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Facebook AI Research

§ Mission: advancing the field of machine intelligence.

§ Open research: we publish papers, we 

§ More than a hundred permanents and growing.

§ New York, Menlo Park, Paris, Montreal, Seattle, …

https://research.fb.com/category/facebook-ai-research-fair/

https://github.com/facebookresearch
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1- What works in AI?
WHY ARE PEOPLE SO EXCITED?



Object recognition in images

Top5 error rate of the annual winner of the 

ImageNet image classification challenge.  

CNNs break through in 2012.



Object recognition in images

Such systems are really being used on a large scale.



Object recognition in images



Speech recognition

Comparison (2012) of the word error rates achieved by 

traditional GMMs and DNNs, reported by three different 

research groups on three different benchmark. 



Speech recognition



Machine translation

Although it is far from perfect (more on this later), Wikipedia says:



Machine translation



Reinforcement learning in games

§ TD-Gammon (Tesauro, 1992-1995)

- Trained by self play.

- Arguably the best backgammon player in the world.



Reinforcement learning in games

§AlphaGo (Deepmind)

- Trained with self-play.

- Arguably the best Go player in the world.

- Go is more complex than backgammon.

- Go still is a full information game.

- Go games can be simulated at high speed
(unlike self-driving cars.)



Reinforcement learning in games

§ DeepStack (Moravčík et al., 2017)

- No longer a full information game.

- Still can be simulated at high speed.



2- What doesnt work?
WHY ARE PEOPLE TOO EXCITED?



Training demands too much data

§Locating and recognizing objects in images
after training on more images than a human can see.

§ Translating natural languages (somehow) 
after training on more bi-text than a human can read.

§ Playing Atari games 
after playing more games than any teenager can endure.

§ Playing Go (famously) 
after playing more grandmaster level games than mankind.

Supervisedlearning

Reinforcement 
learning



Training demands too much data

§ Yann LeCun’s chocolate cake

- In reinforcement learning, the 

learning algorithm focuses on the 
reward signal.

- In supervised learning, the learning 

algorithm focuses on the manually 
annotated class labels.

- But there may be a lot of signal in 

the patterns themselves.



The statistical problem is only a proxy
Example: detection of the action “giving a phone call”

(Oquab et al., CVPR 2014)

~70% correct (SOTA)
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The statistical problem is only a proxy
Example: detection of the action “giving a phone call”

Not giving a phone call.

Giving a phone call ????



The statistical problem is only a proxy
Example: detection of the action “giving a phone call”

Not giving a phone call.

Giving a phone call ????

The learning algorithm is statistically correct!

In a typical image dataset, when an image shows a person near

a phone, chances are that the person is giving a phone call.



The statistical problem is only a proxy

§ Strong statistical biases in large datasets often mask the semantics

§ Another example: Visual Question Answering

No need to see 

the image!

What is covering 

the ground?

- Snow

- Candies

- Grass

- Refuse



Structure does not help our systems

§ Structure in computer vision

- Scenes are made of objects, objects are made of parts,

- Objects interacts through their parts, …

§ Structure in natural language

- Sentences have a recursive grammatical structure,

- This structure is associated to meaning.

Structure allows us to reason.

This is an important component of our human experience.



Structure does not help our systems
“Adding structural knowledge to machine learning 

systems should improve the performance!”

§ This does not go very far in practice

- Earlier techniques in computer vision used to recognize objects from their parts, 

only to be outperformed by convolutional neural networks.

- For many natural language processing tasks such as document classification, sentiment analysis,* 

or text tagging, smartly using bags of bigrams give state-of-the-art performance. 

Their order does not seem to matter!

- Earlier techniques in machine translation used to leverage the grammatical structure of the sentences, 

only to be displaced by neural models that only use the sequence of words.

*See for instance (Scheible & Schütze, 2013) https://arxiv.org/abs/1301.2811



Structure does not help our systems
“Adding structural knowledge to machine learning 

systems should improve the performance!”

§ This does not go very far in practice

- Earlier techniques in computer vision used to recognize objects from their parts, 

only to be outperformed by convolutional neural networks.

- For many natural language processing tasks such as document classification, sentiment analysis,* 

or text tagging, smartly using bags of bigrams give state-of-the-art performance. 

Their order does not seem to matter!

- Earlier techniques in machine translation used to leverage the grammatical structure of the sentences, 

only to be displaced by neural models that only use the sequence of words.

*See for instance (Scheible & Schütze, 2013) https://arxiv.org/abs/1301.2811

“Every time I fire a linguist, the performance 

of the speech recognizer goes up”

Attributed to F. Jelinek, around 1988. 



The FastText story



What is structure for, exactly?

§ This may not be a problem with structure, 

but a problem with our benchmarking methods.

We usually report an average performance measured on a testing set.

§The average performance emphasizes understanding frequent sentences …

“ How do you do? ”

§… and places little weight on understanding rarer sentences.

“ The bank was about to close when the four masked men showed up. ”



What is structure for, exactly?

What is the purpose of the grammatical structure of language

§ to help describing the distribution of existing sentences?

§ to help constructing new sentences that describe new situations?

Observed / Frequent

Potential / Rare



Statistics ≠ Semantics

(Example from D. Hofdstader, 2018.)



3- Detective guesswork



The pinboard (1)

Need too much 

training data

Unexploited 

signal in 

data?

Unsupervised 

learning



The pinboard (2)

Dataset collection

is always biased

Need too much 

training data

Structure does 

seem to help

Statistics ≠ 

semantics

Unexploited 

signal in 

data?

Unsupervised 

learning

What about 

reasoning?



The pinboard (3)

Dataset collection

is always biased

Need too much 

training data

Structure does 

seem to help

Statistics ≠ 

semantics

Unexploited 

signal in 

data?

Unsupervised 

learning

What about 

reasoning?

Structure helps making 

sense of things not 

seen in the datasets?



Causation

Dataset collection

is always biased

Need too much 

training data

Structure does 

seem to help

Statistics ≠ 

semantics

Unexploited 

signal in 

data?

Unsupervised 

learning

What about 

reasoning?

Structure helps making 

sense of things not 

seen in the datasets?

What causes 

what?



What about these arrows?

Dataset collection

is always biased

Need too much 

training data

Structure does 

seem to help

Statistics ≠ 

semantics

Unexploited 

signal in 

data?

Unsupervised 

learning

What about 

reasoning?

Structure helps making 

sense of things not 

seen in the datasets?

What causes 

what?



4- Causation hints
(LOPEZ-PAZ,  NISHIHARA,  CHINTALA,  SCHÖLKOPF,  & BOTTOU - CVPR17)



Causal information 

in the data distribution?

Causation ≠ 

Correlations

Simpson confounding

X Y

! = #$ + &(−s*, s*)

$ ~ Bernoulli, . =
*

/

0 = 1$ + 2! + &(−s/, s/)

2 < 0

1 > 0

Z

# > 0



Causal footprints in the XY-scatterplot!



More scatterplots

The Hertzsprung–Russell diagram 

shows the relationship between 
the stars' absolute magnitudes or 

luminosities versus their stellar 

classifications or effective 

temperatures.

Scientists clearly draw causal 
conclusions from a scatterplot, 

even when interventions are 

impossible.



Causal information 

in the data distribution?

§Observation can lead to causal intuitions.

§We can then apply the scientific method.

How to build an unsupervised learning 
machine that gets causal intuitions?



5- Causal direction
(LOPEZ-PAZ,  NISHIHARA,  CHINTALA,  SCHÖLKOPF,  & BOTTOU - CVPR17)



Causal problems with two variables

Given two observed variables !, #

I. Either ! causes #,

II. or # causes !,

III. or ! and # have unobserved common causes,

IV. or ! and # are independent. 

Let’s focus on causal direction detection (I and II)

Reichenbach

potentially confounding



How does causal direction look like?

In this scatter plot

§ X is altitude.

§ Y is average temperature.

Does the scatter plot reveal whether

§ X causes Y 

§ or Y causes X ?



Footprint example 1 – additive noise
! = # $ + & + '()*+

Sometimes the high moments (the corners) reveal something.

(PETERS ET AL., 14)



Footprint example 2 -- coincidences

!

"

(JANZING ET AL., 2011)



From scatterplot to causation direction

Detecting causation direction at scale

§We could build a long list of causal footprint examples, then decide 

which example is most appropriate for a given scatterplot, etc.

§Or we can construct a classifier...

(LOPEZ-PAZ, ET AL., 2015)



Featurizing a scatterplot

High moments?

§ !"# = %
& '

()%

&
*("+(# for well chosen , and -.   

Reproducing Kernel Hilbert space?

§ ! = %
&'()%

.?
0(*( , +() ∈ ℋ6 with  0 . , 0 . 6 = 8(. , . )

Learning the features and the classifier

§ !9 = %
&'()%

&
09(*( , +()



Neural Causation Classifier

!"

#$



Training NCC

We do not have access to large causal direction datasets

But we can generate artificial scatterplots.

! = # $ + & $ '

Step 1 - draw distribution on X  

§ Draw (~* 1,2,3,4,5 r, s~*[0,5]

§ Take a mixture of ( Gaussians with 6~7 0, 8 and 9~7 0, :



Training NCC

Step 2 - draw mechanism f

§ Cubic spline with random number of random knots…

Step 3 - draw noise

§ Noise ! is Gaussian with random variance ~#[0,5]

§ Function )(+) is another cubic spline with random knots.

Step 4 – generate causal scatter plot + → .

§ Draw /0 , !0 then compute 10 = 3 /0 + ) /0 !0

§ Rescale /0 , 10 to enforce marginal mean 0 and sdev 1



Training NCC

Step 6 – Generate training examples

§ Scatterplot !" , $" is associated with target label 1

§ Scatterplot $" , !" is associated with target label 0

Repeat 100000 to generate a training set.
Train the neural network classifier with the usual bag of tricks.
(dropout regularization, rmsprop, cross-validation, etc.)



Sanity check

§ After training on artificial data, NCC achieves state-of-the-art  [79%] 

performance on the Tübingen cause-effect dataset”, which contains 100 

cause-effect pairs (https://webdav.tuebingen.mpg.de/cause-effect)

https://webdav.tuebingen.mpg.de/cause-effect/


Counterfactual on images
Asymmetric relation

§ How would this image would 

have looked like if one had 
removed the cars?

§ How would this image would 

have looked like if one had 

removed the bridge?

Can we use image datasets to 

identify the causal dispositions

of object categories?

How to validate a result?



Causal and anti-causal features

For each object category, we can also define two sets of scene features

§The causal features are those that cause the presence of the object of 

interest. If the object of interest had not been present in the image, these 

feature would still have appeared.

§The anticausal features are those that are caused by the presence of the 

object of interest.  If the object of interest had not been present in the 

image, these feature would not have appeared.



Proxy variables & shadow footprints

We apply NCC

to these scores 

reveals to find out 

which features are 

causal or anticausal 

for each object 

category

Assume there is 

a causal footprint in the

distribution of variables that 

represent the presence of 

an object or a feature
Same pre-trained NCC 

for all categories!



Object features and context features

In computer vision, one is often interested in another distinction

§The object features “belong” to the object and are 

most often activated inside the object  bounding box.

Example: car wheels, person eyes, etc.

§The context features are those most often 

activated outside the bounding box.

Example: road under a car,  car shadow

Background story“bags of visual words”



Results

§Top anticausal features have higher object scores for all twenty categories.

§The probability that this happens for all 20 classes out of chance is  2-20≈ 10-6.
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Hypotheses

⇒



More information

§The effect disappears completely if we replace NCC by the correlation 
coefficient (or its absolute value) between the feature and the category.

§The effect appears to be robust to many details of the experiment such as 
the precise composition of the NCC data, the precise computation of 
object/context scores, the methods we use to determine a continuous 
proxy for the categories, etc.



6- Causation and     
unsupervised learning

(WIT H M ART IN  AR JOVSKY,  DAVID  LOPEZ-PAZ AND M AXIM E OQUAB)



The mythical unsupervised learning

What is inside the cake?

§ Yann says “predictive modeling”
and speaks about multimodal distributions.

“when the pen falls, you do not know exactly where it 
will fall, but you know that the floor will stop it.”

§ Without labels, everything is in ! " .
Statisticians say “density estimation”.  

See (Hastie et al., 2009) chapter 14.



The mythical unsupervised learning

What is inside the cake?

§ What about “discovering affordances”?
- what can I do with a new toy?

- what can others do with it?

- what will be the result?

§ This entails “discovering causal mechanisms”
- whoever knows the distribution can reproduce

what was demonstrated in the training data.

- whoever knows the causal mechanism can

play with the new toy in new ways.



Traditional unsupervised learning

§ Most systems train ! using the  

Maximum Likelihood Principle.

§ If any observation has likelihood zero, 
the likelihood of the whole data set is 

zero, and its maximization is 

meaningless.

§ Therefore one must model everything.

§ This is why the models are highly 
engineered to resemble the true 

distribution enough. 

§ Complex models.

"#

$

Models engineered to resemble

the true data distribution.

Any distance 

%($, "#) goes!



Simple models for a complex world



Alternative approach
§ When ! is far from the optimal "#, 

optimizing different distances $(!, "#)

yields different solutions.

§ Minimizing a distance $(!, "#)
sensitive to causation hints will 

select a model "# that possesses 
the same hints as the target 

distribution !,

§ … and hopefully reveal causal 

phenomena.

!

"#

Distance sensitive to 

causal footprints

Simple causal models,

unrealistic data distributions



Alternative approach
§ When ! is far from the optimal "#, 

optimizing different distances $(!, "#)

yields different solutions.

§ Minimizing a distance $(!, "#)
sensitive to causation hints will 

select a model "# that possesses 
the same hints as the target 

distribution !,

§ … and hopefully reveal causal 

phenomena.

!

"#

Distance sensitive to 

causal footprints

Simple causal models,

unrealistic data distributions

How to construct such a distance?



Distances

§We do not know how to construct a distance that is sensitive to causal hints.

§Let’s start by looking at the known probabilistic distances.

§Implicit distribution models are amenable to many distances.

§The popular generative adversarial networks are a good example of implicit modeling.

How to construct such a distance?



Implicit modeling

Observed data

! ~ # (unknown)

$%

Generated data

$%(') ~ )% (parametric)

' ~ )* (known)

To
 b

e
 co

m
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a
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Typically low dim

Low dim support

à cliff shaped “density”



Comparing distributions

requires densities, asymmetric, possibly infinite

VAE



Comparing distributions

symmetric, does not require densities, 0 ≤ #$ ≤ log(2)

always defined, involves metric on underlying space.



Generative adversarial network

GAN

!"

!"($) ~ '($~')

* ~ '+
,- '+ or '( ? 

Discriminator maximizes and generator minimizes



Findings (work in progress)

1. We should prefer topologically weak distances

2. Optimizing a Wasserstein-like distance makes GANS work more reliably.

3. There are other topologically weak distances with better statistical properties and better 
optimization algorithms than the Wasserstein distance. But these distances also impose 
strict geometry constraints that may

a. make it harder to minimize the nonconvex landscape,

b. be incompatible with the idea of a distance sensitive to causal hints.

• (1) (2) : (Arkovsky et al., “Wasserstein GANS”, ICML 2017)

• (3a) : (Bottou et al., “Geometrical Insights for Implicit Generative Modeling”, ArXiV:1712.07822, 2017)



Findings (work in progress)

1. We should prefer topologically weak distances
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7- Wasserstein GANs
(AR JOVSKY,  CHINTALA ,  BOT TOU,  2017)



Generative adversarial network

GAN

!"

!"($) ~ '($~')

* ~ '+
,- '+ or '( ? 

Discriminator maximizes and generator minimizes



Generative adversarial network

Discriminator maximizes and generator minimizes

Nasty saddle point problem
• Keeping the discriminator optimal :

min
$
%('∗ ) , )) minimizes  ,- ./, .0

• Keeping the generator optimal

max
3

%(', )∗(')) yields garbage



Problem with GAN training

If one trains the discriminator thoroughly, the generator receives no gradient…



Alternate GAN training



Distributions with 
low dimensional support

Let Ρ" and Ρ# be two 

uniform distributions 
supported by parallel 

line segments separated 

by distance $.

$

Continuous in $



Optimizing a Wasserstein(ish) distance

Wasserstein-1 has a simple dual formulation (Kantorovich)

§ Parametrize !(#) , for instance with a neural network.

§ Enforce Lipschitz constraint, for instance by aggressively clipping the weights.

§ Maintain !(#) well trained, and train %&(') by back-prop through !(#).

§ No vanishing gradients!



No vanishing gradients



WGAN loss correlates 
with sample quality



Normal GAN loss does not correlate
with sample quality



WGAN is less sensitive 
to modeling choices



WGAN is less sensitive 
to modeling choices



WGAN is less sensitive 
to modeling choices



8- The geometry of 
weak Integral 
Probability Metrics



Implicit modeling



Implicit modeling

Good for degenerate distributions



Learning

§Let ! be the training data distribution  (the complex world)

§Let "# ∈ ℱ be the (implicit) parametric models  (the simple models)

§Learn by minimizing  min
)*∈ℱ

+(!, "#)

!

ℱ

When ! is far from ℱ, the choice of a distance matters!



Probability comparison 
criteria for implicit models

Gives a broad family of probability distances 

by changing the set of pairs !", !$ considered in the supremum.

(4)



Envelope theorem

(Arjovsky et al., ICML 2017)



Algorithmic ideas

The ideal world

§ After optimizing !", !$ we can get unbiased estimates of the gradient of %(').

§ Such gradient estimates can be used for stochastic gradient descent on '.

The real world

§ We cannot really optimize !", !$ -- too slow, too hard, not enough data…

§ In practice interleave (many) stochastic ascent steps on !", !$
and (relatively few) stochastic descent steps on '.

§ This can be slow and tricky.  Lots of room for improvement.  Search for  “xxxGAN”.



Algorithmic ideas

The ideal world

§ After optimizing !", !$ we can get unbiased estimates of the gradient of %(').

§ Such gradient estimates can be used for stochastic gradient descent on '.

The real world

§ We cannot really optimize !", !$ -- too slow, too hard, not enough data…

§ In practice interleave (many) stochastic ascent steps on !", !$
and (relatively few) stochastic descent steps on '.

§ This can be slow and tricky.  Lots of room for improvement.  Search for  “xxxGAN”.

Lets assume that this works.

What about the distances?



Integral Probability Metrics (IPM)



f-divergences With f convex such that f(1)=0

(Nowozin et al., NIPS 2016)(Nguyen et al., IEEE Trans Inf Theory 2010)



Wasserstein distances

!

"
Image stolen from Gabriel Peyré slides:

“An introduction to Optimal Transport” 

See also Cedric Villani

“Optimal Transport Old and New” (2009) 



Wasserstein distances

Kantorovich duality

IPM!



Energy distance - Euclidean case

(Szekely 2002, Szekely & Rizzo 2013)

This seems weird but it turns out that:



Energy distance – Generalized

(Szekely 2002, Szekely & Rizzo 2013)

Is this positive?

Is this a distance?



Energy distance – Generalized

(Zinger & al, 1989)



Energy distance – Surprise

Then, thanks to RKHS theory…

(Sejdinovic et al, 2013)  (Rachev et al., 2013)



Energy distance 
= Maximum Mean Discrepancy (MMD)

(Gretton et al., 2012)



Strong topology vs weak topology

(Arjovsky et al., ICML 2017)



How different are WD and MMD?



How different are WD and MMD?

This is reached (Sanjeev’s sphere) Wasserstein seem hopeless



How different are WD and MMD?

Things look different in practice

§ ED/MMD training of low dim implicit models works nicely.

§ ED/MMD training of high dim implicit models often gets stuck.

§ whereas “WD” training of the same high dim implicit models can give results.

Just the opposite of what one would expect !
WD-like.



3– Geodesic geometry 
for probability measures



Minimal geodesics



Constant speed reparametrization



Mixture geodesics



Displacement geodesics (Euclidean)



Displacement geodesics (General)

Essentially the

same thing



The geodesics of WD and MMD



Families of curves



Convexity w.r.t. a family of curves



Convex optimization à-la-carte

A descent algorithm will find the global minimum.

Even with a nonconvex parametrization of !" ∈ ℱ.



The convexity of implicit model families

Short story

§ An implicit model family cannot be mixture convex

while having a nice smooth generator !"($).

§ It is relatively easy to make implicit model families

that are displacement convex.

Explain!



How things can go wrong

Two Dirac distributions

with mean zero in a square.



How things can go wrong



The convexity of distance functions

§Learn by minimizing  min
$%∈ℱ

((*, ,-)
When is ((*, ,-)

geodesically convex?



Mixture-convexity

Therefore

§ ℰ" #, %
is mixture convex and geodesically convex.

§ &' #, %
is mixture convex



The Wasserstein distance
is not displacement convex



The Wasserstein distance
is not displacement convex

Wait. There is still hope.



Almost convexity

BOUND THE CONVEXITY 

VIOLATION

GROSS BOUND



Almost convexity



Descent works until it gets too close



Related works

Many authors went for this kind of results

§Amari – Information geometry  

§Freeman & Bruna, 2017 – connectivity of level sets in relu networks

§Aufflinger & Ben Arous 2013 – random functions on the sphere

§More?

Critical difference

All these work look at the intrinsic geometry of a family of models.

We look at the geometry of the entire family of probability measures,
then introduce convexity concepts for the parametrized families of interest.



Conclusion



Recapitulation

§ Economically meaningful technological successes 
have triggered a new wave of hope (and hype) about Artificial Intelligence.

§ Statistics ≠ semantics  
⟹ machine learning alone cannot crack AI
⟹ we need a couple conceptual breakthroughs.

➔ Causation seems to plays an central role (detective guesswork.)

➔ Even static image datasets contains hints about causal relations (experimental results.)

➔ Using the right probability distances could help (some theoretical and experimental results.)


