Laws of concurrent system
design

Tony Hoare
Microsoft Research

November 26, 2013

Colloguium d’Informatique UPMC

The Laws

What are they?
What do they mean?

Are t
Are t
Are t

ney useful?
ney true?

ney beautiful?

. Summary

1. The Laws

are algebraic equations like
2xpxq + gxq < (p+q) x (p+q)

Variables p, q, r, ...

 stand for specifications/designs/programs
describing all behaviours of a computer
that are desired/planned/actual

when the program is executed

* asingle behaviour is recorded
as a set of events,
occurring inside or near a computer system
while it is executing a program

Three operators

e then ; sequential composition
e with || concurrent composition
* skip I does nothing

Their intended meaning

then ; sequential composition
with || concurrent composition
skip I does nothing

p;q describes the behaviour resulting from
execution of p till completion
followed by execution of ¢

p||q describes their concurrent execution
p and q start together and finish together

Five Axioms

* assoC p;(q;r) = (p;a);r (also | |)
e comm plla = qllp
* unit pl|l = p =1]|p (also ;)

Reversibility

assoc p;(q;r) = (p;a);r (also | |)
comm plla = qllp
unit pl|l = p =1]|p (also ;)

swapping the order of operands of ; (or of ||)
translates each axiom into itself.

and each proof into a swapped proof.

Duality

* Metatheorem: (theorems for free)

When a theorem is translated by reversing the
operands of all ;s the result is also a theorem.

e (same for all ||s)

* Analogy: many laws of physics remain true
when the direction of time is reversed.

Refinement: p =>¢

* means every execution described by p
is also described by ¢
* in other words,

— program p is more predictable and more
controllable than program ¢

— program p meets spec ¢
— design p conforms to design q

AXiom

=> |s a partial order

— reflexive p=>p

— transitive if p=>q & g=>r then p=>r
swapping the operands of =>

translates each axiom into itself

justifies duality by order reversal
— if p=>q is atheorem proved from these axioms
SOis q=>p
(later axioms will violate this duality)

Monotonicity

e Definition: an operator ® is monotonic if
—p=>q implies per => ger
& rep => req

 Axioms: ; and || are monotonic

* |In a theorem, we can replace any subterm
of a term on the left (right) of =>
by one that is more (less) refined

Monotonicity

* Metatheorem::
et p=>q be atheorem
et F be a formula containing p.

et F' be a modification of F
that just replaces an occurrence of p by g

Then F=> F’ is also atheorem

Exchange Axiom
(plla); (P’[1a’) =>(p;p’) [(a;0)

LHS describes certain interleavings of RHS

— those where the two RHS ;s are synchronised
implemented by interleaving p with g
followed by an interleaving of g with ¢’

Exchange Axiom

* (plla); (P'I1a) = (p;p’) || (a;9)

* Theorem (frame): (p[|a);q" => pl|[(a;q’)
— Proof: substitute I for p’ in exchange axiom

* Theorem: p;q => pl|q’

— Proof: substitute I for q

* This axiom is self-dual by time-reversal
— but not by order-reversal

2. Applications

to Hoare logic
and to Milner transitions

The laws are useful

* for proof of correctness of programs/designs
— by means of Hoare logic
— (extended by concurrent separation logic)

— to describe the structure of proofs

* for design/proof of implementations
— using Milner transitions
— (extended by sequential composition)

— to describe the steps of execution.

The Hoare triple

* Definition: {p}qg{r} = p;g=>r
— If p describes what has happened so far,
— and then g is executed to completion,
— the overall execution will satisfy .

* Example: p and r may be ‘assertions’,
— describing all executions that leave the machine
in a state satisfying a given Boolean predicate.

The rule of composition

* Definition: {p}qg{r} = p;g=>r
* Theorem:
{p} g {si {stq’ {r}

{p} a;q’ {r}

Proof

e Definition: {p}q{r} = p;q=>r
e expanding the definition:
p:q => s s;q =>r
p;a;q" =>r

because ; is monotonic and associative

The rule of consequence

e Theorem

p’=>p {ptafr} r=>r
{p’}af{r}

4

Proof: monotonicity and transitivity

Modularity rule for ||

* in concurrent separation logic

{pta{r} {p’t g’ {r'}
{pllp’} (alla’) {r||r’}

— permits modular proof of concurrent programs.

* it is equivalent to the exchange law

Modularity rule implies Exchange law

e By reflexivity: p;g=>p;qg and p’;q =>p’;q’

* take these as antecedents of modularity rule
—replacing r, r’ by p;g and p;q’,

e After the same substitution, the conclusion of
the modularity rule gives

(pllp’); (alla’) => (p;a) || (p’;qa’)

— which is the Exchange law

Exchange law implies modularity

* Assume: p;a=>r and p’;q =>r
 monotonicity of | | gives
(p;a) || (pa’) => r||F
e the Exchange law says
(pllp’); (alla’) => (p;a) || (p"a’)
* by transitivity:
(pl1p°); (alla’) => rl|r
which is the conclusion of the modularity rule

Frame Rules

{pt aq{r}
{p||fta{r]||f}

— adapts a triple to a concurrent environment f
— proof: from frame theorem

{ptq{rt
{t;p} q {f;r}

— proof: mon, assoc of ;

The Milner triple: r-q->p

e definedas q;p => r
— (the time reversal of {p}q {r})

* r may be executed by first executing ¢

— with p as continuation for later execution.
— maybe there are other ways of executing r

 Tautology: (q;p) —g->p (CCS)

* Proof: from reflexivity: q;p => q;p

Technical Objection

Originally, Hoare restricted g to be a
program, and p,r to be state descriptions

Originally, Milner restricted p and r to be
programs, and q to be an atomic action.

These restrictions are useful in application.

And so is their removal in theory
— (provided that the axioms are still consistent).

Sequential composition

{p} a’ {s} {stqir}
{p}a’;q1{r}

r—g->s s—q’->p
r—(q;q’)->p

Proof: by time-reversal of the Hoare rule

Concurrency in CCS

r—p->g r'-p’->q’
(r1|r’) -(pllp’)-> (alla’)

Proof: by time-reversal of the modularity rule

* In Milner’s CCS, the rule is applied
only if p and p’ are synchronised, e.g.,
input and output on the same channel.

Frame Rules

r—g->p
(r] |f) —a->(p] |f)

— a step g possible for a single thread r is still
possible when r is executed concurrently with f

r—qg->p
(r;f) —=a->(p;f)

— operational definition of ;

The internal step

*r>P =g PE>T
— (the order reversal of refinement)

* implementation may make a refinement step

— reducing the range of subsequent behaviours

Rule of consequence

*p=>p {p’ta{r'} r'=>r
{p}q{r}

e r->yr r' —g->p’ n’->p
r—gq->p

e Eachruleis the dual of the other

— by order reversal and time reversal

Axioms proved from calculi

from Hoare from Milner

* p;(a\Vr) =>p;q \V p;r * (p\Va);r => (p;r) \/ (q;r)

* p;r\/a;r => (p\/a);r * p;q\V p;r => p;(g\V/r)
from both

* p;(a;r) => (p;a);r
* (p;a);r => p;(q;r)
e exchange law

Message

Both the Hoare and Milner rules are derived from the same
algebra of programming.

The algebra is simpler than each of the calculi,
and stronger than both of them combined.

Deductive and operational semantics are mutually
consistent, provided the laws are true

3. The laws are true

of a realistic mathematical model
of real program behaviour

Behaviours

e are sets of events
— occurring in and around a computer
— that is executing a program

e Let Ev be the set of all occurrences
— of all such events
— that ever were, or ever could be

Happens before (=)

e let e,f,g € Ev (sets of event occurrences).

* e 2> f isintended to mean (your choice of) :

— “the occurrence e is an immediate and necessary
cause of the occurrence f”

— “the occurrence f directly depends (depended) on
the occurrence e”

— “e happens before f” “f happens aftere”

Examples: software

nh output =2 nthinput (on a reliable channel)
nth V (acquire) =2 nth P (release)
(on an exclusion semaphore)
nth assignment > read of the nt" value assigned
(to a variable in memory)

read of nt" value =2 (n+ 1)t assignment
(in strong memory)

Precedes/follows

e Define < as (2)*

— the reflexive transitive closure of =2

o

— Define > as <
 Examples:

— allocation of a resource

— disposal of a resource

(the converse of <)

VA

every use of it

> every use of it

Interpretations

e e<f & f<e means

—e and f are (parts of) the same atomic action

* not e<f & not f<e means

—e and f are independent of each other
— their executions may overlap in time,

— or one may complete before the other starts

Cartesian product

* let p,g,r € Ev

— behaviours are sets of event occurrences
* Define pxq = {(ef) | ecp&f&qg}
— the Cartesian product
e Theorem: px(qUr) = pxqU pxr
gxp U rxp

(QUr)xp

Composition

M

Let p,q,r Ev (behaviours)
let seq C Ev x Ev (arbitrary relation)
Define p;q = pUqg if pxg C seq
& p, q are defined
— and is undefined otherwise

Define p E gas p=q or pisundefined

Theorem: ; is monotonic wrto <

Theorem: (p;q);r = p;(q;r)
* Proof: when they are both defined, each side

isequalto (pUqgUr).

 We still need to prove that LHS is defined iff
ant RHS is defined.

Theorem: (p;q);r = p;(q;r)

LHS is defined iff (by definition of ;)
pxqCseq &(pUq)xr C seq

iff pxgCseq & pxr & seq & gxr C seq (*)
iff px(qUr) C seq & qgxr C seq (*)

iff RHS is defined
*(by x distrib U)

Sequential composition (strong)

Define seq = <

Then p;q is (strong) sequential composition
means that p must finish before g starts
— every event in p comes before every eventin p

Example: Ev is NN < is numerical <
—{1,7,19},;{21, 32} = {1, 7, 19, 21, 32}
—{1,7,19}; {19, 32} isundefined

Sequential composition (weak)

* Define seq = not >
 Then p;q is (weak) sequential composition
* means that p can finish before g starts

— no eventin g comes before any eventin p

— but g can often start before end of p,

provided the exchanged events are independent.

Concurrent Composition

Define par = EvXEv
Note: seq C par = par’ (converse)
Theorem: pxq C par
Define pllq =pUqg

Theorem: || is associative and commutative.

and satisfies exchange law with ; (weak)

Examples

* Example: Ev is NN
—{1,7,19};{21,32} = {1,719, 21, 32}
—{1,7,19}; {19, 32} is undefined

—{1, 7, 19} |43, 10, 32} = {1, 3, 7, 10, 19, 32}

(allq); (rllr)=>(q;r)|l(q";r)

* Proof: when LHS is defined, it equals RHS
qgUr uq ur

(allq); (rllr)=>(q;r)|l(q";r)

LHS defined iff gxq € par & rxr C par
&(qUg)x(rUr’) C seq
implies axrUgxrUagxrUgxr C seq
implies g’ xr" C seq & qgxr & seq
& (qUTr) x (g Ur)C par

implies RHS defined.

4. The laws are useful

Tools for Software Engineering

Verification Compilation

Testing

based on semantics

Verification Compilation
deductive (Hoare) operational (Milner)

Testing
denotational (Scott)

Laws prove consistency

Verification Compilation
deductive operational

0

Testing
denotational

5. Conclusion

The Laws

 The laws are useful
— they shorten formulae, theorems, proofs
— they prove consistency of proof rules

with the implementation

* The laws are true
— of specifications, designs, products
— hardware/software/the real world

e The laws are beautiful

|Isaac Newton

Communication with Richard Gregory (1694)

“Our specious algebra [the infinitesimal
calculus] is fit enough to find out [is ok as a
heuristic], but entirely unfit to consign to writing
and commit to posterity.”

Bertrand Russell

* The method of postulation has many
advantages. They are the same as the
advantages of theft over honest toil.

Introduction to Mathematical Philosophy.

Gottfried Leibnitz

e Calculemus.

Examples: hardware

* arising edge > next falling edge on same wire

* arising edge = rising edge on another wire

I\l

Example: Petri nets

e -2 f&Ff 2> g
e 2 f&Ff 2> g

Message sequence chart

app sql net

Additional operators

* p\/g describesall traces of p and all of ¢
— describes options in design
— choice (non-determinism) in execution

* p/\q describes all traces of both p and g
— conjunction of requirements (aspects) in design
— lock-step concurrency in execution

Axioms

* \/is the disjunction and /\ is the conjunction
of a Boolean Algebra (even with negation).
 Axiom: ; and || distribute through \/
— which validates reasoning by cases

— and implementation by non-deterministic
selection

Choice

* {ptqgfir} {pta’ {r}
{p}(a\/q’){r}

— both choices must be correct
— proof: distribution of ; through \/

r—g->p
(r\/r)—g->p
— only one of the alternatives is executed
— proof: r =>r\/r

Axioms proved from calculi

from Hoare from Milner

* p;(a\Vr) =>p;q \V p;r * (p\Va);r => (p;r) \/ (q;r)

* p;r\/a;r => (p\/a);r * p;q\V p;r => p;(g\V/r)
from both

* p;(a;r) => (p;a);r
* (p;a);r => p;(q;r)
e exchange law

