 191

parts header

type ns:MandatoryHeaderBlockType

source <message name="headerBlock">

 <part name="header" type="ns:MandatoryHeaderBlockType"/>

</message>

message register_REQUEST

parts agentInfo

type ns:AgentInfo

used by PortType register_PORT_TYPE in Operation Register

source <message name="register_REQUEST">

 <part name="agentInfo" type="ns:AgentInfo"/>

</message>

message register_RESPONSE

parts agentId

type ns:ComponentId

used by PortType register_PORT_TYPE in Operation Register

source <message name="register_RESPONSE">

 <part name="agentId" type="ns:ComponentId"/>

</message>

message registration_FAULT

parts registrationFault

type ns:RegistrationFault

used by PortType register_PORT_TYPE in Operation Register

source <message name="registration_FAULT">

 <part name="registrationFault" type="ns:RegistrationFault"/>

</message>

message unregister_REQUEST

parts

used by PortType unregister_PORT_TYPE in Operation Unregister

source <message name="unregister_REQUEST"/>

file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02B76DB8
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link0733EAE0
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02B76DB8
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link0733EAE0
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02B76DB8
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link0733EAE0
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02B675F8
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link073076A0

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 192

message unregistration_FAULT

parts unregistrationFault

type ns:ServiceFault

used by PortType unregister_PORT_TYPE in Operation Unregister

source <message name="unregistration_FAULT">

 <part name="unregistrationFault" type="ns:ServiceFault"/>

</message>

message updateRegistration_REQUEST

parts agentInfo

type ns:AgentInfo

used by PortType updateReqistration_PORT_TYPE in Operation UpdateRegistration

source <message name="updateRegistration_REQUEST">

 <part name="agentInfo" type="ns:AgentInfo"/>

</message>

message updateRegistration_FAULT

parts updateRegistrationFault

type ns:ServiceFault

used by PortType updateReqistration_PORT_TYPE in Operation UpdateRegistration

source <message name="updateRegistration_FAULT">

 <part name="updateRegistrationFault" type="ns:ServiceFault"/>

</message>

message getSiteList_REQUEST

parts ownerId

type xs:string

used by PortType getSiteList_PORT_TYPE in Operation GetSiteList

source <message name="getSiteList_REQUEST">

 <part name="ownerId" type="xs:string"/>

</message>

file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02B675F8
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link073076A0
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02AE9AC0
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02B13BC8
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02AE9AC0
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02B13BC8
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02A8D5E0
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02828C00

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 193

message getSiteList_RESPONSE

parts siteList

type ns:SiteList

used by PortType getSiteList_PORT_TYPE in Operation GetSiteList

source <message name="getSiteList_RESPONSE">

 <part name="siteList" type="ns:SiteList"/>

</message>

message getSiteList_FAULT

parts getSiteListFault

type ns:ServiceFault

used by PortType getSiteList_PORT_TYPE in Operation GetSiteList

source <message name="getSiteList_FAULT">

 <part name="getSiteListFault" type="ns:ServiceFault"/>

</message>

message find_REQUEST

parts agentProperty

type ns:AgentProperty

used by PortType find_PORT_TYPE in Operation Find

source <message name="find_REQUEST">

 <part name="agentProperty" type="ns:AgentProperty"/>

</message>

message find_RESPONSE

parts agentList

type ns:AgentList

used by PortType find_PORT_TYPE in Operation Find

source <message name="find_RESPONSE">

 <part name="agentList" type="ns:AgentList"/>

</message>

message find_FAULT

parts findFault

type ns:DiscoveryFault

file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02A8D5E0
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02828C00
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02A8D5E0
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02828C00
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link027DFA28
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02A9D8B0
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link027DFA28
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02A9D8B0

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 194

used by PortType find_PORT_TYPE in Operation Find

source <message name="find_FAULT">

 <part name="findFault" type="ns:DiscoveryFault"/>

</message>

9.2 DELEGATE WEB SERVICES DEFINITION

WSDL Delegate.wsdl

WSDL location: \XSD\Delegate.wsdl

targetnamespace: http://supervisor.namespace

services bindings porttypes messages

getAgentInfo getAgentInfo_SOAP_BINDING getAgentInfo_PORT_TYPE getAgentInfo_FAULT

perform perform_SOAP_BINDING perform_PORT_TYPE getAgentInfo_REQUEST

query query_SOAP_BINDING query_PORT_TYPE getAgentInfo_RESPONSE

subscribe subscribe_SOAP_BINDING subscribe_PORT_TYPE headerBlock

unsubscribe unsubscribe_SOAP_BINDING unsubscribe_PORT_TYPE perform_FAULT

 perform_REQUEST

 perform_RESPONSE

 query_FAULT

 query_REQUEST

 query_RESPONSE

 subscribe_FAULT

 subscribe_REQUEST

 unsubscribe_FAULT

 unsubscribe_REQUEST

service getAgentInfo

ports getAgentInfo_PORT

bin
ding

y:getAgentInfo_SOAP_BINDING

exte
nsibility

<soap:address location="No Target Adress"/>

source <service name="getAgentInfo">

file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link027DFA28
file:///F:/andrey/doc/mipt/XSD/coreWsdl.doc%23Link02A9D8B0
file:///F:/andrey/doc/mipt/XSD/Delegate.wsdl
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02A85A08
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02A85CF0
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737E740
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737D948
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link028512E8
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02AA0BE0
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link07383510
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0283CF38
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link029DF968
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02ADBD80
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737ED50
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737D7C0
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link029D3C10
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02A81558
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0735DE50
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02ACDAD8
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link028133A8
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02AA0CD0
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02B7B9A8
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737E4D0
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737E120
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737E178
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737DC48
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737DA48
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737DB48
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737DE48
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737DD48
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737E048
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737DF48
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02A85CF0

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 195

 <port name="getAgentInfo_PORT" binding="y:getAgentInfo_SOAP_BINDING">

 <soap:address location="No Target Adress"/>

 </port>

</service>

service query

ports query_PORT

bin
ding

y:query_SOAP_BINDING

exte
nsibility

<soap:address location="No Target Adress"/>

source <service name="query">

 <port name="query_PORT" binding="y:query_SOAP_BINDING">

 <soap:address location="No Target Adress"/>

 </port>

</service>

service subscribe

ports subscribe_PORT

bin
ding

y:subscribe_SOAP_BINDING

exte
nsibility

<soap:address location="No Target Adress"/>

source <service name="subscribe">

 <port name="subscribe_PORT" binding="y:subscribe_SOAP_BINDING">

 <soap:address location="No Target Adress"/>

 </port>

</service>

service unsubscribe

ports unsubscribe_PORT

bin
ding

y:unsubscribe_SOAP_BINDING

exte
nsibility

<soap:address location="No Target Adress"/>

source <service name="unsubscribe">

 <port name="unsubscribe_PORT" binding="y:unsubscribe_SOAP_BINDING">

 <soap:address location="No Target Adress"/>

 </port>

</service>

file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02ADBD80
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02A81558
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02AA0CD0

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 196

service perform

ports perform_PORT

bin
ding

y:perform_SOAP_BINDING

exte
nsibility

<soap:address location="No Target Adress"/>

source <service name="perform">

 <port name="perform_PORT" binding="y:perform_SOAP_BINDING">

 <soap:address location="No Target Adress"/>

 </port>

</service>

binding getAgentInfo_SOAP_BINDING

type y:getAgentInfo_PORT_TYPE

extensibi
lity

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

operatio
ns

GetAgentInfo

exte
nsibility

inp
ut

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

out
put

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/><soap:body parts="agentInfo"
use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

used by Service getAgentInfo in Port getAgentInfo_PORT

source <binding name="getAgentInfo_SOAP_BINDING" type="y:getAgentInfo_PORT_TYPE">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetAgentInfo">

 <input>

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <output>

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:body parts="agentInfo" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </output>

 <fault name="getAgentInfoFault">

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:fault name="getAgentInfoFault" use="literal"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </fault>

 </operation>

</binding>

file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02AA0BE0
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737E740
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02A85A08
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02A8EE40

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 197

binding query_SOAP_BINDING

type y:query_PORT_TYPE

extensibi
lity

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

operatio
ns

Query

exte
nsibility

inp
ut

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/><soap:body
parts="supRequest" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

out
put

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/><soap:body
parts="supResponse" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

used by Service query in Port query_PORT

source <binding name="query_SOAP_BINDING" type="y:query_PORT_TYPE">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="Query">

 <input>

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:body parts="supRequest" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <output>

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:body parts="supResponse" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </output>

 <fault name="queryFault">

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:fault name="queryFault" use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </fault>

 </operation>

</binding>

binding subscribe_SOAP_BINDING

type y:subscribe_PORT_TYPE

extensibi
lity

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

operatio
ns

Subscribe

exte
nsibility

inp
ut

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/><soap:body
parts="supRequest" use="encoded"

file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737ED50
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link029DF968
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02B224D0
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0735DE50

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 198

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

out
put

used by Service subscribe in Port subscribe_PORT

source <binding name="subscribe_SOAP_BINDING" type="y:subscribe_PORT_TYPE">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="Subscribe">

 <input>

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:body parts="supRequest" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <fault name="subscribeFault">

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:fault name="subscribeFault" use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </fault>

 </operation>

</binding>

binding unsubscribe_SOAP_BINDING

type y:unsubscribe_PORT_TYPE

extensibi
lity

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

operatio
ns

Unsubscribe

exte
nsibility

inp
ut

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/><soap:body
parts="supRequest" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

out
put

used by Service unsubscribe in Port unsubscribe_PORT

source <binding name="unsubscribe_SOAP_BINDING" type="y:unsubscribe_PORT_TYPE">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="Unsubscribe">

 <input>

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:body parts="supRequest" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <fault name="unsubscribeFault">

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:fault name="unsubscribeFault" use="literal"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </fault>

file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link029D3C10
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02B17200
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02B7B9A8
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link028133A8
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02B82190

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 199

 </operation>

</binding>

binding perform_SOAP_BINDING

type y:perform_PORT_TYPE

extensibi
lity

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

operatio
ns

Perform

exte
nsibility

inp
ut

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/><soap:body
parts="supRequest" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

out
put

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/><soap:body
parts="supResponse" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

used by Service perform in Port perform_PORT

source <binding name="perform_SOAP_BINDING" type="y:perform_PORT_TYPE">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="Perform">

 <input>

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:body parts="supRequest" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <output>

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:body parts="supResponse" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </output>

 <fault name="performFault">

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:fault name="performFault" use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </fault>

 </operation>

</binding>

porttype getAgentInfo_PORT_TYPE

operatio
ns

GetAgentInfo

inp
ut

y:getAgentInfo_REQUEST

out y:getAgentInfo_RESPONSE

file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link07383510
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link028512E8
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02B0F5D0
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0283CF38
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737D7C0

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 200

put

faul
t

y:getAgentInfo_FAULT

used by binding getAgentInfo_SOAP_BINDING

source <portType name="getAgentInfo_PORT_TYPE">

 <operation name="GetAgentInfo">

 <input message="y:getAgentInfo_REQUEST"/>

 <output message="y:getAgentInfo_RESPONSE"/>

 <fault name="getAgentInfoFault" message="y:getAgentInfo_FAULT"/>

 </operation>

</portType>

porttype query_PORT_TYPE

operatio
ns

Query

inp
ut

y:query_REQUEST

out
put

y:query_RESPONSE

faul
t

y:query_FAULT

used by binding query_SOAP_BINDING

source <portType name="query_PORT_TYPE">

 <operation name="Query">

 <input message="y:query_REQUEST"/>

 <output message="y:query_RESPONSE"/>

 <fault name="queryFault" message="y:query_FAULT"/>

 </operation>

</portType>

porttype subscribe_PORT_TYPE

operatio
ns

Subscribe

inp
ut

y:subscribe_REQUEST

faul
t

y:subscribe_FAULT

used by binding subscribe_SOAP_BINDING

source <portType name="subscribe_PORT_TYPE">

 <operation name="Subscribe">

 <input message="y:subscribe_REQUEST"/>

 <fault name="subscribeFault" message="y:subscribe_FAULT"/>

 </operation>

</portType>

file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737D948
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02A85CF0
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737DA48
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737DB48
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737DC48
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02ADBD80
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737DD48
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737DE48
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02A81558

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 201

porttype unsubscribe_PORT_TYPE

operatio
ns

Unsubscribe

inp
ut

y:unsubscribe_REQUEST

faul
t

y:unsubscribe_FAULT

used by binding unsubscribe_SOAP_BINDING

source <portType name="unsubscribe_PORT_TYPE">

 <operation name="Unsubscribe">

 <input message="y:unsubscribe_REQUEST"/>

 <fault name="unsubscribeFault" message="y:unsubscribe_FAULT"/>

 </operation>

</portType>

porttype perform_PORT_TYPE

operatio
ns

Perform

inp
ut

y:perform_REQUEST

out
put

y:perform_RESPONSE

faul
t

y:perform_FAULT

used by binding perform_SOAP_BINDING

source <portType name="perform_PORT_TYPE">

 <operation name="Perform">

 <input message="y:perform_REQUEST"/>

 <output message="y:perform_RESPONSE"/>

 <fault name="performFault" message="y:perform_FAULT"/>

 </operation>

</portType>

message headerBlock

parts header

type ns:MandatoryHeaderBlockType

source <message name="headerBlock">

 <part name="header" type="ns:MandatoryHeaderBlockType"/>

</message>

message getAgentInfo_REQUEST

file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737DF48
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737E048
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02AA0CD0
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737E120
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737E178
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737E4D0
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02AA0BE0

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 202

parts

used by PortType getAgentInfo_PORT_TYPE in Operation GetAgentInfo

source <message name="getAgentInfo_REQUEST"/>

message getAgentInfo_RESPONSE

parts agentInfo

type ns:AgentInfo

used by PortType getAgentInfo_PORT_TYPE in Operation GetAgentInfo

source <message name="getAgentInfo_RESPONSE">

 <part name="agentInfo" type="ns:AgentInfo"/>

</message>

message getAgentInfo_FAULT

parts getAgentInfoFault

type ns:ServiceFault

used by PortType getAgentInfo_PORT_TYPE in Operation GetAgentInfo

source <message name="getAgentInfo_FAULT">

 <part name="getAgentInfoFault" type="ns:ServiceFault"/>

</message>

message query_REQUEST

parts supRequest

type ns:MultipleRequest

used by PortType query_PORT_TYPE in Operation Query

source <message name="query_REQUEST">

 <part name="supRequest" type="ns:MultipleRequest"/>

</message>

message query_RESPONSE

parts supResponse

type ns:MultipleResponse

used by PortType query_PORT_TYPE in Operation Query

source <message name="query_RESPONSE">

 <part name="supResponse" type="ns:MultipleResponse"/>

file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737E740
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737E9B0
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737E740
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737E9B0
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737E740
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737E9B0
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737ED50
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0735DC48
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737ED50
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0735DC48

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 203

</message>

message query_FAULT

parts queryFault

type ns:ServiceFault

used by PortType query_PORT_TYPE in Operation Query

source <message name="query_FAULT">

 <part name="queryFault" type="ns:ServiceFault"/>

</message>

message subscribe_REQUEST

parts supRequest

type ns:MultipleRequest

used by PortType subscribe_PORT_TYPE in Operation Subscribe

source <message name="subscribe_REQUEST">

 <part name="supRequest" type="ns:MultipleRequest"/>

</message>

message subscribe_FAULT

parts subscribeFault

type ns:ServiceFault

used by PortType subscribe_PORT_TYPE in Operation Subscribe

source <message name="subscribe_FAULT">

 <part name="subscribeFault" type="ns:ServiceFault"/>

</message>

message unsubscribe_REQUEST

parts supRequest

type ns:MultipleRequest

used by PortType unsubscribe_PORT_TYPE in Operation Unsubscribe

source <message name="unsubscribe_REQUEST">

 <part name="supRequest" type="ns:MultipleRequest"/>

</message>

file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737ED50
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0735DC48
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0735DE50
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link029E9BD8
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0735DE50
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link029E9BD8
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02B7B9A8
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737EE68

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 204

message unsubscribe_FAULT

parts unsubscribeFault

type ns:ServiceFault

used by PortType unsubscribe_PORT_TYPE in Operation Unsubscribe

source <message name="unsubscribe_FAULT">

 <part name="unsubscribeFault" type="ns:ServiceFault"/>

</message>

message perform_REQUEST

parts supRequest

type ns:MultipleRequest

used by PortType perform_PORT_TYPE in Operation Perform

source <message name="perform_REQUEST">

 <part name="supRequest" type="ns:MultipleRequest"/>

</message>

message perform_RESPONSE

parts supResponse

type ns:MultipleResponse

used by PortType perform_PORT_TYPE in Operation Perform

source <message name="perform_RESPONSE">

 <part name="supResponse" type="ns:MultipleResponse"/>

</message>

message perform_FAULT

parts performFault

type ns:ServiceFault

used by PortType perform_PORT_TYPE in Operation Perform

source <message name="perform_FAULT">

 <part name="performFault" type="ns:ServiceFault"/>

</message>

file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link02B7B9A8
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link0737EE68
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link07383510
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link07383840
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link07383510
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link07383840
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link07383510
file:///F:/andrey/doc/mipt/XSD/delWsdl.doc%23Link07383840

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 205

9.3 SUPERVISOR WEB SERVICES DEFINITION

WSDL Supervisor.wsdl

WSDL location: \XSD\Supervisor.wsdl

targetnamespace: http://supervisor.namespace

services bindings porttypes messages

acceptMonitoringMessage accept_SOAP_BINDING accept_PORT_TYPE accept_FAULT

getAgentInfo getAgentInfo_SOAP_BINDING getAgentInfo_PORT_TYPE accept_REQUEST

 getAgentInfo_FAULT

 getAgentInfo_REQUEST

 getAgentInfo_RESPONSE

 headerBlock

service getAgentInfo

ports getAgentInfo_PORT

bin
ding

y:getAgentInfo_SOAP_BINDING

exte
nsibility

<soap:address location="No Target Adress"/>

source <service name="getAgentInfo">

 <port name="getAgentInfo_PORT" binding="y:getAgentInfo_SOAP_BINDING">

 <soap:address location="No Target Adress"/>

 </port>

</service>

service acceptMonitoringMessage

ports accept_PORT

bin
ding

y:accept_SOAP_BINDING

exte
nsibility

<soap:address location="No Target Adress"/>

source <service name="acceptMonitoringMessage">

 <port name="accept_PORT" binding="y:accept_SOAP_BINDING">

 <soap:address location="No Target Adress"/>

 </port>

</service>

file:///F:/andrey/doc/mipt/XSD/Supervisor.wsdl
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02B96A78
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02B60218
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02816408
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02B4A8F0
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02B96B78
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link073150D8
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02B4A7F0
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02B5BD80
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02B5BEA0
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02BA3A68
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link029D25C8
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link029C99F8
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link073150D8
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02B60218

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 206

binding getAgentInfo_SOAP_BINDING

type y:getAgentInfo_PORT_TYPE

extensibi
lity

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

operatio
ns

GetAgentInfo

exte
nsibility

inp
ut

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

out
put

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/><soap:body parts="agentInfo"
use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

used by Service getAgentInfo in Port getAgentInfo_PORT

source <binding name="getAgentInfo_SOAP_BINDING" type="y:getAgentInfo_PORT_TYPE">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetAgentInfo">

 <input>

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <output>

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:body parts="agentInfo" use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </output>

 <fault name="getAgentInfoFault">

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:fault name="getAgentInfoFault" use="literal"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </fault>

 </operation>

</binding>

binding accept_SOAP_BINDING

type y:accept_PORT_TYPE

extensibi
lity

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

operatio
ns

Accept

exte
nsibility

inp
ut

<soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/><soap:body
parts="supResponse" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

out

file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02B4A7F0
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02B96B78
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link029D7AA0
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02816408

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 207

put

used by Service acceptMonitoringMessage in Port accept_PORT

source <binding name="accept_SOAP_BINDING" type="y:accept_PORT_TYPE">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="Accept">

 <input>

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:body parts="supResponse" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <fault name="acceptFault">

 <soap:header message="y:headerBlock" part="header" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:fault name="acceptFault" use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </fault>

 </operation>

</binding>

porttype getAgentInfo_PORT_TYPE

operatio
ns

GetAgentInfo

inp
ut

y:getAgentInfo_REQUEST

out
put

y:getAgentInfo_RESPONSE

faul
t

y:getAgentInfo_FAULT

used by binding getAgentInfo_SOAP_BINDING

source <portType name="getAgentInfo_PORT_TYPE">

 <operation name="GetAgentInfo">

 <input message="y:getAgentInfo_REQUEST"/>

 <output message="y:getAgentInfo_RESPONSE"/>

 <fault name="getAgentInfoFault" message="y:getAgentInfo_FAULT"/>

 </operation>

</portType>

porttype accept_PORT_TYPE

operatio
ns

Accept

inp
ut

y:accept_REQUEST

faul
t

y:accept_FAULT

used by binding accept_SOAP_BINDING

source <portType name="accept_PORT_TYPE">

file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02B96A78
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link07317028
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02BA3A68
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link029D25C8
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02B5BEA0
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link073150D8
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02B5BD80
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02B4A8F0
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02B60218

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 208

 <operation name="Accept">

 <input message="y:accept_REQUEST"/>

 <fault name="acceptFault" message="y:accept_FAULT"/>

 </operation>

</portType>

message headerBlock

parts header

type ns:MandatoryHeaderBlockType

source <message name="headerBlock">

 <part name="header" type="ns:MandatoryHeaderBlockType"/>

</message>

message getAgentInfo_REQUEST

parts

used by PortType getAgentInfo_PORT_TYPE in Operation GetAgentInfo

source <message name="getAgentInfo_REQUEST"/>

message getAgentInfo_RESPONSE

parts agentInfo

type ns:AgentInfo

used by PortType getAgentInfo_PORT_TYPE in Operation GetAgentInfo

source <message name="getAgentInfo_RESPONSE">

 <part name="agentInfo" type="ns:AgentInfo"/>

</message>

message getAgentInfo_FAULT

parts getAgentInfoFault

type ns:ServiceFault

used by PortType getAgentInfo_PORT_TYPE in Operation GetAgentInfo

source <message name="getAgentInfo_FAULT">

 <part name="getAgentInfoFault" type="ns:ServiceFault"/>

</message>

file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02B4A7F0
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02816588
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02B4A7F0
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02816588
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02B4A7F0
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02816588

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 209

message accept_REQUEST

parts supResponse

type ns:MultipleResponse

used by PortType accept_PORT_TYPE in Operation Accept

source <message name="accept_REQUEST">

 <part name="supResponse" type="ns:MultipleResponse"/>

</message>

message accept_FAULT

parts acceptFault

type ns:ServiceFault

used by PortType accept_PORT_TYPE in Operation Accept

source <message name="accept_FAULT">

 <part name="acceptFault" type="ns:ServiceFault"/>

</message>

9.4 INFORMATION TYPES – XML SCHEMA

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v2004 rel. 2 U (http://www.xmlspy.com) by toto (toto) -->
<xs:schema targetNamespace="http://sup.types.namespace" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fault="http://fault.types.namespace" xmlns:sup="http://sup.types.namespace" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:import namespace="http://fault.types.namespace" schemaLocation="D:\andrey\thesis\XSD\faultTypes.xsd"/>
 <xs:simpleType name="SupervisionMessageType">
 <xs:annotation>
 <xs:documentation>Indicates Supervision Message</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="SupervisionMessage"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="ServiceMessageType">
 <xs:annotation>
 <xs:documentation>Indicates Service Message</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="ServiceMessage"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="SupervisorAgentType">
 <xs:annotation>
 <xs:documentation>Supervisor Type</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Supervisor"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="DelegateAgentType">
 <xs:annotation>

file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02816408
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02A7B3E8
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02816408
file:///F:/andrey/doc/mipt/XSD/supWsdl.doc%23Link02A7B3E8

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 210

 <xs:documentation>Delegate Type</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Delegate"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="QueryResponseInteractionModel">
 <xs:annotation>
 <xs:documentation>Query/Response Interaction Model</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="QueryResponse"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="EventSubscribeInteractionModel">
 <xs:annotation>
 <xs:documentation>Subscribe for Event Interaction Model</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="EventSubscribe"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="PerformInteractionModel">
 <xs:annotation>
 <xs:documentation>Perform Command Interaction Model</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Perform"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="ComponentId">
 <xs:annotation>
 <xs:documentation>Component Location Identification</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="coreId" type="xs:string"/>
 <xs:element name="ownerId" type="xs:string"/>
 <xs:element name="siteId" type="xs:string"/>
 <xs:element name="agentId" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="AgentType">
 <xs:annotation>
 <xs:documentation>Type of Agent</xs:documentation>
 </xs:annotation>
 <xs:choice>
 <xs:choice>
 <xs:element name="stype" type="sup:SupervisorAgentType"/>
 <xs:element name="dtype" type="sup:DelegateAgentType"/>
 </xs:choice>
 <xs:sequence>
 <xs:element name="stype" type="sup:SupervisorAgentType"/>
 <xs:element name="dtype" type="sup:DelegateAgentType"/>
 </xs:sequence>
 </xs:choice>
 </xs:complexType>
 <xs:complexType name="MessageType">
 <xs:annotation>
 <xs:documentation>Type of Message Service|Supervision</xs:documentation>
 </xs:annotation>
 <xs:choice>
 <xs:element name="sertype" type="sup:ServiceMessageType"/>
 <xs:element name="suptype" type="sup:SupervisionMessageType"/>
 </xs:choice>
 </xs:complexType>
 <xs:complexType name="InteractionModel">
 <xs:annotation>
 <xs:documentation>Interaction Model</xs:documentation>
 </xs:annotation>
 <xs:choice>
 <xs:sequence>

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 211

 <xs:element name="qrtype" type="sup:QueryResponseInteractionModel"/>
 <xs:choice>
 <xs:element name="estype" type="sup:EventSubscribeInteractionModel" minOccurs="0"/>
 <xs:element name="ptype" type="sup:PerformInteractionModel" minOccurs="0"/>
 </xs:choice>
 </xs:sequence>
 <xs:sequence>
 <xs:element name="estype" type="sup:EventSubscribeInteractionModel"/>
 <xs:choice>
 <xs:element name="qrtype" type="sup:QueryResponseInteractionModel" minOccurs="0"/>
 <xs:element name="ptype" type="sup:PerformInteractionModel" minOccurs="0"/>
 </xs:choice>
 </xs:sequence>
 <xs:sequence>
 <xs:element name="ptype" type="sup:PerformInteractionModel"/>
 <xs:sequence>
 <xs:element name="qrtype" type="sup:QueryResponseInteractionModel" minOccurs="0"/>
 <xs:element name="estype" type="sup:EventSubscribeInteractionModel" minOccurs="0"/>
 </xs:sequence>
 </xs:sequence>
 </xs:choice>
 </xs:complexType>
 <xs:complexType name="SupOperationDefinition">
 <xs:annotation>
 <xs:documentation>Definition of the Supervision Operations</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="namespace" type="xs:string"/>
 <xs:element name="schemaLocation" type="xs:anyURI"/>
 <xs:element name="input" type="sup:MultipleRequest"/>
 <xs:element name="output" type="sup:MultipleResponse"/>
 <xs:element name="fault" type="fault:SupervisionFault" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="interactionModel" type="sup:InteractionModel"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="AgentInfo">
 <xs:annotation>
 <xs:documentation>Agent Information</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="description" type="xs:string"/>
 <xs:element name="componentId" type="sup:ComponentId"/>
 <xs:element name="url" type="xs:anyURI"/>
 <xs:element name="availability" type="xs:boolean"/>
 <xs:element name="agentType" type="sup:AgentType"/>
 <xs:element name="operations">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:sequence>
 <xs:element name="opDefinitionLocation" type="xs:anyURI"/>
 </xs:sequence>
 <xs:sequence>
 <xs:element name="opDefinition" type="sup:SupOperationDefinition"/>
 </xs:sequence>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="MandatoryHeaderBlockType">
 <xs:annotation>
 <xs:documentation>Structure of Mandatory Header Block</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="sourceComponentId" type="sup:ComponentId"/>
 <xs:element name="destinationComponentId" type="sup:ComponentId"/>
 <xs:element name="timestamp" type="xs:long"/>
 <xs:element name="category" type="sup:MessageType"/>
 </xs:sequence>

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 212

 </xs:complexType>
 <xs:complexType name="AgentProperty">
 <xs:annotation>
 <xs:documentation>Agent Property</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="name" type="xs:string" minOccurs="0"/>
 <xs:element name="description" type="xs:string" minOccurs="0"/>
 <xs:element name="componentId" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="coreId" type="xs:string" minOccurs="0"/>
 <xs:element name="ownerId" type="xs:string" minOccurs="0"/>
 <xs:element name="siteId" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="url" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="availability" type="xs:boolean" minOccurs="0"/>
 <xs:element name="agentType" type="sup:AgentType" minOccurs="0"/>
 <xs:element name="operations" minOccurs="0">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:sequence>
 <xs:element name="opDefinitionLocation" type="xs:anyURI"/>
 </xs:sequence>
 <xs:sequence>
 <xs:element name="opDefinition" type="sup:SupOperationDefinition"/>
 </xs:sequence>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="AgentList">
 <xs:annotation>
 <xs:documentation>List of Agent Information</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="agentInfo" type="sup:AgentInfo" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="SiteList">
 <xs:annotation>
 <xs:documentation>List of Sites for Given Owner Id</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="ownerId" type="xs:string"/>
 <xs:sequence>
 <xs:element name="siteId" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="SimpleParameter">
 <xs:annotation>
 <xs:documentation>Geneneral Form of Supervision Parameter</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="type" type="xs:string"/>
 <xs:element name="value" type="xs:anyType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="NestedParameter">
 <xs:annotation>
 <xs:documentation>Structure of Nested Parameter in General Form</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="parameter" type="sup:SimpleParameter" maxOccurs="unbounded"/>
 <xs:element name="nest" type="sup:NestedParameter" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 213

 <xs:complexType name="SingleResponse">
 <xs:annotation>
 <xs:documentation>Geneneral Form of Supervision Response for Single Enty</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="sup:NestedParameter"/>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="MultipleResponse">
 <xs:annotation>
 <xs:documentation>Geneneral Form of Supervision Response for Multiple Entries</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="response" type="sup:SingleResponse" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="SingleRequest">
 <xs:annotation>
 <xs:documentation>General Form of Single Supervision Operation Request</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="requestParameter" type="sup:NestedParameter" minOccurs="0"/>
 <xs:element name="requestParametreType" type="xs:anyType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="MultipleRequest">
 <xs:annotation>
 <xs:documentation>General Form of Multiple Supervision Operations Request</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="request" type="sup:SingleRequest" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="agentInformation" type="sup:AgentInfo">
 <xs:annotation>
 <xs:documentation>Instance of Agent Information</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="mandatoryHeaderBlock" type="sup:MandatoryHeaderBlockType">
 <xs:annotation>
 <xs:documentation>Instance of Mandatory Header Block</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="supervisionResponse">
 <xs:annotation>
 <xs:documentation>Instance of Supervision Response in General Form</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="sup:MultipleResponse">
 <xs:sequence>
 <xs:element name="response" type="sup:SingleResponse" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="supervisionRequest">
 <xs:annotation>
 <xs:documentation>Instance of Request for Supervision Oprations in General Form</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="sup:MultipleRequest">
 <xs:sequence>
 <xs:element name="request" type="sup:SingleRequest" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 214

 </xs:complexType>
 </xs:element>
 <xs:element name="supOperation">
 <xs:annotation>
 <xs:documentation>Instance of Supervision Operation Definition</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="sup:SupOperationDefinition">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="input" type="sup:MultipleRequest"/>
 <xs:element name="output" type="sup:MultipleResponse"/>
 <xs:element name="faults" type="fault:SupervisionFault" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="interactionModel" type="sup:InteractionModel"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
</xs:schema>

9.5 FREE DISK SPACE CHECK EXAMPLE – XML SCHEMA

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v2004 rel. 2 U (http://www.xmlspy.com) by toto (toto) -->
<xs:schema targetNamespace="http://disk.example.namespace" xmlns:fault="http://fault.types.namespace"
xmlns:sup="http://sup.types.namespace" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:sys="http://disk.example.namespace" elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:import namespace="http://sup.types.namespace" schemaLocation="D:\andrey\thesis\XSD\supTypes.xsd"/>
 <xs:import namespace="http://fault.types.namespace" schemaLocation="D:\andrey\thesis\XSD\faultTypes.xsd"/>
 <xs:simpleType name="HostName">
 <xs:annotation>
 <xs:documentation>List of Hosts for Disk Info Example</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="King"/>
 <xs:enumeration value="Moorcock"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="DiskName">
 <xs:annotation>
 <xs:documentation>List of DiskNames</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="C:"/>
 <xs:enumeration value="D:"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="FreeSpace">
 <xs:annotation>
 <xs:documentation>Supervised Parameter Typr to be Requested/Returned</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:unsignedInt"/>
 </xs:simpleType>
 <xs:complexType name="DiskRequest">
 <xs:annotation>
 <xs:documentation>Example of Request Definition</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:restriction base="sup:MultipleRequest">
 <xs:sequence>
 <xs:element name="request" maxOccurs="unbounded">
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="sup:SingleRequest">
 <xs:sequence>

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 215

 <xs:element name="requestParameter">
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="sup:NestedParameter">
 <xs:sequence>
 <xs:element name="parameter" maxOccurs="unbounded">
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="sup:SimpleParameter">
 <xs:sequence>
 <xs:element name="type"
type="xs:string" fixed="sys:HostName"/>
 <xs:element name="value"
type="sys:HostName"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="nest" maxOccurs="unbounded">
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="sup:NestedParameter">
 <xs:sequence>
 <xs:element name="parameter"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction
base="sup:SimpleParameter">

 <xs:sequence>

 <xs:element name="type" type="xs:string" fixed="sys:DiskName"/>

 <xs:element name="value" type="sys:DiskName"/>

 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="nest"
type="sup:NestedParameter" minOccurs="0" maxOccurs="0"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="requestParametreType" type="xs:string"
default="sys:FreeSpace"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="DiskResponse">
 <xs:annotation>
 <xs:documentation>Example of Response Definition</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:restriction base="sup:MultipleResponse">

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 216

 <xs:sequence>
 <xs:element name="response" maxOccurs="unbounded">
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="sup:SingleResponse">
 <xs:sequence>
 <xs:element name="parameter">
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="sup:SimpleParameter">
 <xs:sequence>
 <xs:element name="type" type="xs:string"
fixed="sys:HostName"/>
 <xs:element name="value" type="sys:HostName"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="nest">
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="sup:NestedParameter">
 <xs:sequence>
 <xs:element name="parameter">
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="sup:SimpleParameter">
 <xs:sequence>
 <xs:element name="type"
type="xs:string" fixed="sys:DiskName"/>
 <xs:element name="value"
type="sys:DiskName"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="nest">
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="sup:NestedParameter">
 <xs:sequence>
 <xs:element name="parameter">
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction
base="sup:SimpleParameter">

 <xs:sequence>

 <xs:element name="type" type="xs:string" fixed="sys:FreeSpace"/>

 <xs:element name="value" type="sys:FreeSpace"/>

 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="nest"
type="sup:NestedParameter" minOccurs="0" maxOccurs="0"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>

Innovative Middleware Concept for Supervision of Complex Systems

This document is the property of EADS SPACE Transportation and shall not be communicated to third parties and/or reproduced without prior written agreement.

Its contents shall not be disclosed. © - EADS SPACE Transportation - 2005 217

 </xs:element>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="DiskFault" abstract="false" block="restriction" final="restriction" mixed="false">
 <xs:annotation>
 <xs:documentation>Example of Fault Definition</xs:documentation>
 </xs:annotation>
 <xs:complexContent mixed="false">
 <xs:restriction base="fault:SupervisionFault">
 <xs:sequence>
 <xs:element name="faultReason" type="xs:string" fixed="NetworkFalure"/>
 <xs:element name="description" type="xs:string" fixed="Network is not Available"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="DiskOp">
 <xs:annotation>
 <xs:documentation>Example of Operation Definition</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:restriction base="sup:SupOperationDefinition">
 <xs:sequence>
 <xs:element name="name" type="xs:string" fixed="DiskFreeSpaceCheck"/>
 <xs:element name="namespace" type="xs:string" fixed='sys="http://disk.example.namespace"'/>
 <xs:element name="schemaLocation" type="xs:anyURI"
default="D:\andrey\thesis\XSD\diskEx.xsd"/>
 <xs:element name="input" type="sys:DiskRequest"/>
 <xs:element name="output" type="sys:DiskResponse"/>
 <xs:element name="fault" type="sys:DiskFault"/>
 <xs:element name="interactionModel">
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="sup:InteractionModel">
 <xs:choice>
 <xs:sequence>
 <xs:element name="qrtype" type="sup:QueryResponseInteractionModel"/>
 </xs:sequence>
 </xs:choice>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="diskReq" type="sys:DiskRequest">
 <xs:annotation>
 <xs:documentation>Example of Local Time Request</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="diskRes" type="sys:DiskResponse">
 <xs:annotation>
 <xs:documentation>Example of Local Time Response</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="opDef" type="sys:DiskOp">
 <xs:annotation>
 <xs:documentation>Example of Local Time Operation Definition</xs:documentation>
 </xs:annotation>
 </xs:element>
</xs:schema>

