
The Trouble with Hardware

Timothy Roscoe

Systems Group, ETH Zurich

November 30th 2017

Many thanks!

2

And all the ETH Systems Group!
30/11/2017

The Gap.

For many commercially relevant workloads, cores spend
much of their time in the OS.

BUT:
• Processor architects ignore OS designers

– Simply don’t understand the OS problem
– Cores rarely evaluated with >1 app running anyway

• HPC people try to remove the OS
– And then blow the rest of their s/w development budget

putting it back in a user library.

• and OS design people?
– Complain among themselves and try and deal with it
– Don't even try to influence hardware

3

w/ Andrew
Baumann, Livio

Soares, Jeff
Mogul

30/11/2017

SO, WHAT IS THE TROUBLE WITH
HARDWARE?

4 30/11/2017

Lies we teach our children

5 30/11/2017

Lies we tell our children

6
Computer Systems, A Programmer's
Perspective, Bryant & O'Hallaron, 2011 30/11/2017

A great way to frighten students

7

TI OMAP4460:
Kindle Fire 7"
Samsumg Galaxy
Nexus, etc.

30/11/2017

A great way to frighten students

8

• pp. 3-63: Table of contents
• pp. 64-88: List of figures
• pp. 89-258: List of tables

30/11/2017

Initializing the
SD reader

9

(page 5503 ff.)

and so on for 7 pages.

30/11/2017

Is this a computer?

10

Still programmed
mostly as a classical
distributed system

30/11/2017

Typical rack-scale architecture
(in research, at least)

11

SSD
array

Storage
server

SSD
array

Storage
server

SSD
array

Storage
server

…

Inifiniband switch

Compute
server

Compute
server

Compute
server

Inifiniband switch

…

Q. Message
 latency in this
 network?
A. ~ 0.7s, or ~10
 LLC misses.
 need to think of
this as one big
machine

FDR ~ 56Gb/s

30/11/2017

But it’s not typical.

12 30/11/2017

But it’s not typical.

13 30/11/2017

So, hardware is too
complicated.

What clever techniques do OS developers use to
mitigate this problem?

1. The powerful high-level abstractions of C

2. Kernel modules

3. Server processes and daemons

4. Er…

5. That’s it.

 14 30/11/2017

The Barrelfish research OS

• Written from scratch, 2008-present
– Industry help: Microsoft, HPE, Huawei, Oracle

Cisco, VMware, Xilinx, ARM, Cavium, Intel, …

• Used for research and teaching

• Currently ~ 1m lines of code
– MIT open source licence

– ARMv7-A, ARMv8, x86_64, KNL

– Previously: ARMv5, ia32, SCC, Beehive

– See www.barrelfish.org

 15 30/11/2017

http://www.barrelfish.org/

WHAT DID WE LEARN FROM
BARRELFISH?

16 30/11/2017

Learnings

We started trying to solve three challenges:

• Scaling to large core counts

• Dynamic, heterogeneous cores

• Complex memory hierarchies

We ended up identifying two big problems:

• Sheer complexity of hardware for software

• Ossification of hardware/software ecosystem

17 30/11/2017

Hardware is changing
faster than system software

• CAD systems make it easy to cut’n’paste

• High volumes for SoCs lead to diversity

• End of Dennard scaling  specialism

18 30/11/2017

System software is getting
harder to change

• The OS retreats from most of the hardware

– Heterogeneous cores?

– Non-cache-coherent memory?

– etc.

• OS can’t adapt to changing tradeoffs

– “Least common denominator” tuning

• Today Linux is at best a small component of
“that which manages the machine”

19 30/11/2017

1ST TRY: LET’S REPRESENT THE
MACHINE IN PROLOG

20 30/11/2017

SKB – System Knowledge Base

• Basic OS service
– Boots early

• Holds:
– Hardware info

– Runtime state

• Queried by:
– OS services

– Applications

• Rich semantic data
model

21

Hardware
data and specification

Runtime
system information

SKB

30/11/2017

Plenty of design options

• Knowledge-representation frameworks
• Database
• RDF
• Logic Programming, inference
• Description Logics
• Satisfiability Modulo Theories
• Constraint Satisfaction
• Optimization
• etc.

22

Initial choice:
ECLiPse CLP solver:
Prolog + constraint

extensions
(circa 2009!)

30/11/2017

A few SKB applications

• General name server / service registry
• Coordination service / lock manager
• Device management

– Driver startup / hotplug

• PCIe bridge configuration
– A surprisingly hard CSAT problem!

• Intra-machine routing
– Efficient multicast tree construction

• Cache-aware thread placement
– Used by e.g. databases for query planning

23 30/11/2017

Example 1:
PCIe bridge configuration

• Hierarchical allocation of physical address ranges

– Natural power-of-two aligned

– Three disjoint memory types

– “Holes” in physical address space

– Some devices can’t be moved

– Odd constraints on some address mappings

– “Quirks”

– HotPlug

– …

24

CPU

PCIe root
complex

USB

PCIe-PCIe
bridge

SATA GPU

Sound

NIC

Wireless

Adrian Schüpbach,
Simon Peter,

Andrew Baumann

30/11/2017

How do others deal with this?

• Mostly, they don’t.

• Linux uses BIOS allocation and runs a fixup procedure
– Configures missing devices if no bridge reprogramming needed
– Otherwise fails

• Windows Vista, Server 2008: PCI Multi-Level Rebalance
– Can move bridges to a place with bigger free space
– Machine may appear to freeze for a few seconds

• IBM US patent 5,778,197 (1998): “Method for allocating system
resources in a hierarchical bus structure”
– Recursive bottom-up algorithm to allocate resources

• People have published genetic algorithms for this problem (!)
• 25 years after PCI 1.0 standardization, no complete solution exists.

25 30/11/2017

We coded it in
constraint Prolog (CLP)

• Cleanly separate:

1. “Ideal” allocation computation (in Prolog)

2. Ad-hoc constraints (errata, quirks, etc.)

3. Register read/write code (in C)

• A new quirk is 1-4 lines of portable Prolog

• CLP boots before devices

– Runtime milliseconds vs. microseconds

26

In 2012, we published a TOCS paper on how to
configure a 20-year old hardware standard.

30/11/2017

Example 2:
Database thread placement

• Problem:
– Place 4 threads of a join operator

• Parameters:
– Selectivity of join

• Low selectivity  share caches for locality

• High selectivity  use more caches for speed

– Inter-cache latency

– Size of L1 cache

– Size of (shared) L2 cache

27

Jana Giceva,
Adrian Schüpbach,

Gustavo Alonso

30/11/2017

Deployment suggestions on
different machines

28

(a) No preference for cache-sharing (b) No cache-sharing

AMD Magny Cours

For joins: depends on selectivity of
the database.

30/11/2017

Deployment suggestions on
different machines

29

Intel Nehalem - EX

(a) No preference for cache-sharing (b) No cache-sharing

30/11/2017

Deployment suggestions on
different machines

30

AMD Barcelona

(a) No preference for cache-sharing (b) No cache-sharing

30/11/2017

Deployment suggestions on
different machines

31

AMD Shanghai

(a) No preference for cache-sharing (b) No cache-sharing

30/11/2017

OK…

• We can do a better job of reasoning about
hardware inside the OS.

• Simplifies programming

• Gives richer API

• Improves application performance

• But, it’s still a programming tool.

32 30/11/2017

2ND TRY: FORMALLY SPECIFY
SEMANTICS OF HARDWARE

33 30/11/2017

Current work!

• Describe formally the hardware
as seen by software

• Generate code, data, and proofs

– Header files

– SKB facts

– Consistent (re)configuration code via
Program Synthesis

• Long-term goal: metrics for tastefulness

34

Reto Achermann,
Lukas Humbell,

David Cock

30/11/2017

Key principles

1. Don’t idealize the hardware in any way.

2. Don’t exclude any “difficult” hardware.

Embrace the mess, and stare into the abyss!

35 30/11/2017

A closer look at the OMAP4460

36 30/11/2017

A closer look at the OMAP4460

37

6+ hetero.
cores

A9 A9 DSP M3 M3
GFX

30/11/2017

A closer look at the OMAP4460

38

RAM RAM

ROM

SRAM

shared +
private

memory

6+ hetero.
cores

A9 A9 DSP M3 M3
GFX

30/11/2017

A closer look at the OMAP4460

39

RAM RAM

ROM

SRAM

shared +
private

memory

L4
 P

ER

L4
 C

FG

L4
 W

K
U

P

L3 Interconnect 5+ Inter-
connects

L4
 A

B
E

6+ hetero.
cores

A9 A9 DSP M3 M3
GFX

30/11/2017

A closer look at the OMAP4460

40

RAM RAM

ROM

SRAM

shared +
private

memory

L4
 P

ER

L4
 C

FG

L4
 W

K
U

P

L3 Interconnect 5+ Inter-
connects

L4
 A

B
E

GPT5

EHCI

SDMA

Devices on
different

buses

KB

GPIO

6+ hetero.
cores

A9 A9 DSP M3 M3
GFX

30/11/2017

A closer look at the OMAP4460

41

RAM RAM

ROM

SRAM

shared +
private

memory

L4
 P

ER

L4
 C

FG

L4
 W

K
U

P

L3 Interconnect 5+ Inter-
connects

L4
 A

B
E

GPT5

EHCI

SDMA

Devices on
different

buses

KB

GPIO

6+ hetero.
cores

A9 A9 DSP M3 M3
GFX

interrupt
subsystem

I I I
I

I I

I

I

I

30/11/2017

There is no uniform view of the
system from all cores

42

M3

GPT5

0x38000/12

42

A9

GPT5 Priv GPT5 L3

0x401383/12 0x490383/12

DSP

0x01D383/12 0x490383/12

GPT5 Priv GPT5 L3

GPT5

L3 Interconnect

L4
 A

B
E

M3
DSP

A9

I

I

I
I

0x490383/12

30/11/2017

Writing correct software…

… means getting all this right

– C code is frequently wrong.

– Nice to generate this code, but from what?

• Proving software correct requires a
specification of the hardware

– But what would it look like?

– What could be generated from it?

43 30/11/2017

Model addresses
as a decoding net

44

1

2

3

4

5

6 7

Note: can be cyclic!

nets := [ℕ is nodes, ℕ.. ℕ are nodes, ...]
nodes := (accept [blocks, ...])? (map [maps, ...])? (over N)?

maps := blocks to [ℕ (at ℕ)?, ...]
blocks := ℕ− ℕ

Translates a block of
addresses to a set of nodes at
potential different addresses

Overlays another node
(1-to-1 mapping)

30/11/2017

Representing address decoding

45 30/11/2017

Interrupts actually the same

46 30/11/2017

Can capture functionality of:

• Cores and DMA engines

• Caches (both physical and virtual)

• Firewalls

• MMUs and IOMMUs

• Lookup tables

• Interrupt controllers

• Virtualization hardware

47 30/11/2017

What can you do?

48

Header
files

Platform
model

Prolog
facts

Proofs

FPGA
circuit

Program
sketch of

device

Program
synthesis

Theorem
prover

Correct
compiler

Runtime
assertions

Static
h/w

config

Code
for

 dynamic
config

checking
software

+

+

or

30/11/2017

Long-term goal

• A language for describing hardware platforms

– c.f. ARM’s specification language

• Assemble descriptions of many devices

• Devise complexity metrics

• Create a style guide for hardware designers

49

What is “tasteful hardware design”?

30/11/2017

THE BIGGER TROUBLE WITH
HARDWARE

50 30/11/2017

A deadly embrace

Commodity hardware is designed for current,
conventional application workloads over Linux.

Academic research (and industrial innovation) in
system software is constrained by available

commodity hardware.

51 30/11/2017

But hardware is easy to build

• Hardware is so complex and diverse
 because it’s so easy to build what you want
– High-end CAD systems
– Simulators and emulators, FPGAs
– Rapid fabrication of boards and ASICs

• Big companies do
– HPE’s The Machine
– Oracle RAPID, SPARC M7
– Amazon F1
– Microsoft Catapult
– Google TPU for Tensorflow

52 30/11/2017

Challenge for research

53

Feasible hardware design space

Available COTS
hardware

Specialized product
hardware designs

Scope of most systems
software research

30/11/2017

SO, WHAT CAN WE DO?

54 30/11/2017

AOS 23 Nov 2017

What if we had…

• A hardware research platform for system
software

– Massively overengineered wrt. products

– Highly configurable building block for rackscale

• Perhaps we can actually build it at ETH…

– Logical next platform for our research

– Seed to other universities for impact

AOS 23 Nov 2017

Sketch: the basic building block

57

Large
server-class

SoC
High-end FPGA

Coherence

Lots of
network

bandwidth

Lots of
DDR

Lots of
network

bandwidth

Lots of DDR
and/or HBM

SATA, PCIe, UART, USB SATA, PCIe, UART, USB

30/11/2017

Enzian v.1

AOS

1 x Coherence link
(80Gb/s)

23 Nov 2017

Cavium
EBB88
Evaluation board

Xilinx
VCU118

Evaluation board

Enzian v.1

AOS

Cavium
ThunderX-1

48 x ARMv8-a
processor

Xilinx VCU9P
UltraScale+

FPGA

8 lanes
 CCPI

10 GB/s

2 x
40 Gb/s
Ethernet

128 GB DDR4

2 x
100 Gb/s
 QSFP28

128 GB DDR4

PCIe, USB, UART PCIe, USB, UART, etc.

23 Nov 2017

Cavium
EBB88
Evaluation board

Xilinx
VCU118

Evaluation board

Enzian v.2
(November 2017)

AOS

Cavium
ThunderX-1

48 x ARMv8-a
processor

Xilinx VCU9P
UltraScale+

FPGA

24 lanes
 CCPI

30 GB/s

2 x
40 Gb/s
Ethernet

128 GB DDR4

2 x
100 Gb/s
 QSFP28

128 GB DDR4

PCIe, USB, UART PCIe, USB, UART, etc.

23 Nov 2017

Enzian v.3
(2018)

AOS

Cavium
ThunderX-1

48 x ARMv8-a
processor

Xilinx VCU9P
UltraScale+

FPGA

CCPI 30 GB/s

256 GB DDR4 128 GB DDR4

PCIe, USB, UART PCIe, USB, UART, etc.

23 Nov 2017

I2C + GPIO

BMC

QSFP28

QSFP28

QSFP28

QSFP28

PCIe

PCIe

NVMe

NVMe

Single board

P
lu

ggab
le

6x10GB/s

64MB
HMC

All kinds of uses for this…

• Plug lots together for rack-scale computing

• Use the FPGA for data processing offload

• A better NetFPGA, or bump in the wire

• FPGA support infrastructure

• Sequester processors using the FPGA

• Runtime verification of program trace

• Experiment in scaling coherency

etc.

62 30/11/2017

Summary 1:
Hardware is easy to build

• It is complex, diverse, and changes rapidly

• It is hard to program in C

• It has totally unspecified semantics

• OS researchers need to up our game

63 www.barrelfish.org 30/11/2017

Summary 2:
COTS hardware is unrealistic

• All the product action uses custom hardware

• Vendors can build almost anything

• What to build is an economic question

– not something we can answer

• We needs overengineered research platforms

– Our goal should be to deliver options and
techniques

64 www.enzian.systems 30/11/2017

Many thanks!

65 30/11/2017

