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The 1neftable quality of Rapport in learning

Children who
report more
rapport are
more likely to
learn from the
virtual peer
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Search Engine vs. Conversation

Justine: “OK Google, | love Manchester United”

Google: Manchester United Football Club is a professional football club
Based in Old Trafford, Greater Manchester, England, that competes
in the Premier League, the top flight of English Football

Justine: “l love Manchester United”
Friend.: “No way! Arsenal wipes the floor with those Red Devils!”

Socially-Aware Robot Asst: “No way! Arsenal wipes the floor with those Red Devils!”
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Motivation for Socially-Aware Bofs

1. People pursue multiple conversational goals in every conversation &
expect the same from their interlocutors. To put people at ease, and
increase relationship strength, we must understand the propositional,
interactional & interpersonal functions of conversation.

2. People change interaction styles over time. We must increasingly
manage long-term interactions with people by changing interaction style
in a way that evokes increasing loyalty, rapport and trust.
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Rapport improves fask performance

Surveys
— Survey respondents gave higher quality answers if they felt rapport with
interviewer (Berg (1989)
Health
— Physicians who build rapport during trial interviews enroll more
participants (Albrecht et al., 1999).
Sales

— Rapport with sales staff leads to increased likelihood of purchasing
goods/service (Brooks, 1989).

— Customers show increased trust and disclosure when rapport is
maintained with sales staff (LaBahn, 1996).
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Methodology

Theorize & Model
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Observe
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Analyze
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Analysis of Rapport

Thin-slice (Ambady & Rosenthal, 1992) judgments of every 30 second video
segment) presented to 3 annotators in randomized order

[%] This image cannot currently be displayed.

IRR

— “Consensus ” measured by Intra-Class Correlation (single measure): (.37
—  “Consistency” measured by Cronbach alpha: 0.68

— Inverse-based bias correction (Kruger et al., 2014) was used mitigate rater bias & pick
single rapport rating for each 30 second video segment.
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Evaluate

Total Interactions:
250+ sessions

Current Dataset:
120 sessions (totally 10+ hours)

* Mean duration = approx. 5 min.

« SD =69.00 seconds

Justine Cassell

SARA, 00:13.7, I'm so glad to have the opportunity to meet you in person, 00:16.7
User, 00:18.7, hi how are you [doing, 00:19.2

SARA, 00:19.3, [I'm] in Davos to assist attendees but to be honest | am a little anxious
about it it's a big deal to be invited to Davos is it your first time here, 00:28.7

User, 00:29.1, it is and I'm a little anxious too, 00:37.4
SARA, 00:32.7, | found there's a lot to take in | hope that it isn't overwhelming you, 00:37.2
User, 00:37.9, it is overwhelming a little bit, 00:39.8
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Summary of Evaluation Metrics

Interaction Verbal Interpersonal

+ Total Time « System’s Intentions * Rapport Score

+ System Speaking Time « User’s Intentions «  Mutual Attentiveness

+ User Speaking Time « System’s Conversational « Coordination
Strategies

+ System’s Response Time Positivity

« User's Conversational
Strategies

Task

« Session Rec. Acceptance

+ User's Response Time
« System’s Interruptions

+ User’s Interruptions

« Person Rec. Acceptance
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Goal of Socially Aware Systems

Development of a bot that manages interpersonal rapport (relationship
strength) with users over interactions across time, as well as managing
propositional and interactional goals, in order to improve task performance.

Automatically recognize rapport-managing conversational strategies from
verbal, visual and vocal modalities of speaker and interlocutor, both within
the individual and in the dyad.
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Goal of Building Socially Aware Systems

Theoretical: Understand the nature of rapport in greater detail,
by correlating with associated observable verbal
(conversational strategies, vocal (voice quality) and visuadl
(non-verbal) cues

Methodological: Leverage this understanding to automatically
recognize rapport-building strategies by leveraging and
developing statistical machine learning techniques
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Ineffective Conversation
(don't do this with agents)
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Intimate Conversation
(don’t do this with agents)
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Agent Model of Rapport must be:

/ Multi-level Multi-modal Multi-functional Model \
of Dyadic Psych States over Time

Dyadic,

Multi-level:
differentiate between
observable signals &
underlying
psychological states,
Sensitive to effect of
time

Cross-Modal

Justine Cassell

Psychological States

I Trust I I Rapport I I Intimacy I

Conversational
Strategies

Pragmatic / Social
¢ Functions & Goals

Multimodal Behaviors

.

Vocal

Visual Verbal

J

with L.P. Morency, 2015
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Data- &Theory-Driven
Model of Rapport Management
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Conversational Strategies

VSN (Violation of Social Norm) “man you take forever to write”
SD (Self Disclosure) “I hate math”

PR (Praise) “well done”

SE (Reference to Shared “l shared m&m's with you last time”
Experience)

BC (Back Channel) “yup”

QE (Question Eliciting SD) “are you an atheist”
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Data- &Theory-Driven process model
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Strangers
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* Learn behavior
expectations
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Data-Driven:
Temporal association rules

Form of temporal rules

“If event A happens at time t, there is 50% chance of
event B happening between time t+3 to t+35”
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Tutor
Tutee
Tutor
Tutee
Tutor

Temporal association rules: Friends
event. SV Tutes w event.Rapport 7

435

state SMILE Tgor
event RV Tutes - +
- 34

-

event SMILE Tutor - +

conf:30% supp: 1%

Example: Friend in high rapport

: Sweeney you can't do that, that's the whole point {smile} [Violation of Social Norm]
: I hate you. I'll probably never never do that [Reciprocate Social Norm Violation]

: Sweeney that's why I'm tutoring you {smile}

: You're so oh my gosh {smile}.We never did that ever [Violation of Social Norm]

: {smile! What'd you say?
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Tutee
Tutor

Tutee:

Tutor
Tutee
Tutor

Temporal association rules: Strangers

. event OVERLAP M event Rapport 3

svent SV Tutee - +
event SMILE Tutor s il i +

conf:100% supp:3%

Example: Stranger in low rapport

: divide oh this is so hard let me guess: 11[Negative Self-Disclosure]

: you know
6

: next problem is 1s exactly the same {smile}: over 11 equals, 11 x over 11

: I don't need your help; [Violation of Social Norm]

: {Overlap} That is seriously like exactly the same.
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Socially-Aware Agent Architecture
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Socially-Aware Agent Architecture
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Some Applications:
Rapport-Aware Peer Tutor (RAPT)
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Evaluation: rule-based vs. adaptive

control condition: (fixed heuristics for social dialogue usage)

Praise
Decreasing in frequency [Kumar et al., 2010]

Self-Disclosure

Gradually increasing in frequency and intimacy [Ogan, 2011; Bickmore and Schulman, 2010]

Questions eliciting self-disclosure

Gradually increasing in breadth and depth of topics [Altman and Taylor, 1973]

References to shared experiences

Gradually increasing frequency [Kumar et al., 2010; Cassell and Bickmore, 2003 ]

Violation of social norms

Use only after a given threshold in number of turns or elapsed time [Ogan et al., 2012]

Indirectness

_Decreasing in frequency [Madaio et al., 2017]
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Evaluation: rule-based vs. adaptive

Experimental condition: (adaptive usage of social dialogue)

Based on:
Current rapport state

Changes in rapport state (increasing, decreasing, maintaining)

User’s social behavior (self-disclosure, violation of social norms, etc)
Agent’s previous social behavior

User’s nonverbal behavior (smiling, nodding, gaze patterns)

Agent’s previous tutoring behaviors (feedback, questions, explanations, etc)
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SARA Character
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Integrated InMind Dialog Architecture
General architecture
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SARA: Socially Aware Robot Assistant
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@WHAT SARA UNDERSTANDS
. OpenFace . User-Sara Rapport 6/7

. /@ RAPPORT
CAMERA FEED HEAD TRACKING.. ; /i

N v

. User Conversation Strategy

SHARED EXPERIENCE (SE)

‘ Head Nod
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Tracking Facial Movements

Facial Actions
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OpenFace: L.P. Morency

Justine Cassell Carnegie Mellon University




@HOW SARA WILL RESPOND

. Sara's Conversational Strategy Selection
NOW

INPUTS CHOSEN STRATEGY

. OpenFace Output )
. User Conv. Strategy )

. User-Sara Rapport 6 )

. Sara's Current Task

Sara's Current Task
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@ WHAT SARA SAYS
‘ Sara's Words and Body Language

GESTURE
NOD

00
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SARA: Socially-Aware Robot Assistant at Davos
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Methodology

Theorize & Model
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New SARA Framework
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Indirectness Strategy Classifier

® Corpus
o RAPT 2013 : indirectness annotation of peer-tutoring
COrpus

o ConLL 2010 shared task on uncertainty detectfion
s Wikipedia dataset (Wikipedia articles)
m BioScope dataset (abstracts and articles from biomedical

literature)

[ Code Definition Example Distribution
Apology Apologies used to soften direct speech acts Sorry, its negative 2. 7.7%
Qualifiers Qualifying words for reducing intensity or certainty You just add 5 to both sides. 66.1%
Extenders Indicating uncertainty by referring to vague categories You have to multiply and stuff. 3.6%

Subjectivizer Making an utterance seem more subjective to reduce intensity I think you divide by 3 here. 22.6%

IN (Indirect Delivery) “so [ think what I'm gonna do is make that 15 minus 3 a 12”
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Architecture: Indirectness Classifier
Qome)——=
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Pranav Goel, Yoichi Matsuyama, Michael Madaio & Justine Cassell, “I think it might help if we multiply, and not add” : Detecting Indirectness in
Conversation, International Workshop on Spoken Dialog System Technology (IWSDS 2018). — to appear
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