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= 1 page in first-order logic
On(color,piece, x,y, 1)
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Bayesian networks

Define distributions on all possible propositional worlds
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NewScientist

THE INTELLIGENCE

REVOLUTION

At last something else that thinks like us

Anil Ananthaswamy, “I, Algorithm: A new dawn for Al,”
New Scientist, Jan 29, 2011



“Al is in bloom again ... At last, artificial
intelligences are thinking along human lines.”
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“AI.. AlaAm |n A - -
imetiigences are thinking along nurmarT lines.”

“A technique [that] combines the logical
underpinnings of the old Al with the power of

statistics and probability ... is finally starting to
disperse the fog of the long Al winter.”



First-order probabilistic languages

= Gaifman [1964]: we can unify logic and probability by
defining distributions over possible worlds that are
first-order model structures (objects and relations)

27



First-order probabilistic languages

= Gaifman [1964]: we can unify logic and probability by
defining distributions over possible worlds that are
first-order model structures (objects and relations)

= Not obvious how to do it — infinitely many parameters??

28



First-order probabilistic languages

= Gaifman [1964]: we can unify logic and probability by
defining distributions over possible worlds that are
first-order model structures (objects and relations)

= Not obvious how to do it — infinitely many parameters??

= Simple idea (1990s): combine logical notation for
random variables with Bayes net factorization idea

29



First-order probabilistic languages

= Gaifman [1964]: we can unify logic and probability by
defining distributions over possible worlds that are
first-order model structures (objects and relations)

= Not obvious how to do it — infinitely many parameters??

= Simple idea (1990s): combine logical notation for
random variables with Bayes net factorization idea

@glary(house <Earthquake(Region(house))>

Alarm(house)

30



First-order probabilistic languages

= Gaifman [1964]: we can unify logic and probability by
defining distributions over possible worlds that are
first-order model structures (objects and relations)

= Not obvious how to do it — infinitely many parameters??

= Simple idea (1990s): combine logical notation for
random variables with Bayes net factorization idea

Gurglary(house Qarthquake (Region( house>

Alarm(house)

31



First-order probabilistic languages

= Gaifman [1964]: we can unify logic and probability by
defining distributions over possible worlds that are
first-order model structures (objects and relations)

= Not obvious how to do it — infinitely many parameters??

= Simple idea (1990s): combine logical notation for
random variables with Bayes net factorization idea

D @ O @\ O

32




First-order probabilistic languages

= Gaifman [1964]: we can unify logic and probability by
defining distributions over possible worlds that are
first-order model structures (objects and relations)

= Not obvious how to do it — infinitely many parameters??

= Simple idea (1990s): combine logical notation for
random variables with Bayes net factorization idea

D @ O @\ O

33




An important distinction in logic

= Closed-universe languages assume unique
names and domain closure, i.e., known objects

= Like Prolog, databases (Herbrand semantics)
= Poole 93, Sato 97, Koller & Pfeffer 98, De Raedt 00, etc.

= Open-universe languages allow uncertainty
over the existence and identity of objects

= Like full first-order logic
= BLOG (Milch & Russell 05): declarative OUPM language

= Probabilistic programming (Pfeffer 03, Goodman et al 08):
distribution on execution traces of stochastic programs
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Closed vs open universes

Given
Bill = Father(William) and Bill = Father(Junior)
How many children does Bill have?
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Closed vs open universes

Given
Bill = Father(William) and Bill = Father(Junior)
How many children does Bill have?

Closed-universe (Herbrand) semantics:
2

Open-universe (full first-order) semantics:
Between 1 and
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Key idea

= Given:
= An open-universe probability model
= Evidence from observations

= Apply: Bayesian updating

= QOutput: beliefs about what objects exist, their
identities, and their interrelations
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Open-universe semantics

Possible worlds for a language with two constant
symbols A and B and one relation symbol
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Bayes nets build propositional worlds
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Bayes nets build propositional worlds

not Earthquake
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Bayes nets build propositional worlds

Burglary
not Earthquake
Alarm
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Open-universe models in BLOG

= Construct worlds using two kinds of steps,
proceeding in topological order:
= Dependency statements: Set the value of a

function or relation on a tuple of (quantified)
arguments, conditioned on parent values

= Alarm(h) ~ CPT]I..](Burglary(h), Earthquake(Region(h)))
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Open-universe models in BLOG

= Construct worlds using two kinds of steps,
proceeding in topological order:

= Dependency statements: Set the value of a
function or relation on a tuple of (quantified)
arguments, conditioned on parent values

= Alarm(h) ~ CPT]I..](Burglary(h), Earthquake(Region(h)))

= Number statements: Add some objects to the
world, conditioned on what objects and relations
exist so far
» #GeologicalFaultRegions ~ Uniform{1...10}
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Example: Multi-target tracking on radar
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Example: Multi-target tracking on radar
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#Aircraft (EntryTime = t) ~ Poisson[A_]();

Exits(a,t)
if InFlight(a,t) then ~ Boolean[a.] ()’

InFlight(a,t)
if t < EntryTime (a) then = false
elseif t = EntryTime(a) then = true
else = (InFlight(a,t-1) & 'Exits(a,t-1));

X(a,t)
if t = EntryTime(a) then ~ InitState()
elseif InFlight(a,t) then
~ Normal [F*X(a,t-1) ,Z.] ()’

#Blip (Source=a, Time=t)
if InFlight(a,t) then

~ Bernoulli[DetectionProbability(X(a,t))] ()

#Blip (Time=t) ~ Poisson[Ag] ()

Z (b)
if Source(b)=null then ~ Uniform[R] ()
else ~ Normal [H*X(Source (b),Time (b)) ,Z,]1();
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#Aircraft (EntryTime = t) ~ Poisson[A_] ()

Exits(a,t)
if InFlight(a,t) then ~ Boolean[a.] ()’

InFlight(a,t)
if t < EntryTime (a) then = false
elseif t = EntryTime(a) then = true
else = (InFlight(a,t-1) & 'Exits(a,t-1));

X(a,t)
if t = EntryTime(a) then ~ InitState()
elseif InFlight(a, t) then
~ Normal [F*X(a,t-1) ,Z.] ()’

#Blip (Source=a, Time=t)
if InFlight(a,t) then
ulli [DetectionProbability(X(a,t))] ()

.. : Poj] [Ae] ()
[Orlgm function R

if Source(b)=null then ~ Uniform[R] ()
else ~ Normal [H*X(Source (b),Time (b)) ,Z,]1();
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Semantics

Objects are defined by type, origin, number:

= <Aircraft,<EntryTime,<TimeStep,5>>,2>

= <Blip,<Source, <Aircraft,<EntryTime,<TimeStep,5>>,2>,
<Time,<TimeStep,7>>,1>

Each basic random variable is a function or
predicate symbol indexed by a tuple of objects:

= |InFl ig ht<Aircraft,<EntryTime,<TimeStep,5>>,2>,<TimeStep,7>((D)

Each possible world w specifies values for all
number variables and basic random variables

Probability of w is given by the product of
conditional probabilities specified in the model 5
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Semantics

Every well-formed* BLOG model specifies a
unique proper probability distribution over all
possible worlds definable given its vocabulary

* No infinite receding ancestor chains, no
conditioned cycles, all expressions finitely
evaluable

58



© ® N O O~ D=

—
o

11.
12.
13.

BLOG Example Library

PCFG for simple English
Simplified 3D vision
Hurricane prediction

Burglary

Balls and urns (counting)
Sybil attack (cybersecurity)
Students and grades

Topic models (LDA)

Citation information extraction
Competing workshops
Galaxy model

Infinite mixture of Gaussians
Monopoly (invisible opponent)

14.
15.
16.
17.
18.
19.
20.
21.
22.

Blackjack

Multi-target tracking

HMM for genetic sequences
Weather forecasting

Video background subtraction
Financial volatility
Autoregression time series
Kalman filter

Infinite-state HMM
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Citation information extraction

= Given: a set of text strings from reference lists:

= [Lashkari et al 94] Collaborative Interface Agents, Yezdi Lashkari, Max
Metral, and Pattie Maes, Proceedings of the Twelfth National Conference on
Articial Intelligence, MIT Press, Cambridge, MA, 1994.

= Metral M. Lashkari, Y. and P. Maes. Collaborative interface agents. In
Conference of the American Association for Artificial Intelligence, Seattle,
WA, August 1994

= Decide:
= What papers exist
= Their titles and authors
= For each paper, the papers it cites
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(Simplified) BLOG model

#Researcher ~ NumResearchersPrior () ;
Name (r) ~ NamePrior() ;

#Paper (FirstAuthor = r) ~
NumPapersPrior (Position(r)) ;

Title(p) ~ TitlePrior();
PubCited(c) ~ Uniform({Paper p}):

Text (c) ~ NoisyCitationGrammar
(Name (FirstAuthor (PubCited(c))),
Title (PubCited(c))) ;
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(Simplified) BLOG model

#Researcher ~ NumResearchersPrior () ;
Name (r) ~ NamePrior() ;

#Paper (FirstAuthor = r) ~
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Fraction of citation clusters imperfectly recovered
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Inference

Theorem: BLOG inference algorithms (rejection
sampling, importance sampling, MCMC)
converge™ to correct posteriors for any well-
formed model, for any finitely evaluable first-
order query

Algorithms dynamically construct finite partial
worlds with ground-atom variables directly
relevant to query and evidence
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Inference

= Efficient inference is the bottleneck

= Real-world applications use special-purpose inference
= A substantial engineering problem
Modular design with “plug-in” expert samplers
Optimizing compiler technology to reduce overhead
Data and process parallelism
Incremental query evaluation (cf database systems)
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Application: CTBT

Bans testing of nuclear weapons on earth
= Allows outside inspection of 1000km? (18km radius)

183/195 states have signed
158/195 have ratified
Need 8 more ratifications including US, China

US Senate refused to ratify in 1998
= “too hard to monitor”
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Application: CTBT

Bans testing of nuclear weapons on earth
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Global seismic monitoring

= (Given: continuous waveform measurements
from a global network of seismometer stations
= Qutput. a bulletin listing seismic events, with
= Time
= Location (latitude, longitude)
= Depth
= Magnitude
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Why is this a hard problem?

= ~10 000 “detections” per day, 90% false

= Signals take 15 minutes to several hours to
traverse the earth, so they are all mixed up

= CTBTO system (GA=>SELS3) developed over
10 years, $100M software plus $1B network

= Finds 69% of significant events plus about twice as
many spurious (nonexistent) events

= 16 human analysts correct or discard SEL3 events,
create new events, generate LEB (“ground truth”)

= Unreliable below magnitude 4 (1kT)
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Very short course in seismology
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- Detections
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= Local spike in signal value; attributes are:
= Onset time*
= Amplitude*
= Azimuth™ and slowness™ (= direction it arrives from)
= Phase* (= one of 14 distinct wave types: P, S, etc.)
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Open-universe model

= Created a BLOG model describing
= Event occurrence
= Signal propagation
= Signal detection probability
= Measurement uncertainty
= Noise processes producing false detections

= Wrote a fast inference algorithm for this model

= => NET-VISA (network vertically integrated
seismic analysis)
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#SeismicEvents ~ Poisson[T*A.];
Time(e) ~ Uniform(0,T)
IsEarthQuake(e) ~ Bernoulli(.999);
Location(e) ~ if IsEarthQuake(e) then SpatialPrior() else UniformEarthDistribution();
Depth(e) ~ if IskarthQuake(e) then Uniform[0,700] else 0;
Magnitude(e) ~ Exponential(log(10));
IsDetected(e,p,s) ~ Logistic[weights(s,p)](Magnitude(e), Depth(e), Distance(e,s));
#Detections(site = s) ~ Poisson[T*A{(s)];
#Detections(event=e, phase=p, station=s) = if IsDetected(e,p,s) then 1 else 0;
OnsetTime(a,s) ~ if (event(a) = null) then Uniform[0,T] else
Time(event(a)) + GeoTravelTime(Distance(event(a),s),Depth(event(a)),phase(a))
+ Laplace((s), 0y(s))
Amplitude(a,s) ~ If (event(a) = null) then NoiseAmplitudeDistribution(s)
else AmplitudeModel(Magnitude(event(a)), Distance(event(a),s),Depth(event(a)),phase(a))
Azimuth(a,s) ~ If (event(a) = null) then Uniform(0, 360)
else GeoAzimuth(Location(event(a)),Depth(event(a)),phase(a),Site(s)) + Laplace(0,0,(s))
Slowness(a,s) ~ If (event(a) = null) then Uniform(0,20)
else GeoSlowness(Location(event(a)),Depth(event(a)),phase(a),Site(s)) + Laplace(0,0,(s))

ObservedPhase(a,s) ~ CategoricalPhaseModel(phase(a))
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#SeismicEvents ~ Poisson[T*A.];
Time(e) ~ Uniform(0,T)
IsEarthQuake(e) ~ Bernoulli(.999);
Location(e) ~ if IsEarthQuake(e) then SpatialPrior() else UniformEarthDistribution();
Depth(e) ~ if IskarthQuake(e) then Uniform[0,700] else 0;
Magnitude(e) ~ Exponential(log(10));
IsDetected(e,p,s) ~ Logistic[weights(s,p)](Magnitude(e), Depth(e), Distance(e,s));
#Detections(site = s) ~ Poisson[T*A{(s)];
#Detections(event=e, phase=p, station=s) = if IsDetected(e,p,s) then 1 else 0;
OnsetTime(a,s) ~ if (event(a) = null) then Uniform[0,T] else
Time(event(a)) + GeoTravelTime(Distance(event(a),s),Depth(event(a)),phase(a))
+ Laplace((s), 0y(s))
Amplitude(a,s) ~ If (event(a) = null) then NoiseAmplitudeDistribution(s)
else AmplitudeModel(Magnitude(event(a)), Distance(event(a),s),Depth(event(a)),phase(a))
Azimuth(a,s) ~ If (event(a) = null) then Uniform(0, 360)
else GeoAzimuth(Location(event(a)),Depth(event(a)),phase(a),Site(s)) + Laplace(0,0,(s))
Slowness(a,s) ~ If (event(a) = null) then Uniform(0,20)
else GeoSlowness(Location(event(a)),Depth(event(a)),phase(a),Site(s)) + Laplace(0,0,(s))

ObservedPhase(a,s) ~ CategoricalPhaseModel(phase(a))
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#SeismicEvents ~ Poisson[T*A.];
Time(e) ~ Uniform(0,T)
IsEarthQuake(e) ~ Bernoulli(.999);
Location(e) ~ if IsEarthQuake(e) then SpatialPrior() else UniformEarthDistribution();
Depth(e) ~ if IskarthQuake(e) then Uniform[0,700] else 0;
Magnitude(e) ~ Exponential(log(10));
IsDetected(e,p,s) ~ Logistic[weights(s,p)](Magnitude(e), Depth(e), Distance(e,s));
#Detections(site = s) ~ Poisson[T*A{(s)];
#Detections(event=e, phase=p, station=s) = if IsDetected(e,p,s) then 1 else 0;
OnsetTime(a,s) ~ if (event(a) = null) then Uniform[0,T] else
Time(event(a)) + GeoTravelTime(Distance(event(a),s),Depth(event(a)),phase(a))
+ Laplace((s), 0y(s))
Amplitude(a,s) ~ If (event(a) = null) then NoiseAmplitudeDistribution(s)
else AmplitudeModel(Magnitude(event(a)), Distance(event(a),s),Depth(event(a)),phase(a))
Azimuth(a,s) ~ If (event(a) = null) then Uniform(0, 360)
else GeoAzimuth(Location(event(a)),Depth(event(a)),phase(a),Site(s)) + Laplace(0,0,(s))
Slowness(a,s) ~ If (event(a) = null) then Uniform(0,20)
else GeoSlowness(Location(event(a)),Depth(event(a)),phase(a),Site(s)) + Laplace(0,0,(s))

ObservedPhase(a,s) ~ CategoricalPhaseModel(phase(a))
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Event Locations
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Estimating the location prior

= Kernel density estimate plus uniform component:

1+ 1/b6% exp(—A.,/b)
2rR* 1+ exp(—n/b)
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H
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= Kernel width b estimated by LOOCV:
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Event location prior
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#SeismicEvents ~ Poisson[T*A.];
Time(e) ~ Uniform(0,T)
IsEarthQuake(e) ~ Bernoulli(.999);
Location(e) ~ if IsEarthQuake(e) then SpatialPrior() else UniformEarthDistribution();
Depth(e) ~ if IskarthQuake(e) then Uniform[0,700] else 0;
Magnitude(e) ~ Exponential(log(10));
IsDetected(e,p,s) ~ Logistic[weights(s,p)](Magnitude(e), Depth(e), Distance(e,s));
#Detections(site = s) ~ Poisson[T*A{(s)];
#Detections(event=e, phase=p, station=s) = if IsDetected(e,p,s) then 1 else 0;
OnsetTime(a,s) ~ if (event(a) = null) then Uniform[0,T] else
Time(event(a)) + GeoTravelTime(Distance(event(a),s),Depth(event(a)),phase(a))
+ Laplace((s), 0y(s))
Amplitude(a,s) ~ If (event(a) = null) then NoiseAmplitudeDistribution(s)
else AmplitudeModel(Magnitude(event(a)), Distance(event(a),s),Depth(event(a)),phase(a))
Azimuth(a,s) ~ If (event(a) = null) then Uniform(0, 360)
else GeoAzimuth(Location(event(a)),Depth(event(a)),phase(a),Site(s)) + Laplace(0,0,(s))
Slowness(a,s) ~ If (event(a) = null) then Uniform(0,20)
else GeoSlowness(Location(event(a)),Depth(event(a)),phase(a),Site(s)) + Laplace(0,0,(s))

ObservedPhase(a,s) ~ CategoricalPhaseModel(phase(a))
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Probability

Detection probability as a function of distance
(station 6, m, 3.5)

P phase S phase

10 Detection probability at station 6 for P phase, surface event 10 Detection probability at station 6 for S phase, surface event
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#SeismicEvents ~ Poisson[T*A.];
Time(e) ~ Uniform(0,T)
IsEarthQuake(e) ~ Bernoulli(.999);
Location(e) ~ if IsEarthQuake(e) then SpatialPrior() else UniformEarthDistribution();
Depth(e) ~ if IskarthQuake(e) then Uniform[0,700] else 0;
Magnitude(e) ~ Exponential(log(10));
IsDetected(e,p,s) ~ Logistic[weights(s,p)](Magnitude(e), Depth(e), Distance(e,s));
#Detections(site = s) ~ Poisson[T*A{(s)];
#Detections(event=e, phase=p, station=s) = if IsDetected(e,p,s) then 1 else 0;
OnsetTime(a,s) ~ if (event(a) = null) then Uniform[0,T] else
Time(event(a)) + GeoTravelTime(Distance(event(a),s),Depth(event(a)),phase(a))
+ Laplace((s), 0y(s))
Amplitude(a,s) ~ If (event(a) = null) then NoiseAmplitudeDistribution(s)
else AmplitudeModel(Magnitude(event(a)), Distance(event(a),s),Depth(event(a)),phase(a))
Azimuth(a,s) ~ If (event(a) = null) then Uniform(0, 360)
else GeoAzimuth(Location(event(a)),Depth(event(a)),phase(a),Site(s)) + Laplace(0,0,(s))
Slowness(a,s) ~ If (event(a) = null) then Uniform(0,20)
else GeoSlowness(Location(event(a)),Depth(event(a)),phase(a),Site(s)) + Laplace(0,0,(s))

ObservedPhase(a,s) ~ CategoricalPhaseModel(phase(a))
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Travel-time residual (station 6)

Time residuals around IASPEI prediction for P phase at station 6
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Evaluation

= 11 weeks of training data, April 6 — June 20, 2009

= 1 week of validation data, March 22-29, 2009
= 832 LEB events

= Evaluated existing UN automated system (GA) and
NET-VISA using LEB as “ground truth”
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Event distribution: LEB vs SEL3

LEB(yellow) and SEL3(red)
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Event distribution: LEB vs NET-VISA

LEB(yellow) and NET-VISA(blue)




Detecting Events Found by Regional Networks
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Log posterior density
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Log posterior density

North Korea event of 5/25/09

596.1
595.2
594.4
593.6
592.8
592.0
591.2

590.4
589.5

588.7

Separate training set
1/4/08-1/4/09
Test set 1/5/09-1/26/09

Number of associated
detections for event:

SEL3 39
NET-VISA 353
LEB 53

50 of 53 detections in
common between LEB
and NET-VISA;

LEB added 8 by hand
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Concluding remarks

= Al, control theory, operations research, and statistics
tried and failed to find common ground in the 1950s
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Concluding remarks

Al, control theory, operations research, and statistics
tried and failed to find common ground in the 1950s

= They had no common mathematical formalism!

Robotics and vision separated from Al in the 1970s
and 1980s for similar reasons

Bayesian networks and statistical machine learning
helped to reintegrate some of these fields in the 1990s

Unifying logic and probability may help us to

= complete the reintegration of reasoning, planning,
perception, and language understanding

= find the light at the end of the tunnel
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