D
AN

Esape from the ivory tower
The Haskell journey

) 24

Simon Peyton Jones, Microsoft Research
May 2017

1976-80

John and Simon
go to university

John Hughes, Simon Peyton Jones,
Maths, Churchill Maths, Trinity

(s Early days of microprocessors (failed)
4kbytes is a lot of memory
Cambridge University has one (1) computer
ande

» f,'D‘

The late 1970s, early 1980s

SK combinators,
} graph reduction

(Turner)

Lambda the Ultimate
(Steele, Sussman)

e.g. (\ X. x+x) 5
=S(S(K+)DI5

SKIM: Lisp & FP 1980

SKIM = The S, K, I Reduction Machine

T.J.W. Clarke, F.J.S. Gladstone, C.D. MacLean, A.C. Norman

Trinity College, Cambridge

Abstract

SKIM i3 a computer built to explore pure
functional programming, combinators as & machine
language and the use of hardware to provide direct
support for a high level language. Its design
stresses simplicity and aims at providing
minicomputer performance (in its particular
application areas) for miecrocomputer costs. This
paper discusses the high level reduction language
that SKIM supports, the way in which this language
is compiled into combinators and the hardware and
microcode that then evaluate programs.

1. Introduction

In [1] Turner shows how combinators can be used as
an intermediate representation for applicative
programs. He compares (software) interpretation of
combinator forms with more traditional schemes
based on lambda caleulus, and demonstrates that
his new method is both elegant and efficient, at
least when normal order evaluation is required.
SKIM is an investigation of how Turner's ideas
translate into hardware, It views his combinators
as machine code, and the fixed program that cbeys
them as microcode. In section 2 we will present
the particular applicative language we use, and
comment on the need for special computers to
support such languages. Section 3 reviews Turnper's

programming style which fits in very smeoothly with
the mathematical flavour of sSymbolic algebra.
Also, since 1n an algebra system even sSmall
amounts of arithmetic may invelve calling fairly
expensive subroutines, the initial design for
Small did not feel obliged to allow for
compilation inteo efficient machine code. As a
user-level language for driving large packages it
can afford an interpretive implementation., This
results in a language which demands proper
treatment of functional objects (the Funarg
facility, so often missing or restricted in full
sized LISP systems), call-by-need (otherwise known
as lazy evaluation) and an error-handling scheme
compatible with the semanties of the rest of the
language.

Figure 1 gives a few simple examples of Emall
functions and 2c illustrates how it compares with
the direct use of lambda cslculus or LISP. It is
easy to demonstrate the positive features of a
language such as Small, such as its pattern-
matehing test for decomposing structures, its
capability for recursive definitions of data as
well as program and its lazy evaluation., When
these points have been covered there remain
various real worries as to how practical Small
could be for the development of large programs.
Here we will ignore most of these - for instance
those concerning the relationship between pure
language and file stores - and just discuss the
two concerns that we have considered most
pressing. We pose each in the form of direct
questions:

SLPJ: Lisp & FP 1982

AN INVESTIGATION OF THE RELATIVE EFFICIENCIES QF

COMBINATORS AND LAMBDA EXPRESSIONS
by
Simon L Peyton Jones

Beale Electronic Systems Ltd
Whitehall, Wraysbury, UK.

programming errors are less likely,
ABSTRACT and programs are more amenable to

In 'A HNew Implementation Technique formal verification.

for Applicative Languages' [Tu79%al
Turner uses combinators to inplement
lambda expressions. This paper
describes an experimental investigation

of the efficiency of Turner's technigue
compared with more traditional reducers.

(1i) The absence of side effects means
that expressions can be concurrently
evaluated by several cooperating
processors., This suggests
functional languages as a base for
highly parallel computing.

OVERVIEW The two main techniques for
—e efficiently implementing functional

The basis for comparison of the two semantics are data flow and reduction.
systems is discussed in Section 1. This 3:15 paper concentiates exclusively ,on
is followed by some implementation < implementation of reduction

considerations in Section 2, while the techniques.

main results are presented in Section 3.

Section 4 ©presents some discussion of archEEECture i:nnizicaiamhda r:?us;ion
the results and related issues, and s calculus,
conclusions are drawn in Section 5. FE;:?jhaﬁsig?bﬁytensi;z literature (ig
R . wever, some o

results derived by Curry and Feys [Cu58]

1 BASIS FOR COMPARISON have been used by Turner [Tu79] +to
implement a reduction machine for the

1.1 Background combinator calculus. The combinator
calculus has the same semantics as the

Functional languages are égggda ia%cu}us, but has a rather
characterised by the absence of side erent implementaticn. Thus the two
effects and imperative commands. They calculi can be thought of as two machine

are the focus of considerable current codes for a functional -igh-level

Backus Turing Award 1977

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its
Algebra of Programs

John Backus
IBM Research Laboratory, San Jose

Conventional programming languages are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor—the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

rd -k w - B -

John Backus Dec 1924 o Mar 2007

The Call

Functional programming: A 4 Lazy functional A
recursion, pattern matching, programming

comprehensions etc etc (Friedman, Wise,

S (ML, SASL, KRC, Hope, Id)) kHenderson, Morris, Turner) P

SK combinators,

Dataflow architectures ‘ graph reduction

(Arvind et al) (Turner)
Backus

Can programming be
liberated from the von
Neumann style?

The Call

e Have no truck with the

comg.

e grubby compromises of
imperative programming!

Dataflc n
G Go forth, follow the
Path of Purity
Design new languages
and new computers,
= and rule the world

Result

Chaos
Many bright young things

Many conferences
(birth of FPCA, LFP)

Many languages
(Sasl, Miranda, LML, Orwell, Ponder, Alfl , Clean)

Many compilers

Many architectures
(mostly doomed)

Crystalisation

FPCA, Sept 1987: initial meeting.
A dozen lazy functional programmers, wanting to agree
on a common language.

A Suitable for teaching, research, and application

A Formally -described syntax and semantics

A Freely available

A Embody the apparent consensus of ideas

A Reduce unnecessary diversity

Absolutely no clue how much work we were taking on
Led to...a succession of face -to-face meetings

~@9' April 1990 (2v2 yrs later): Haskell 1.0 report

Practitioners

Geeks

History of most research

languages
1,000,000
10,000
100
The quick death
1 —\

lyr Syr 10yr

15yr

Practitioners

Geeks

Successful research languages

1,000,000

10,000

100

The slow death
1 ___———_——””’—.\\\\&

lyr Syr 10yr 15yr

Practitioners

Geeks

C++, Java, Perl/ Ruby

Threshold of immortality

1,000,000
10,000
The regrettable
100 absence of death

1yr Syr 10yr

15yr

