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What is big?

“A billion edges isn’t cool. You know
what is cool? A TRILLION edges.”

Avery Ching, Facebook
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The HPC Approach

How to do it? —

Ine, In memory
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sing



How to do it? — The Facebook approach

many machines, in memory



How to do it? — Our “IKEA” approach

one or few machines, out-of-core



How to do it? — Our “IKEA” approach

X-Stream




The challenge

* Graph processing produces random accesses
* Performance requires sequential access
* A fortiori for secondary storage



Programming model

e Vertex-centric

e Scatter-gather



Programming model

e Vertex-centric
— Maintain state in vertex
— Write a vertex program

e Scatter-gather



Programming model

e Vertex-centric
— Maintain state in vertex
— Write a vertex program

e Scatter-gather

— Vertex program has two methods
* Scatter

 Gather



Programming model

e Vertex-centric
— Maintain state in vertex
— Write a vertex program

e Scatter-gather

— Vertex program has two methods

* Scatter
— For all outgoing edges: new update = f( vertex value )

 Gather

— For all incoming edges: vertex value = g( vertex value, update )



A vertex-centric program

Until convergence
/* Scatter phase */
For all vertices

For all outgoing edges: new update = f( vertex value )
/* Gather phase */
For all vertices

For all incoming edges: vertex value = g( vertex value, update )



Can express many graph algorithms

Pagerank

Weakly connected components
Minimum cost spanning tree
Maximal independent set
Conductance

SpMV

Alternating least squares



X-Stream

* Single-node (multi-core) graph processing

* Goal: all access to storage sequential!

* Two techniques:
— Edge-centric graph processing

— Streaming partitions



A vertex-centric program

Until convergence
/* Scatter phase */
For all vertices

For all outgoing edges: new update = f( vertex value )
/* Gather phase */
For all vertices

For all incoming edges: vertex value = g( vertex value, update )



Observation

Until convergence
/* Scatter phase */

/* Gather phase */

new update = f( vertex value )

vertex value = g( vertex value, update )



Observation

Until convergence
/* Scatter phase */

/* Gather phase */

These are loops over all edges — order does not matter

new update = f( vertex value )

vertex value = g( vertex value, update )



To edge-centric

Until convergence
/* Scatter phase */

For all edges: new update = f( vertex value )

/* Gather phase */
For all edges: vertex value = g( vertex value, update )

These are loops over all edges — order does not matter



Why |S th|s gOOd? will explain with scatter;

similar for gather

Until convergence

/* Gather phase */
For all edges: vertex value = g( vertex value, update )




Input

Vertex Set Edge Set

| vaiue SN source | Destination _
1 5 12

4
2 6 1 23
3 3 2 12
4 12 3 2

1 6



Edge-centric access to edge set

Vertex Set Edge Set
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random

But ...

Vertex Set Edge Set
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Streaming Partition

e Partition (V’,E’) of graph (V,E) such that
— V'’ fits in memory
— E’ contains all edges originating in V'

* Created during pre-processing



Input

Vertex Set Edge Set

| vaiue SN source | Destination _
1 5 12

4
2 6 1 23
3 3 2 12
4 12 3 2

1 6



Creating streaming partitions

in memory

Vertex Set Edge Set
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Scatter using streaming partitions

* |terate over partitions

* For all partitions
— Read vertex set from storage
— Stream edge set from storage (in big chunks)



Access to streaming partitions - 1

Vertex Set
| value |
1 5

2 6

in memory



Access to streaming partitions - 1

Vertex Set Edge Set
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in memory



Access to streaming partitions - 1

Vertex Set Edge Set

| value NI source | Destination _
1 5 1 23
2 6 2 12
1 6

in memory
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random
but in memory

Access to streaming partitions - 1
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Access to streaming partitions - 2

Vertex Set Edge Set

in memory
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random

Access to streaming partitions - 2

in memory
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Access to streaming partitions - 2

- Vertex Set Edge Set
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Accesses

e Sequential access to storage for E’
 Random access for V' but in memory

* Almost all access to storage is sequential



What happens with updates?

Until convergence
/* Scatter phase */
For all edges: new update = f( vertex value )
/* Gather phase */
For all edges: vertex value = g( vertex value, update )



What happens with updates?

 Update = ( target vertex, value)

* Updates are
— Binned according to partition of target vertex
— Buffered in memory
— Streamed to storage (sequentially)



What happens with updates?

In memory
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What happens with updates?
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What happens with updates?

In memory



What happens with updates?

In memory



What happens with updates?
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What happens with updates?

In memory



What happens with updates?

* Sequentially written during scatter
* Sequentially read during gather



Experimental Evaluation:
Comparison with GraphChi

* Use same storage medium: SSD
* Use same benchmarks:

— Twitter Pagerank
— RMAT27 WCC
— Twitter Belief Propagation



2500

2000

1500 -

1000 -

500 -

GraphChi vs X-Stream
Runtime comparison (in secs.)

Twitter PR

6000

5000

4000 -

3000 -

2000 -

1000 -

0_

RMAT27 WCC

6000

5000 -

4000 -

3000

2000 -

1000 -

0_

Twitter BP



GraphChi - Preprocessing vs X-Stream
Runtime comparison (in secs.)
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Fundamental reason
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Fundamental reason
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Runs constantly at near-maximum 1/O bandwidth



X-Stream limitations

* Capacity: amount of storage on single machine
 Bandwidth: storage bandwidth on single machine



Chaos goals

e Extend to X-Stream to a cluster

e Goals:
— Capacity: aggregate storage on all machines
— Bandwidth: aggregate bandwidth on all machines



Back to sequential X-Stream design

* |terate over partitions

* For all partitions
— Read vertex set from storage
— Stream edge set from storage (in big chunks)



Observation

* |terate over partitions

* For all partitions
— Read vertex set from storage
— Stream edge set from storage (in big chunks)

e Streaming partitions are independent



Distribution

* |terate in parallel over partitions

* For all partitions
— Read vertex set from storage
— Stream edge set from storage (in big chunks)



Vertex distribution

..




Edge distribution

..




Problem: load imbalance

..




Dealing with imbalance

* |/O imbalance: “flat” storage
 Computational imbalance: work stealing



Dealing with imbalance

m) /O imbalance: “flat” storage
 Computational imbalance: work stealing



Insight

* For secondary storage in a cluster
— Remote bandwidth ~ local bandwidth

* Locality hardly matters



There is no point in putting vertices
and edges of a partition together

..




Instead

* Stripe graph data across nodes
— Edge lists
— Update lists



Vertex distribution

..




Edge distribution for V,




From where to read next edge stripe?




Answer: It can read any random stripe
(that has not been read)

T

SEEE B




In fact, it reads several random stripes

=

1




Final note on reading edge stripes

'\

El %

Storage side maintains what has and has not been read




Where to write update stripe?




Answer: choose any device at random

T




Chaos: I/O design: summary

* “Flat” storage
* Without any access ordering
 Without any central entity



Dealing with imbalance

* |/O imbalance: “flat” storage
» Computational imbalance: work stealing



Work stealing

 Jam cone.Neacihep?
e,
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Work stealing: Copy vertex set




Work stealing issue?

* > 1 machines work on a streaming partition
* > 1 machines access same edge list
* Need for synchronization?



Stealing: Which edge stripe to read?




Stealing: It can read any stripe
(that has not been read)




Remember

Storage side maintains what has and has not been read



Chaos: computation design: summary

* Work stealing
— Without synchronization
— Without centralized entity



A brief digression

During gather (with work stealing):
— Multiple machines update vertex state

Each updates its own copy
Copies are reconciled by Apply() function

Similar to PowerGraph GAS model



Chaos: desigh summary

Striping =2 good I/0 balance
Work stealing = good computational balance
Streaming partition = sequentiality

And all of this
— without expensive partitioning

— without |/O synchronization



Evaluation

32 16-core machines (single rack)
32Gb RAM, 480Gb SSD, 2x6Tb HDD

Full-bisection bandwidth 40GigE switch

RMAT graphs
Wall clock time (including pre-processing)



Weak scaling experiment

* For n machines
— Use graph size n times for single machine

* Measure running time
— For a number of algorithms
— Normalize to running time to single machine
— |Ideally result would always be ~ 1



Normalized runtime
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Computational balance

waiting

Runtime (in secs)
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Without work stealing

W processing

Runtime (in secs)
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Why is scaling not perfect?

Remote bandwidth ~ but < local bandwidth
_oad balance is not perfect

Dynamic load balance has overhead
Storage access less sequential



Why is scaling not perfect?

Remote bandwidth ~ but < local bandwidth
Load balance is not perfect

Dynamic load balance has overhead
Storage access less sequential



Stealing: Copy vertex set
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@@ Benchmark

* Graph analytics benchmark

 Two rankings:
— Speed
— Capacity



Capacity Ranking

Rank Size Machine Location Nodes
1 32T BlueGene/Q Lawrence Livermore 98304
2 16T BlueGene/Q Argonne 49152
3 16T Cray CS300 Lawrence Livermore 300
4 16T K (Fujitsu Custom) RIKEN AICS 82944
5 4T PRIMEHPC FX10 University of Tokyo 4800
6 4T BlueGene/Q FZ) 16384
7 4T PRIMEHPC FX10 University of Tokyo 4800
8 2T T-Platforms - MPP Moscow University 4096
9 2T BlueGene/P FZJ 16000
10 2T T-Platforms - MPP Moscow University 4096




Capacity Ranking

Rank Size Machine Location Nodes
1 32T BlueGene/Q Lawrence Livermore 98304
2 16T BlueGene/Q Argonne 49152
3 16T Cray CS300 Lawrence Livermore 300
4 16T K (Fujitsu Custom) RIKEN AICS 82944
5 8T Xeon E5 EPFL 32
6 4T PRIMEHPC FX10 University of Tokyo 4800
7 4T BlueGene/Q FZ) 16384
8 4T PRIMEHPC FX10 University of Tokyo 4800
9 2T T-Platforms - MPP Moscow University 4096
10 2T BlueGene/P FZJ 16000




Capacity Ranking

Rank Size Machine Location Nodes
1 32T BlueGene/Q Lawrence Livermore 98304
2 16T BlueGene/Q Argonne 49152
3 16T Cray CS300 Lawrence Livermore 300
4 16T K (Fujitsu Custom) RIKEN AICS 82944
5 8T Xeon E5 EPFL 32
6 4T PRIMEHPC FX10 University of Tokyo 4800
7 4T BlueGene/Q FZ) 16384
8 4T PRIMEHPC FX10 University of Tokyo 4800
9 2T T-Platforms - MPP Moscow University 4096
10 2T BlueGene/P FZJ 16000




Capacity Ranking

Rank Size Machine Location Nodes
1 32T BlueGene/Q Lawrence Livermore 98304
2 16T BlueGene/Q Argonne 49152
3 16T Cray CS300 Lawrence Livermore 300
4 16T K (Fujitsu Custom) RIKEN AICS 82944
5 8T Xeon E5 EPFL 32
6 4T IMEHPC FX10 University of Tokyo 4800
7 4T FZ) 16384
8 4T PRI Input: 128TB ity of Tokyo 4800
9 2T T-Pla 1/O: 1.8PB University 4096
10 2T FZ) 16000




Conclusion

The “IKEA” approach to graph processing works
Based on processing from secondary storage

X-Stream:
— Edge-centric processing
— Streaming partitions

Chaos:

— Flat storage

— Work stealing
— Randomization



Further information

* Two publications:

— A. Roy, I. Mihailovic and W. Zwaenepoel, X-Stream: Edge-centric
Graph Progessing using Streaming Partitions, SOSP 2013

— A. Roy, L. Bindschaedler, J. Malicevic and W. Zwaenepoel, Chaos:
Scale-Out Graph Processing from Secondary Storage, SOSP 2015

e https://github.com/labos-epfl/chaos
e http://labos.epfl.ch




