
Notes for the Talk What is Computation?

Leslie Lamport
26 June 2012

Mathematical Logic

The operators ∨ and ∧ are defined by:

true ∨ true equals true

true ∨ false equals true

false ∨ true equals true

false ∨ false equals false

and

true ∧ true equals true

true ∧ false equals false

false ∧ true equals false

false ∧ false equals false

These definitions imply the following equalities, for any truth value B :

true ∨ B equals true

false ∨ B equals B
true ∧ B equals B
false ∧ B equals false

The Binary Clock

The binary clock is described by:

Initclk : (v = 0) ∨ (v = 1)

Nextclk : ((v = 0) ∧ (v ′ = 1))
∨ ((v = 1) ∧ (v ′ = 0))

To obtain a sequence of states that is a computation of the binary clock, we
first find a value for the variable v for which Initclk equals true. The two
choices are v = 0 and v = 1. For example, substituting 0 for v in Initclk , we
have:

Initclk equals (0 = 0) ∨ (0 = 1)
equals true ∨ false

equals true [by the definition of ∨]



Starting with the state v = 1, we find the next state by substituting v = 1
in Nextclk to obtain

Nextclk equals ((1 = 0) ∧ (v ′ = 1))
∨ ((1 = 1) ∧ (v ′ = 0))

equals ((false) ∧ (v ′ = 1))
∨ ((true) ∧ (v ′ = 0))

equals false [because false ∧ B equals false]
∨ (v ′ = 0) [because true ∧ B equals B ]

equals v ′ = 0 [because false ∨ B equals B ]

If we substitute 1 for v in Nextclk , the only value that we can substitute for
v ′ to make Nextclk equal to true is 0. Therefore, from the state v = 1, the
only possible next state is v = 0. So, a computation starting from the state
v = 1 has as its next state v = 0. Similarly, substituting 0 for v in Nextclk ,
the only value we can substitute for v ′ that makes Nextclk equal to true is
1. Continuing this process, we see that the only computation of the binary
clock starting in the state v = 1 is:

v = 1 → v = 0 → v = 1 → v = 0 → · · ·

Euclid’s Algorithm

Euclid’s algorithm computes the greatest common divisor of two positive
integers, which is the largest positive integer that divides both of them.
The algorithm is described as follows, where M and N are arbitrary fixed
positive integers, and x and y are variables:

Initeuclid : (x = M ) ∧ (y = N )

Nexteuclid : ((x < y) ∧ (x ′ = x ) ∧ (y ′ = y − x ))
∨ ((y < x ) ∧ (y ′ = y) ∧ (x ′ = x − y))

A computation of this algorithm stops when the value of x equals the value
of y , at which point that value equals the greatest common divisor of M
and N (written gcd(M ,N )).

To see how the algorithm works, we find a computation for the case
when M equals 18 and N equals 12. Finding values of x and y that make
Initeuclid true in this case yields the starting state:

x = 18, y = 12

2



To find the possible next states, we substitute 18 for x and 12 for y in
Nexteuclid and solve for x ′ and y ′ as follows:

Nexteuclid equals ((18 < 12) ∧ (x ′ = 18) ∧ (y ′ = 12− 18))
∨ ((12 < 18) ∧ (y ′ = 12) ∧ (x ′ = 18− 12))

equals (false ∧ (x ′ = 18) ∧ (y ′ = 12− 18))
∨ (true ∧ (y ′ = 12) ∧ (x ′ = 18− 12))

equals false

∨ ((y ′ = 12) ∧ (x ′ = 18− 12))

equals (y ′ = 12) ∧ (x ′ = 18− 12)

equals (y ′ = 12) ∧ (x ′ = 6)

This shows that the first two states of the computation are

x = 18, y = 12 → x = 6, y = 12

Substituting 6 for x and 12 for y in Nexteuclid yields x ′ = 6 and y ′ = 6, so
the first three states of the computation are

x = 18, y = 12 → x = 6, y = 12 → x = 6, y = 6

Substituting 6 for x and 6 for y in Nexteuclid yields

Nexteuclid equals ((6 < 6) ∧ (x ′ = 6) ∧ (y ′ = 6− 6))
∨ ((6 < 6) ∧ (y ′ = 6) ∧ (x ′ = 6− 6))

equals (false ∧ (x ′ = 6) ∧ (y ′ = 6− 6))
∨ (false ∧ (y ′ = 6) ∧ (x ′ = 6− 6))

equals false
∨ false

equals false

Hence, if we substitute 6 for x and 6 for y , then Nexteuclid equals false no
matter what values we substitute for x ′ and y ′. This means that there is no
next state from the state x = 6, y = 6, and the complete execution is

x = 18, y = 12 → x = 6, y = 12 → x = 6, y = 6

In the final state, both x and y equal 6, which equals gcd(18, 12).
As an exercise, calculate the computations of Euclid’s algorithm for other

values of M and N , such as M equal to 20 and N equal to 15.

3



The 2-Phase Handshake

The 2-Phase Handshake is a standard hardware signaling protocol used by
two devices that alternately perform operations, the first device performing
A operations and the second performing B operations. They synchronize
by using two wires—one set by device 1 and read by device 2, the other set
by device 2 and read by device 1.

device 1 c

p

�
device 2

-

The protocol is described using variables p and c to represent the voltages
on the wires, which assume the values 0 and 1. There are also other variables
that represent the states of the devices and perhaps of other wires joining
them. The operations A and B performed by the two devices are represented
as formulas containing these other variables (primed and unprimed). We
don’t care what those other variables are and what formulas A and B are.
The protocol is described as follows, where the “. . .” stands for a formula
that describes the initial values of all the variables other than p and c.

InitHS : (p = 0) ∧ (c = 0) ∧ . . .

NextHS : ((p = c) ∧ (p ′ = p ⊕ 1) ∧ (c′ = c) ∧A)
∨ ((p 6= c) ∧ (c′ = c ⊕ 1) ∧ (p ′ = p) ∧ B)

where the operator ⊕ is defined by

0 ⊕ 0 equals 0
0 ⊕ 1 equals 1
1 ⊕ 0 equals 1
1 ⊕ 1 equals 0

As an exercise, you can check that the following is the only computation of
the 2-phase handshake, where A→ indicates a state transition in which the
other variables satisfy formula A, and B→ indicates one in which they satisfy
formula B .

p = 0, c = 0 A→ p = 1, c = 0 B→ p = 1, c = 1 A→

p = 0, c = 1 B→ p = 0, c = 0 A→ p = 1, c = 0 B→ · · ·

4


