Analytics on Graphs
with Trillions of Edges

Laurent Bindschaedler, Jasmina Malicevic,
Amitabha Roy, and Willy Zwaenepoel

_ Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

[™
©
°
°
°
®
°
@
®
<
°-.
°|
°
e |
L d
o

¢ PaloAllo
3 Municipal, %
s 7 gty ave Golf(Course
< S = o
WByxee)
Recreation
4"%,, Nes]' |
o= i)
R m‘“‘baﬁ\/ ‘
Rinconada 08!
Park® & g
Y07 Stanord Greer ParkiNG
Palo Alto . f
Stanford 6(‘ .% ﬁ
Stadium % y (o)
%,
s
Stanford %

University
RED 61

Plenty of big graphs

R %
h 4
W et €208 Tele At - Tormis ot Lse |

Linked [T} S &

What is big?

“A billion edges isn’t cool. You know
what is cool? A TRILLION edges.”

Avery Ching, Facebook

PR

The HPC Approach

How to do it? —

Ine, In memory

le mach

sing

How to do it? — The Facebook approach

many machines, in memory

How to do it? — Our “IKEA” approach

one or few machines, out-of-core

How to do it? — Our “IKEA” approach

X-Stream

The challenge

* Graph processing produces random accesses
* Performance requires sequential access
* A fortiori for secondary storage

Programming model

e Vertex-centric

e Scatter-gather

Programming model

e Vertex-centric
— Maintain state in vertex
— Write a vertex program

e Scatter-gather

Programming model

e Vertex-centric
— Maintain state in vertex
— Write a vertex program

e Scatter-gather

— Vertex program has two methods
* Scatter

 Gather

Programming model

e Vertex-centric
— Maintain state in vertex
— Write a vertex program

e Scatter-gather

— Vertex program has two methods

* Scatter
— For all outgoing edges: new update = f(vertex value)

 Gather

— For all incoming edges: vertex value = g(vertex value, update)

A vertex-centric program

Until convergence
/* Scatter phase */
For all vertices

For all outgoing edges: new update = f(vertex value)
/* Gather phase */
For all vertices

For all incoming edges: vertex value = g(vertex value, update)

Can express many graph algorithms

Pagerank

Weakly connected components
Minimum cost spanning tree
Maximal independent set
Conductance

SpMV

Alternating least squares

X-Stream

* Single-node (multi-core) graph processing

* Goal: all access to storage sequential!

* Two techniques:
— Edge-centric graph processing

— Streaming partitions

A vertex-centric program

Until convergence
/* Scatter phase */
For all vertices

For all outgoing edges: new update = f(vertex value)
/* Gather phase */
For all vertices

For all incoming edges: vertex value = g(vertex value, update)

Observation

Until convergence
/* Scatter phase */

/* Gather phase */

new update = f(vertex value)

vertex value = g(vertex value, update)

Observation

Until convergence
/* Scatter phase */

/* Gather phase */

These are loops over all edges — order does not matter

new update = f(vertex value)

vertex value = g(vertex value, update)

To edge-centric

Until convergence
/* Scatter phase */

For all edges: new update = f(vertex value)

/* Gather phase */
For all edges: vertex value = g(vertex value, update)

These are loops over all edges — order does not matter

Why |S th|s gOOd? will explain with scatter;

similar for gather

Until convergence

/* Gather phase */
For all edges: vertex value = g(vertex value, update)

Input

Vertex Set Edge Set

| vaiue SN source | Destination _
1 5 12

4
2 6 1 23
3 3 2 12
4 12 3 2

1 6

Edge-centric access to edge set

Vertex Set Edge Set

l m

6
3
12

P DA W N
R W N RN

lenuanbas

random

But ...

Vertex Set Edge Set

l m

N
(@)

S

12

w
w
R W N, D

|

lequanbas

Streaming Partition

e Partition (V’,E’) of graph (V,E) such that
— V'’ fits in memory
— E’ contains all edges originating in V'

* Created during pre-processing

Input

Vertex Set Edge Set

| vaiue SN source | Destination _
1 5 12

4
2 6 1 23
3 3 2 12
4 12 3 2

1 6

Creating streaming partitions

in memory

Vertex Set Edge Set
NN | voue NI source | Destination
o 1 5 1 23
=
B 2 6 2 12
©

1 6

o in memory
~ Vertex Set Edge Set
L | vove NEEM souce | Destination
p 3 1
'E 4 12
= 4 2 3 6
o

Scatter using streaming partitions

* |terate over partitions

* For all partitions
— Read vertex set from storage
— Stream edge set from storage (in big chunks)

Access to streaming partitions - 1

Vertex Set
| value |
1 5

2 6

in memory

Access to streaming partitions - 1

Vertex Set Edge Set

| value NI source | Destination _
1 5 1 23
2 6 2 12

1 6

in memory

Access to streaming partitions - 1

Vertex Set Edge Set

| value NI source | Destination _
1 5 1 23
2 6 2 12
1 6

in memory

lequanbas

random
but in memory

Access to streaming partitions - 1

-

Vertex Set

| Value _
1 5

2 6

in memory

Edge Set

| source | Destination _

1
2
1

23
12
6

am

lequanbas

Access to streaming partitions - 2

Vertex Set Edge Set

in memory

>
| -
Rl voue NI source | Destination [N
o 1 5 1 23 '8
E S 2 6 2 12 M
© C =
V= . 1 6 .
-5’ In memory Q
o)
Vertex Set
| value
3 1
4 2

random

Access to streaming partitions - 2

in memory

- Vertex Set Edge Set
| -
L | veue NI source | Destination L
Q 1 5 1 23 -8
£ 2 6 2 12 @
(- >
= . 1 6 .
+ In memory Q
-
e
Vertex Set Edge Set

| vaue JEEMM Souce | Destination

3 1 4 12

4 2 3 6

Access to streaming partitions - 2

- Vertex Set Edge Set

L =
Rl voue NI source | Destination [N
o 1 5 1 23 '8
RS 2 6 2 12 ®
o C -
o - 1 6 .

+ in memory Q

-

e

Vertex Set Edge Set
> g 2
wn

col HEN| HETEEETETE ©
= GE) 3 1 4 12 c
3 £ S
= 4 2 3 6 =
© = ; Y]

= in memory —

o

Accesses

e Sequential access to storage for E’
 Random access for V' but in memory

* Almost all access to storage is sequential

What happens with updates?

Until convergence
/* Scatter phase */
For all edges: new update = f(vertex value)
/* Gather phase */
For all edges: vertex value = g(vertex value, update)

What happens with updates?

 Update = (target vertex, value)

* Updates are
— Binned according to partition of target vertex
— Buffered in memory
— Streamed to storage (sequentially)

What happens with updates?

In memory

2,V

What happens with updates?

=
-

In memory

What happens with updates?

In memory

What happens with updates?

In memory

What happens with updates?

. ‘U) ‘
° <
N

In memory

What happens with updates?

In memory

What happens with updates?

* Sequentially written during scatter
* Sequentially read during gather

Experimental Evaluation:
Comparison with GraphChi

* Use same storage medium: SSD
* Use same benchmarks:

— Twitter Pagerank
— RMAT27 WCC
— Twitter Belief Propagation

2500

2000

1500 -

1000 -

500 -

GraphChi vs X-Stream
Runtime comparison (in secs.)

Twitter PR

6000

5000

4000 -

3000 -

2000 -

1000 -

0_

RMAT27 WCC

6000

5000 -

4000 -

3000

2000 -

1000 -

0_

Twitter BP

GraphChi - Preprocessing vs X-Stream
Runtime comparison (in secs.)

2500

2000

1500 -

1000 -

500

Twitter PR

6000

5000

4000 -

3000

2000 -

1000 -

0_

RMAT27 WCC

6000

5000

3000

2000 -

1000 -

0_

1 B

4000 -

Twitter BP

Fundamental reason

1000

900

800
700

Llhlll

>y gk : ' |l
600 T FITRITANA REINER 1R ITN | ,xal . 1

coo 4 NI T | TN Syt YN |
400 -
300 -

200 -
100 - tfime

X-Stream bandwidth utilization (PageRank, 5 iterations)

Fundamental reason

1000

900

800
700

Llhlll

= * ! ' 1
600 T FITRITANA REINER 1R ITN | ,xal . 1

500 T NN TNWeN T TNWRNTT ST D SHSN |
400
300 -
200 -

100 -

o
B
®

X-Stream bandwidth utilization (PageRank, 5 iterations)

Runs constantly at near-maximum 1/O bandwidth

X-Stream limitations

* Capacity: amount of storage on single machine
 Bandwidth: storage bandwidth on single machine

Chaos goals

e Extend to X-Stream to a cluster

e Goals:
— Capacity: aggregate storage on all machines
— Bandwidth: aggregate bandwidth on all machines

Back to sequential X-Stream design

* |terate over partitions

* For all partitions
— Read vertex set from storage
— Stream edge set from storage (in big chunks)

Observation

* |terate over partitions

* For all partitions
— Read vertex set from storage
— Stream edge set from storage (in big chunks)

e Streaming partitions are independent

Distribution

* |terate in parallel over partitions

* For all partitions
— Read vertex set from storage
— Stream edge set from storage (in big chunks)

Vertex distribution

..

Edge distribution

..

Problem: load imbalance

..

Dealing with imbalance

* |/O imbalance: “flat” storage
 Computational imbalance: work stealing

Dealing with imbalance

m) /O imbalance: “flat” storage
 Computational imbalance: work stealing

Insight

* For secondary storage in a cluster
— Remote bandwidth ~ local bandwidth

* Locality hardly matters

There is no point in putting vertices
and edges of a partition together

..

Instead

* Stripe graph data across nodes
— Edge lists
— Update lists

Vertex distribution

..

Edge distribution for V,

From where to read next edge stripe?

Answer: It can read any random stripe
(that has not been read)

T

SEEE B

In fact, it reads several random stripes

=

1

Final note on reading edge stripes

'\

El %

Storage side maintains what has and has not been read

Where to write update stripe?

Answer: choose any device at random

T

Chaos: I/O design: summary

* “Flat” storage
* Without any access ordering
 Without any central entity

Dealing with imbalance

* |/O imbalance: “flat” storage
» Computational imbalance: work stealing

Work stealing

 Jam cone.Neacihep?
e,
No.tameinostdons

Work stealing: Copy vertex set

Work stealing issue?

* > 1 machines work on a streaming partition
* > 1 machines access same edge list
* Need for synchronization?

Stealing: Which edge stripe to read?

Stealing: It can read any stripe
(that has not been read)

Remember

Storage side maintains what has and has not been read

Chaos: computation design: summary

* Work stealing
— Without synchronization
— Without centralized entity

A brief digression

During gather (with work stealing):
— Multiple machines update vertex state

Each updates its own copy
Copies are reconciled by Apply() function

Similar to PowerGraph GAS model

Chaos: desigh summary

Striping =2 good I/0 balance
Work stealing = good computational balance
Streaming partition = sequentiality

And all of this
— without expensive partitioning

— without |/O synchronization

Evaluation

32 16-core machines (single rack)
32Gb RAM, 480Gb SSD, 2x6Tb HDD

Full-bisection bandwidth 40GigE switch

RMAT graphs
Wall clock time (including pre-processing)

Weak scaling experiment

* For n machines
— Use graph size n times for single machine

* Measure running time
— For a number of algorithms
— Normalize to running time to single machine
— |Ideally result would always be ~ 1

Normalized runtime

N
U

N

Weak scaling result

2 4 8
Number of machines

16

32

“ BFS

- MCST

i SSSP

“SCC

“ PR

~ Cond
SpMV

|/O Balance
i
i
I
I

[

=
S O

<

(99s/dN ul) Yapimpueg O/

N WONO OO
NANANANANANMNMDM

—AONM
NN AN

Machine identifier

O AN ONONOETAANNTNWONOC OO
Lo B o B s B o B e B o B o B o B o B o B @Y

Computational balance

waiting

Runtime (in secs)

& load balancing

. o - -
SRR R YRR R Y mprocessing

O —1ANMN<TLNOMN OO NN < LNLON 00N O —IANN<TLNLO NN 00N O
Lam e Lo Lo L Lo Lo L o L (@ [\ [[@\ (@ [@\[aN\[@\[aN [\ (g aTqp]

Machine Identifier

Without work stealing

W processing

Runtime (in secs)

OHNMQ’LDLDI\OOO\OHNMQ'LOLDI\OOO\OHNMQ'LOLDI\OOO\OH
Al A AN AN AN AN AN NN

Machine identifier

Why is scaling not perfect?

Remote bandwidth ~ but < local bandwidth
_oad balance is not perfect

Dynamic load balance has overhead
Storage access less sequential

Why is scaling not perfect?

Remote bandwidth ~ but < local bandwidth
Load balance is not perfect

Dynamic load balance has overhead
Storage access less sequential

Stealing: Copy vertex set

E’ %

| promised you:

Analytics on Graphs
with Trillions of Edges

Laurent Bindschaedler, Jasmina Malicevic,
Amitabha Roy, and Willy Zwaenepoel

_ Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

| promised you:

V 'S
Laurent alicevic,
Amit: 2poel

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

@@ Benchmark

* Graph analytics benchmark

 Two rankings:
— Speed
— Capacity

Capacity Ranking

Rank Size Machine Location Nodes
1 32T BlueGene/Q Lawrence Livermore 98304
2 16T BlueGene/Q Argonne 49152
3 16T Cray CS300 Lawrence Livermore 300
4 16T K (Fujitsu Custom) RIKEN AICS 82944
5 4T PRIMEHPC FX10 University of Tokyo 4800
6 4T BlueGene/Q FZ) 16384
7 4T PRIMEHPC FX10 University of Tokyo 4800
8 2T T-Platforms - MPP Moscow University 4096
9 2T BlueGene/P FZJ 16000
10 2T T-Platforms - MPP Moscow University 4096

Capacity Ranking

Rank Size Machine Location Nodes
1 32T BlueGene/Q Lawrence Livermore 98304
2 16T BlueGene/Q Argonne 49152
3 16T Cray CS300 Lawrence Livermore 300
4 16T K (Fujitsu Custom) RIKEN AICS 82944
5 8T Xeon E5 EPFL 32
6 4T PRIMEHPC FX10 University of Tokyo 4800
7 4T BlueGene/Q FZ) 16384
8 4T PRIMEHPC FX10 University of Tokyo 4800
9 2T T-Platforms - MPP Moscow University 4096
10 2T BlueGene/P FZJ 16000

Capacity Ranking

Rank Size Machine Location Nodes
1 32T BlueGene/Q Lawrence Livermore 98304
2 16T BlueGene/Q Argonne 49152
3 16T Cray CS300 Lawrence Livermore 300
4 16T K (Fujitsu Custom) RIKEN AICS 82944
5 8T Xeon E5 EPFL 32
6 4T PRIMEHPC FX10 University of Tokyo 4800
7 4T BlueGene/Q FZ) 16384
8 4T PRIMEHPC FX10 University of Tokyo 4800
9 2T T-Platforms - MPP Moscow University 4096
10 2T BlueGene/P FZJ 16000

Capacity Ranking

Rank Size Machine Location Nodes
1 32T BlueGene/Q Lawrence Livermore 98304
2 16T BlueGene/Q Argonne 49152
3 16T Cray CS300 Lawrence Livermore 300
4 16T K (Fujitsu Custom) RIKEN AICS 82944
5 8T Xeon E5 EPFL 32
6 4T IMEHPC FX10 University of Tokyo 4800
7 4T FZ) 16384
8 4T PRI Input: 128TB ity of Tokyo 4800
9 2T T-Pla 1/O: 1.8PB University 4096
10 2T FZ) 16000

Conclusion

The “IKEA” approach to graph processing works
Based on processing from secondary storage

X-Stream:
— Edge-centric processing
— Streaming partitions

Chaos:

— Flat storage

— Work stealing
— Randomization

Further information

* Two publications:

— A. Roy, I. Mihailovic and W. Zwaenepoel, X-Stream: Edge-centric
Graph Progessing using Streaming Partitions, SOSP 2013

— A. Roy, L. Bindschaedler, J. Malicevic and W. Zwaenepoel, Chaos:
Scale-Out Graph Processing from Secondary Storage, SOSP 2015

e https://github.com/labos-epfl/chaos
e http://labos.epfl.ch

