Notes for the Talk What is Computation?

Leslie Lamport
26 June 2012

Mathematical Logic
The operators V and A are defined by:

TRUE V TRUE equals TRUE
TRUE V

FALSE V TRUE equals TRUE
FALSE V FALSE equals FALSE

FALSE equals TRUE

and

TRUE A TRUE equals TRUE
TRUE A FALSE equals FALSE
FALSE A TRUE equals FALSE
FALSE A FALSE equals FALSE

These definitions imply the following equalities, for any truth value B:

TRUE V B equals TRUE
FALSE V B equals B
TRUE A B equals B
FALSE A B equals FALSE

The Binary Clock
The binary clock is described by:
Initgr, = (v=0)V(v=1)
Next .y, - (v=0)A (v =1))
V ((v=1)A (v =0))
To obtain a sequence of states that is a computation of the binary clock, we
first find a value for the variable v for which Init.; equals TRUE. The two

choices are v = 0 and v = 1. For example, substituting 0 for v in Init .y, we
have:

Init.y, equals (0=0)V (0=1)
equals TRUE V FALSE
equals TRUE [by the definition of V]

Starting with the state v = 1, we find the next state by substituting v = 1
in Next.y, to obtain

Next .y, equals (1= 1

v (1=) (=0
(FALSE) A (v' = 1))
(TRUE) A (v'

(

(

equals (

v (

equals ~ FALSE [because FALSE A B equals FALSE]
V (v'=0) [because TRUE A B equals B]

equals v' =0 [because FALSE V B equals B|

If we substitute 1 for v in Next .y, the only value that we can substitute for
v’ to make Next. equal to true is 0. Therefore, from the state v = 1, the
only possible next state is v = 0. So, a computation starting from the state
v = 1 has as its next state v = 0. Similarly, substituting 0 for v in Next .,
the only value we can substitute for v’ that makes Next.y, equal to TRUE is
1. Continuing this process, we see that the only computation of the binary
clock starting in the state v =1 is:

v=1 > v=0 - v=1 — v=0 — ---

Euclid’s Algorithm

Euclid’s algorithm computes the greatest common divisor of two positive
integers, which is the largest positive integer that divides both of them.
The algorithm is described as follows, where M and N are arbitrary fixed
positive integers, and z and y are variables:

Initeyeria = (x=M)N(y=N)

Next pyetid (z<yA(@' =2)N Y =y—2x))
V(y<a)Ay =y A =2—y)

A computation of this algorithm stops when the value of x equals the value
of y, at which point that value equals the greatest common divisor of M
and N (written gcd(M, N)).

To see how the algorithm works, we find a computation for the case
when M equals 18 and N equals 12. Finding values of and y that make
Init eyeiq true in this case yields the starting state:

z=18, y =12

To find the possible next states, we substitute 18 for x and 12 for y in
Next oyeiiq and solve for 2’ and 7’ as follows:

(18 < 12) A (2 =18) A (y =12 — 18))

V (12<18) A (Y =12) A (2/ =18 — 12))
equals (FALSE A (2 = 18) A (y' = 12 — 18))
V (TRUEA (v = 12) A (2/ =18 — 12))

equals FALSE
V (¥ =12) A (' =18 — 12))

equals (y' =12) A (z/ =18 — 12)
equals (y' = 12) A (¢’ = 6)

Next eyeria equals

This shows that the first two states of the computation are
r=18,y=12 — =6,y =12

Substituting 6 for z and 12 for y in Newtoyeq yields 2 = 6 and ¢y = 6, so
the first three states of the computation are

r=18,y=12 —- z=6,y=12 — z=06,y=6

Substituting 6 for z and 6 for y in Nextcycq yields

Nexteyeiq equals — ((6 < 6) A (z' =6) A (y' =6—6))
V ((6<6)A(y' =6)A(a"=6—06))
equals (FALSE A (z/ =6) A (y' =6 —6))
(FALSE A (y = 6) A (' =6 —6))

equals FALSE
V FALSE

equals FALSE
Hence, if we substitute 6 for z and 6 for y, then Next.,.;q equals FALSE no

matter what values we substitute for 2’ and y’. This means that there is no
next state from the state z = 6, y = 6, and the complete execution is

r=18,y=12 — z=6,y=12 — z=6,y=6

In the final state, both z and y equal 6, which equals ged(18,12).
As an exercise, calculate the computations of Euclid’s algorithm for other
values of M and N, such as M equal to 20 and N equal to 15.

The 2-Phase Handshake

The 2-Phase Handshake is a standard hardware signaling protocol used by
two devices that alternately perform operations, the first device performing
A operations and the second performing B operations. They synchronize
by using two wires—one set by device 1 and read by device 2, the other set
by device 2 and read by device 1.

p

device 1 c device 2

The protocol is described using variables p and c¢ to represent the voltages
on the wires, which assume the values 0 and 1. There are also other variables
that represent the states of the devices and perhaps of other wires joining
them. The operations A and B performed by the two devices are represented
as formulas containing these other variables (primed and unprimed). We
don’t care what those other variables are and what formulas A and B are.
The protocol is described as follows, where the “...” stands for a formula
that describes the initial values of all the variables other than p and c.

Initgs © (p=0)A(c=0)A...

Nextps : ((p=c)A(p'=p
V(p#E)N(d=c

where the operator @ is defined by

0 & 0 equals 0O
0 &1 equals 1
1 ®& 0 equals 1
1 ® 1 equals 0

As an exercise, you can check that the following is the only computation of
the 2-phase handshake, where 4 indicates a state transition in which the

other variables satisfy formula A, and 5, indicates one in which they satisfy
formula B.

