
Self-adjusting Data
Structures

Robert E. Tarjan, Princeton University

Paris, 15 June 2022

What is a data structure?

A way to store information so that queries and updates are fast

What is the best structure for the required operations?

Simple operations, but many of them

Dictionary

Store a set of items (keys), each with some data

Operations:
access(x): Find key x and return its data
insert(x): Insert key x with its data
delete(x): Delete key x and its data

Amortization

When doing a sequence of operations, we may not care about the cost
of individual operations. Our goal is to minimize the total cost of the
sequence.
We can afford expensive operations if there are enough cheap ones.

Can we use this idea in the design and analysis of data structures?

Amortize: to liquidate a debt by installment payments.
From Medieval Latin: to reduce to the point

of death.
In analysis of algorithms: to pay for the total cost of a
sequence of operations by charging each operation an

equal (or appropriate) amount.

Beyond the worst case

By allowing some expensive operations if they are balanced by many
cheap ones, we expand the design space.
We can allow “out of balance” structures, as long as they are “in
balance” often enough.
If the sequence of operations has some structure, we would like to
exploit this.
Are there “self-adjusting” data structures, which adapt to the way they
are used?

Two examples

Self-adjusting search trees

Self-adjusting heaps

Dictionary

Store a set of items (keys), each with some data

Operations:
access(x): Find key x and return its data
insert(x): Insert key x with its data
delete(x): Delete key x and its data

Dictionary data structures

List accessed by sequential search
Direct-access array: array indices are keys
Hash table: array indices are functions of the keys
Array ordered by key, accessed by binary search
Search tree, accessed by binary search

Binary search
Universe of keys is totally ordered, allowing binary

comparisons
Binary search: Store keys in S in sorted order
To access x in S:

If S empty, stop (x not in S).
If S non-empty, compare x to some item y in S.

If x = y, stop (x found).
If x < y, search in {z in S|z < y}.
If x > y, search in {z in S| z > y}.

Binary search tree

F

M

X

P

D

B E

Binary tree

Each node has a left child and a right child, either or
both of which can be missing (null)

Each except one, the root, is a child of exactly one
node, its parent

Each node has pointers to its children
Left (right) subtree of a node contains all nodes

reachable from its left (right) child

Binary search tree

Each node holds a key and its data
Keys are in symmetric order: keys in left (right) subtree

of x are less than (greater than) x
Access is by binary search from the root
To access a key takes O(d) time, where d = number of

nodes on path from root
To make accesses fast, make paths short

Binary search tree

F

M

X

P

D

B E

Best case

All leaves have depths within 1: depth ëlgnû. (lg:
base-two logarithm)

Can achieve if tree is static (or insertion order is known
off-line)

E

MB

F I L O RD TA

G S

Q

K

C JH P U

How to do inserts, deletes?

First, find any method, then refine or modify it to make it fast
Leaf insertion: follow the access path, insert key in a new node
attached where the search falls off the bottom of the tree

Leaf Insertion
Insert R

F

M

X

P

D

B E

R

Worst case
A natural but bad insertion order: sorted.
Insert A, B, C, D, E, F, G,…

Worst-case access cost is n.
= list!

A

B

C

D

E

F

G

Classic solution: keep the tree balanced

Maintain a local balance condition so that all path lengths are O(log n)

AVL trees: Adelson-Velsky, Landis 1971
red-black trees: Bayer 1972, Guibas and Sedgewick 1978
MANY others…

We need:
A balance condition
A way to restructure the tree during an update to maintain
balance

An AVL tree
(image from Wikipedia)

A red-black tree
(image from Wikipedia)

Restructuring primitive: rotation

rotate at x rotate at y
y

x

x

y

A B

C A

B C

z z

right

left

22

Rebalancing

During an insertion, do rotations and update balance data to restore
balance

AVL tree insertion: rebalance bottom-up on access path after insertion
Red-black tree insertion: can rebalance either bottom-up after

insertion or top-down during the access

Guarantees O(log n) access, insertion (and deletion) time

Balanced tree drawbacks

Rebalancing algorithms have many cases
typically 6 for insert, 8 for delete

Must store balance data (but maybe only 1 or 2 bits)

In practice, access is not uniform

Is there a way to take advantage of non-uniform access?

Self-adjusting data structure
During each operation, including accesses, restructure to make future
operations faster

Measure speed by total time of all operations
not worst-case time per operation

Goal: small amortized time = worst-case total time/#operations

Can we design such data structures?

Can we prove that they are fast?

Self-adjusting binary search tree

Idea: move each accessed key to the root, via rotations
If the key is accessed again soon, this access will be fast

First try: move to root via bottom-up rotations

Bad example: access in order

n accesses in sorted order take n2/2 node visits
and reproduce the original tree!

6

5

4

3

2

1

1

6

5

4

3

2

1

2

6

5

4

3

3

2

1

6

5

4

6

5

4

3

2

1

Second try: Splay Trees (Sleator and T 1983)

Splay: to spread out
splay(x): moves x to root via rotations, two at a time.

Rotation order is generally bottom-up, but if the
current node and its parent are both left or both right
children, the top rotation is done first

x.p = parent of node x
splay(x): while x.p ¹ null do
if x.p.p = null then rotate(x) zig
else if x is left and x.p is right or x is right and

x.p is left then {rotate(x), rotate(x)} zig-zag
else {rotate(x.p), rotate(x)} zig-zig

zig

zig-zag

zig-zig

y

x

z

y

x

z

y

x

C

BA

B C
A

D

D

C

BA

x

y

CB

A

x
y z

DCBA

x

y

z
A

B

C D

root

Splay: pure zig-zag

7

1

6

2

5

3

4

7

1

6

2

4

3 5

7

1

4

2

3

6

5

4

1

2

3

7

6

5

Splay: pure zig-zig

7

6

5

4

3

2

1

7

6

5

4

1

2

3

7

6

1
4

52

3

1

6

7

5

4

2

3

Depth halving

If y is on the path to x, splay(x) roughly halves the depth of y
No node increases in depth by more than two

Operations on splay trees

Access x: follow access path to x, then splay(x)
Insert x: follow access path to null, replace by x, splay(x)
Delete x: follow access path to x, swap with successor if x is in a node

with two children, delete x, splay at old parent of x

Time for an operation is proportional to number of nodes on access
path, including one rotation per node on path (except root)

Catenate(T1, T2) (all items in T1 < all items in T2):
splay at last node x in T1; x.right ¬ root(T2).

Split(T, x): splay(x); detach x.right = root of tree
containing all items > x.

T1’T2

x

+
T1 T2

x
catenate

T2

x

T T1

x

split

Efficiency of Splay Trees

One operation can take many steps, even n
But long sequences of operations are fast:

m operations take O(mlogn) time: amortized time per operation is
O(logn)
Fixed access frequencies: splaying matches the best static tree (to
within a small constant factor)
Splaying exploits space or time locality just as well as complicated
customized data structures (to within a small constant factor)

Just how good is splaying?

Dynamic optimality conjecture:
Given an initial tree and any access sequence, splaying is as fast
(to within a constant factor) as the best BST algorithm for the
given sequence, even an algorithm that knows the entire
sequence in advance

(Each access must be done by moving the accessed item to the root via
rotations, at a cost of one plus the number of rotations)

Why think the conjecture is true?

Any optimum algorithm is monotone: deleting any access in the access
sequence does not increase the total cost

Splay is monotone to within a constant factor if and only if the
conjecture is true: Levy and T 2019

Monotone to within a constant factor: deleting any subset of accesses
in a sequence increases the cost by at most a constant factor

Proof idea (one direction)

Given an optimum algorithm A for a given sequence S, one can
simulate the behavior of A on S applying splaying to a super-sequence
S’ of S
Each splay does O(1) rotations
|S’| = O(|S|)

New goal

Prove that splay is monotone to within a constant factor

Heap (priority queue)
Store a set of items, each with a numeric key

Operations:
insert(x, H): Insert item x with its key into heap H
delete-min(H): Delete and return an item with minimum key in

heap H

Heap with decrease-key
Store a set of items, each with a numeric key
Operations:

make-heap(): Return an empty heap
insert(x, H): Insert item x with its key into heap H
delete-min(H): Delete and return an item with minimum key in

heap H
decrease-key(x, k, H): Replace by k the key of item x in heap H

k must be no larger than the key of x

Meldable heaps
Store a collection of item-disjoint heaps
Operations:

make-heap(): Return an empty heap
insert(x, H): Insert item x with its key into heap H
delete-min(H): Delete and return an item with minimum key in

heap H
decrease-key(x, k, H): Replace by k the key of item x in heap H

k must be no larger than the key of x
meld(H1, H2): Combine item-disjoint heaps H1 and H2 into a single

heap, and return it

Notes

decrease-key(x, H) is given a pointer to the location of item x in heap H

n inserts followed by n delete-mins will sort n items by key, so any
binary-comparison-based method requires Ω(nlogn) time for n
operations

Applications

Priority-based scheduling and allocation
Discrete event simulation
Network optimization:

Shortest paths
Minimum spanning trees
Maximum weight matching

Dijkstra’s shortest path algorithm
Single source, non-negative arc lengths

Use a heap whose items are vertices, with key equal to length of shortest
path found so far

n inserts, n delete-mins, m decrease-keys n = #vertices m = #arcs

If O(logn) time per operation, total time is O(mlogn)

Can we do better?

O(1) decrease-key would give O(m + nlogn) for Dijkstra’s algorithm

Our goal

O(lgn) amortized time for delete-min and delete

O(1) amortized time, or at least o(logn), for all other
operations, including meld

Heap as a binary search tree

Need parent pointers for decrease-key, delete
Do a decrease-key as a delete followed by an insert
All operations except meld take O(logn) time, worst-

case if tree is balanced, amortized if self-adjusting
(splay tree)

Binary search tree is too rigid
We need a more flexible structure

Alternative: heap-ordered tree

Heap order: x.p.k ≤ x.k for all items x.
x.k = key of x, x.p = parent of x

Heap order is defined for all rooted trees, not just binary
trees: nodes can have any number of children

Heap order → item in root has min key
→ find-min takes O(1) time

What tree structure? How to implement heap operations?

Heap-ordered tree of non-constant degree

link: combine two trees by comparing the keys of their roots, making the
root with smaller key the parent of the other

This increases the degree of the new root, hence non-constant degree
The new root is the winner of the link, the new child is the loser of the link.
We will build all operations out of links and cuts (breaking links)

A link
One comparison, O(1) time

8 is the winner, 10 is the loser

10 8 8

10A B B

A

+

Heap operations

find-min: return item in root
make-heap: return a new, empty tree
insert: create a new, one-node tree, link

with existing tree
meld: link two trees
decrease-key: change key, break link with parent, link

with root

delete-min: Delete root, link trees rooted at its
children.

Time is proportional to number of children: need to link
in a way that keeps #children small.

How?

Balanced heap

Only link trees whose roots have the same degree (#children)
Keeps each tree size logarithmic in root degree
Handling decrease-key requires careful tree pruning (or equivalent)
A heap is a set of heap-ordered trees, not just one (this can be fixed)
Must store node degrees: ranks

Fibonacci heaps and many related structures use these ideas, achieve
desired bounds: O(logn) delete-min, O(1) other operations

Self-adjusting heap

Do not store ranks
Do links during delete-min based on position in list of new roots

Pairing heap
Fredman, Sedgewick,Sleator, T 1986

Delete-min: after deleting root, do two linking passes through the list
of new roots

Pairing pass: link roots in adjacent pairs left-to-right (first to last)
Assembly pass: Repeatedly link last two roots until only one remains

delete-min 5

7 161821 102724 28

after pairing pass

7 1618

21

10

2724 28

after assembly pass

7

1618

21

10

27

24

28

Multipass pairing heap

Delete-min: after deleting root, do pairing passes until one root
remains

delete-min 5

7 161821 102724 28

after first pairing pass

7 1618

21

10

2724 28

after second pairing pass

7

1618

21

10

27

24 28

after third pairing pass

7 16

18

21

10

2724

28P

Why pairing?

The original analysis of splay trees applied to pairing heaps gives
O(logn) amortized time per heap operation

Pairing + assembly mimics repeated zig-zig on splay trees, if one ignores
the distinction between left and right children

Is O(logn) tight for decrease-key?

Lower bound

Any heap that stores no balance information needs Ω(loglogn) time
for decrease-key Fredman 1999

Iacono and Ozkan 2014 have a similar result (with different restrictions)

New goal: O(loglogn) time for decrease-key in pairing heap or some
other self-adjusting heap

New results Sinnamon (and T) 2022

New bounds for multipass pairing heaps: O(logn) time for delete-min
and delete, O(loglogn(logloglogn)) for other operations

New bounds for slim and smooth heaps (other types of self-adjusting
heaps):

O(logn) for delete-min and delete, O(loglogn) for other
operations

In these data structures, can reduce insert and meld time to O(1)
with small changes to the data structure

What makes a self-adjusting heap fast?

During delete-min
Link adjacent roots in the list of roots
Try to minimize the number of new children of any node

Thanks!

