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The ineffable quality of Rapport in learning

Children who 
report more 
rapport are 
more likely to 
learn from the 
virtual peer
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Search Engine vs. Conversation

Justine:		“OK	Google,		I	love	Manchester	United”

Google:	

Justine:		“I	love	Manchester	United”
Friend.:	“No	way!	Arsenal	wipes	the	floor	with	those	Red	Devils!”

Socially-Aware	Robot	Asst:	“No	way!	Arsenal	wipes	the	floor	with	those	Red	Devils!”

Manchester United Football Club is a professional football club
Based in Old Trafford, Greater Manchester, England, that competes
in the Premier League, the top flight of English Football
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Motivation for Socially-Aware Bots

1) 1. People pursue multiple conversational goals in every conversation &
expect the same from their interlocutors. To put people at ease, and
increase relationship strength, we must understand the propositional,
interactional & interpersonal functions of conversation.

2) 2. People change interaction styles over time. We must increasingly
manage long-term interactions with people by changing interaction style
in a way that evokes increasing loyalty, rapport and trust.
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Rapport improves task performance
Surveys

– Survey respondents gave higher quality answers if they felt rapport with 
interviewer (Berg (1989)

Health

– Physicians who build rapport during trial interviews enroll more 
participants (Albrecht et al., 1999).

Sales

– Rapport with sales staff leads to increased likelihood of purchasing 
goods/service (Brooks, 1989).

– Customers show increased trust and disclosure when rapport is 
maintained with sales staff (LaBahn, 1996).
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Theorize & Model

BuildStudy

Collect
Natural data

Build formal
models

Implement system 
on the basis of 
model

Design evaluation
of use

Realize gaps in 
understanding

Test

rules

Start here

Methodology
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Analyze
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Thin-slice (Ambady & Rosenthal, 1992) judgments of every 30 second video
segment) presented to 3 annotators in randomized order

IRR
– “Consensus” measured by Intra-Class Correlation (single measure): 0.37
– “Consistency” measured by Cronbach alpha: 0.68
– Inverse-based bias correction (Kruger et al., 2014) was used mitigate rater bias & pick

single rapport rating for each 30 second video segment.

This image cannot currently be displayed.

Analysis of Rapport
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Evaluate

Total Interactions: 
250+ sessions 

Current Dataset: 
120 sessions (totally 10+ hours)
• Mean duration = approx. 5 min.
• SD = 69.00 seconds
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Summary of Evaluation Metrics
Interaction
• Total Time

• System Speaking Time

• User Speaking Time

• System’s Response Time

• User’s Response Time

• System’s Interruptions

• User’s Interruptions

Verbal
• System’s Intentions

• User’s Intentions

• System’s Conversational 
Strategies

• User’s Conversational 
Strategies

Task
• Session Rec. Acceptance

• Person  Rec. Acceptance 

• at

Interpersonal
• Rapport Score

• Mutual Attentiveness

• Coordination

• Positivity



Justine  Cassell

Goal of Socially Aware Systems

Development of a bot that manages interpersonal rapport (relationship 
strength) with users over interactions across time, as well as managing 
propositional and interactional goals, in order to improve task performance.

Automatically recognize rapport-managing conversational strategies from 
verbal, visual and vocal modalities of speaker and interlocutor, both within 
the individual and in the dyad.
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Goal of Building Socially Aware Systems
Theoretical: Understand the nature of rapport in greater detail, 

by correlating with associated observable verbal 
(conversational strategies, vocal (voice quality) and visual 
(non-verbal) cues 

Methodological: Leverage this understanding to automatically 
recognize rapport-building strategies by leveraging and 
developing statistical machine learning techniques
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Ineffective Conversation
(don’t do this with agents)
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Intimate Conversation
(don’t do this with agents)
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Agent Model of Rapport must be:
1. Dyadic, 
2. Multi-level: 

differentiate between 
observable signals & 
underlying 
psychological states, 

3. Sensitive to effect of 
time

4. Cross-Modal

Psychological States

Conversational
Strategies

Multimodal Behaviors

Pragmatic / Social
Functions & Goals

Vocal Visual Verbal

Trust Rapport Intimacy

Multi-level Multi-modal Multi-functional Model 
of Dyadic Psych States over Time

with L.P. Morency, 2015
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Conversational Strategies Examples

VSN (Violation of Social Norm) “man you take forever to write”

SD (Self Disclosure) “I hate math”

PR (Praise) “well done”

SE (Reference to Shared 
Experience)

“I shared m&m's with you last time”

BC (Back Channel) “yup”

QE (Question Eliciting SD) “are you an atheist”

Conversational Strategies
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Data- &Theory-Driven process model
Rapport building Reasoning Strategies

Rapport
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Data-Driven:
Temporal association rules

Form of temporal rules

“If event A happens at time t, there is 50% chance of 
event B happening between time t+3 to t+5”



Justine  Cassell

Temporal association rules: Friends

Example: Friend in high rapport

Tutor: Sweeney you can't do that, that's the whole point {smile} [Violation of Social Norm]
Tutee: I hate you. I'll probably never never do that [Reciprocate Social Norm Violation]
Tutor: Sweeney that's why I'm tutoring you {smile}
Tutee: You're so oh my gosh {smile}.We never did that ever [Violation of Social Norm]
Tutor: {smile} What'd you say?
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Tutee: divide oh this is so hard let me guess: 11[Negative Self-Disclosure]
Tutor: you know 
Tutee: 6
Tutor: next problem is is exactly the same {smile}: over 11 equals, 11 x over 11
Tutee: I don't need your help; [Violation of Social Norm]
Tutor: {Overlap} That is seriously like exactly the same.

Example: Stranger in low rapport

Temporal association rules: Strangers
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Socially-Aware Agent Architecture

Speech Recognition
Natural Language 

Understanding
Dialogue 
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Social 
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Behavior 
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EstimatorSpeech Analysis
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Some Applications:
Rapport-Aware Peer Tutor (RAPT)
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ASR BEAT
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Evaluation: rule-based vs. adaptive
Control condition: (fixed heuristics for social dialogue usage)

Praise
Decreasing in frequency [Kumar et al., 2010]

Self-Disclosure
Gradually increasing in frequency and intimacy [Ogan, 2011; Bickmore and Schulman, 2010]

Questions eliciting self-disclosure
Gradually increasing in breadth and depth of topics [Altman and Taylor, 1973]

References to shared experiences
Gradually increasing frequency [Kumar et al., 2010; Cassell and Bickmore, 2003]

Violation of social norms
Use only after a given threshold in number of turns or elapsed time [Ogan et al., 2012]

Indirectness
Decreasing in frequency [Madaio et al., 2017]
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Experimental condition: (adaptive usage of social dialogue)

Based on:
Current rapport state

Changes in rapport state (increasing, decreasing, maintaining)

User’s social behavior (self-disclosure, violation of social norms, etc)

Agent’s previous social behavior

User’s nonverbal behavior (smiling, nodding, gaze patterns)

Agent’s previous tutoring behaviors (feedback, questions, explanations, etc)

Evaluation: rule-based vs. adaptive
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Application: Mobile front-end to apps
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with Yahoo InMind Team
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General architecture
Rapport building personal assistant

General architecture
Integrated InMind Dialog Architecture
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SARA: Socially Aware Robot Assistant
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Tracking Facial Movements

OpenFace: L.P. Morency
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SARA: Socially-Aware Robot Assistant at Davos
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MUF
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● Corpus

○ RAPT 2013 : indirectness annotation of peer-tutoring 
corpus

○ ConLL 2010 shared task on uncertainty detection
■ Wikipedia dataset (Wikipedia articles)
■ BioScope dataset (abstracts and articles from biomedical 

literature)
● Annotation on RAPT 2013

IN (Indirect Delivery)“so I think what I'm gonna do is make that 15 minus 3 a 12”

Indirectness Strategy Classifier
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Architecture: Indirectness Classifier

Pranav Goel, Yoichi Matsuyama, Michael Madaio & Justine Cassell, “I think it might help if we multiply, and not add” : Detecting Indirectness in 
Conversation, International Workshop on Spoken Dialog System Technology (IWSDS 2018). – to appear
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SARA Receptionist
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