The Laws: Summary

• What are they?
• What do they mean?
• Are they useful?
• Are they true?
• Are they beautiful?
1. The Laws

are algebraic equations like

\[2pxq + qxq \leq (p+q) \times (p+q) \]
Variables \(p, q, r, \ldots \)

- stand for specifications/designs/programs describing all behaviours of a computer that are desired/planned/actual when the program is executed
- a single behaviour is recorded as a set of events, occurring inside or near a computer system while it is executing a program
Three operators

- then ; sequential composition
- with || concurrent composition
- skip | does nothing
Their intended meaning

- then ; sequential composition
- with || concurrent composition
- skip | does nothing
- $p; q$ describes the behaviour resulting from execution of p till completion followed by execution of q
- $p||q$ describes their concurrent execution p and q start together and finish together
Five Axioms

• assoc \[p;(q;r) = (p;q);r \] (also ||)
• comm \[p||q = q||p \]
• unit \[p||l = p = l||p \] (also ;)
Reversibility

- assoc \(p;(q;r) = (p;q);r \) (also \(|| \))
- comm \(p||q = q||p \)
- unit \(p||I = p = I||p \) (also \(; \))

- swapping the order of operands of \(; \) (or of \(|| \)) translates each axiom into itself.
- and each proof into a swapped proof.
Duality

• Metatheorem: (theorems for free)
 When a theorem is translated by reversing the operands of all \(\llcorner \)s the result is also a theorem.
• (same for all \(\lrcorner \)s)

• Analogy: many laws of physics remain true when the direction of time is reversed.
Refinement: $p \Rightarrow q$

- means every execution described by p is also described by q
- in other words,
 - program p is more predictable and more controllable than program q
 - program p meets spec q
 - design p conforms to design q
Axiom

• \Rightarrow is a partial order
 – reflexive $p \Rightarrow p$
 – transitive if $p \Rightarrow q$ & $q \Rightarrow r$ then $p \Rightarrow r$
• swapping the operands of \Rightarrow
 translates each axiom into itself
• justifies duality by order reversal
 – if $p \Rightarrow q$ is a theorem proved from these axioms
 so is $q \Rightarrow p$
• (later axioms will violate this duality)
Monotonicity

• Definition: an operator \(\bullet \) is monotonic if

\[
\begin{align*}
p \Rightarrow q & \Rightarrow p \bullet r \Rightarrow q \bullet r \\
\quad \& r \bullet p & \Rightarrow r \bullet q
\end{align*}
\]

• Axioms: ; and \(\mid \mid \) are monotonic

• In a theorem, we can replace any subterm of a term on the left (right) of \(\Rightarrow \) by one that is more (less) refined
Monotonicity

• Metatheorem:
Let $p \Rightarrow q$ be a theorem
Let F be a formula containing p.
Let F' be a modification of F that just replaces an occurrence of p by q

Then $F \Rightarrow F'$ is also a theorem
Exchange Axiom

• \((p||q);(p'||q')\) \Rightarrow (p;p') || (q;q')

• LHS describes certain interleavings of RHS
 – those where the two RHS ;s are synchronised
• implemented by interleaving \(p\) with \(q\)
• followed by an interleaving of \(q\) with \(q'\)
Exchange Axiom

• \((p||q); (p'||q') \Rightarrow (p;p') || (q;q')\)

• Theorem (frame): \((p||q); q' \Rightarrow p||(q;q')\)

 – Proof: substitute I for \(p'\) in exchange axiom

• Theorem: \(p;q' \Rightarrow p||q'\)

 – Proof: substitute I for \(q\)

• This axiom is self-dual by time-reversal

 – but not by order-reversal
2. Applications

to Hoare logic
and to Milner transitions
The laws are useful

• for proof of correctness of programs/designs
 – by means of Hoare logic
 – (extended by concurrent separation logic)
 – to describe the structure of proofs

• for design/proof of implementations
 – using Milner transitions
 – (extended by sequential composition)
 – to describe the steps of execution.
The Hoare triple

• Definition: \(\{p\} \ q \ \{r\} = p; q \Rightarrow r \)
 – If \(p \) describes what has happened so far,
 – and then \(q \) is executed to completion,
 – the overall execution will satisfy \(r \).

• Example: \(p \) and \(r \) may be ‘assertions’,
 – describing all executions that leave the machine
 in a state satisfying a given Boolean predicate.
The rule of composition

• Definition: \(\{p\} q \{r\} = p;q \Rightarrow r \)

• Theorem:
 \[
 \{p\} q \{s\} \underbrace{\{s\} q'} \{r\} \\
 \{p\} q;q' \{r\}
 \]
Proof

• Definition: \(\{p\} q \{r\} = p; q \Rightarrow r \)

• expanding the definition:

\[
\begin{align*}
p; q & \Rightarrow s \quad \text{s;q’} \Rightarrow r \\
p; q; q’ & \Rightarrow r
\end{align*}
\]

because ; is monotonic and associative
The rule of consequence

• Theorem

\[p' \Rightarrow p \quad \{p\} \quad q \quad \{r\} \quad r \Rightarrow r' \]
\[\{p'\} \quad q \quad \{r'\} \]

Proof: monotonicity and transitivity
Modularity rule for $||$

• in concurrent separation logic

\[
\begin{align*}
\{p\}q\{r\} & \quad \{p'\}q'\{r'\} \\
\{p||p'\} (q||q') & \{r||r'\}
\end{align*}
\]

– permits modular proof of concurrent programs.

• it is \textit{equivalent} to the exchange law
Modularity rule implies Exchange law

- By reflexivity: $p; q \Rightarrow p; q$ and $p'; q' \Rightarrow p'; q'$
- take these as antecedents of modularity rule
 - replacing r, r' by $p; q$ and $p; q'$,
- After the same substitution, the conclusion of the modularity rule gives

 $$(p || p') ; (q || q') \Rightarrow (p; q) \ | \ | (p'; q')$$
 - which is the Exchange law
Exchange law implies modularity

• Assume: $p;q \Rightarrow r$ and $p';q' \Rightarrow r'$
• monotonicity of $||$ gives
 $$(p;q) || (p';q') \Rightarrow r || r'$$
• the Exchange law says
 $$(p || p') ; (q || q') \Rightarrow (p;q) || (p';q')$$
• by transitivity:
 $$(p || p') ; (q || q') \Rightarrow r || r'$$
which is the conclusion of the modularity rule
Frame Rules

\[
\{p\} q \{r\}
\]
\[
\{p \mid \mid f\} q \{r \mid \mid f\}
\]
– adapts a triple to a concurrent environment \(f \)
– proof: from frame theorem

\[
\underline{\{p\} q \{r\}}
\]
\[
\{f ; p\} q \{f ; r\}
\]
– proof: mon, assoc of ;
The Milner triple: \(r \rightarrow q \rightarrow p \)

- defined as \(q;p \rightarrow r \)
 - (the time reversal of \(\{p\} q \{r\} \))
- \(r \) may be executed by first executing \(q \)
 - with \(p \) as continuation for later execution.
 - maybe there are other ways of executing \(r \)

- Tautology: \((q ; p) \rightarrow q \rightarrow p \) (CCS)
- Proof: from reflexivity: \(q;p \rightarrow q;p \)
Technical Objection

• Originally, Hoare restricted q to be a program, and p, r to be state descriptions.
• Originally, Milner restricted p and r to be programs, and q to be an atomic action.
• These restrictions are useful in application.
• And so is their removal in theory
 – (provided that the axioms are still consistent).
Sequential composition

\[\{p\} q' \{s\} \implies \{s\} q \{r\}\]
\[\{p\} q'; q \{r\}\]

\[r \rightarrow q -> s \quad \rightarrow s \rightarrow q' -> p\]
\[r \rightarrow (q; q') -> p\]

Proof: by time-reversal of the Hoare rule
Concurrenty in CCS

\[r -\sigma \rightarrow q \quad r' -\sigma' \rightarrow q' \]
\[(r \parallel r') - (p \parallel p') \rightarrow (q \parallel q') \]

Proof: by time-reversal of the modularity rule

• In Milner’s CCS, the rule is applied only if \(p \) and \(p' \) are synchronised, e.g., input and output on the same channel.
Frame Rules

\[
\begin{align*}
 &\quad r \rightarrow q \rightarrow p \\
 \Rightarrow \\
 (r || f) \rightarrow q \rightarrow (p || f)
\end{align*}
\]

– a step q possible for a single thread r is still possible when r is executed concurrently with f

\[
\begin{align*}
 &\quad r \rightarrow q \rightarrow p \\
 \Rightarrow \\
 (r; f) \rightarrow (p; f)
\end{align*}
\]

– operational definition of ;
The internal step

• $r \rightarrow p = \text{def. } p \rightarrow r$
 – (the order reversal of refinement)

• implementation may make a refinement step
 – reducing the range of subsequent behaviours
Rule of consequence

- $p \Rightarrow p'$
 $\{p'\} q \{r'\}$
 $r' \Rightarrow r$
 $\{p\} q \{r\}$

- $r \Rightarrow r'$
 $r' \neg q \Rightarrow p'$
 $p' \Rightarrow p$
 $r \neg q \Rightarrow p$

- Each rule is the dual of the other
 - by order reversal and time reversal
Axioms proved from calculi

from Hoare
• \(p ; (q \lor r) \Rightarrow p ; q \lor p ; r \)
• \(p ; r \lor q ; r \Rightarrow (p \lor q) ; r \)

from Milner
• \((p \lor q) ; r \Rightarrow (p ; r) \lor (q ; r) \)
• \(p ; q \lor p ; r \Rightarrow p ; (q \lor r) \)

from both
• \(p ; (q ; r) \Rightarrow (p ; q) ; r \)
• \((p ; q) ; r \Rightarrow p ; (q ; r) \)
• exchange law
Message

• Both the Hoare and Milner rules are derived from the same algebra of programming.

• The algebra is simpler than each of the calculi,

• and stronger than both of them combined.

• Deductive and operational semantics are mutually consistent, provided the laws are true
3. The laws are true of a realistic mathematical model of real program behaviour
Behaviours

• are sets of events
 – occurring in and around a computer
 – that is executing a program

• Let \textbf{Ev} be the set of all occurrences
 – of all such events
 – that ever were, or ever could be
Happens before (\(\rightarrow\))

• Let \(e, f, g \in \text{Ev}\) (sets of event occurrences).
• \(e \rightarrow f\) is intended to mean (your choice of):
 – “the occurrence \(e\) is an immediate and necessary cause of the occurrence \(f\)”
 – “the occurrence \(f\) directly depends (depended) on the occurrence \(e\)”
 – “\(e\) happens before \(f\)” “\(f\) happens after \(e\)”
Examples: software

• n^{th} output \rightarrow n^{th} input (on a reliable channel)
• n^{th} V (acquire) \rightarrow n^{th} P (release) (on an exclusion semaphore)
• n^{th} assignment \rightarrow read of the n^{th} value assigned (to a variable in memory)
• read of n^{th} value \rightarrow $(n + 1)^{st}$ assignment (in strong memory)
Precedes/follows

• Define \(\leq \) as \((\rightarrow)^*\)

 – the reflexive transitive closure of \(\rightarrow\)

 – Define \(\geq\) as \(\leq^\circ\) (the converse of \(\leq\))

• Examples:

 – allocation of a resource \(\leq\) every use of it

 – disposal of a resource \(\geq\) every use of it
Interpretations

• \(e \leq f \quad \& \quad f \leq e \) means
 – e and f are (parts of) the same atomic action

• not \(e \leq f \quad \& \quad \text{not } f \leq e \) means
 – e and f are independent of each other
 – their executions may overlap in time,
 – or one may complete before the other starts
Cartesian product

• Let $p, q, r \subseteq Ev$

 – behaviours are sets of event occurrences

• Define $p \times q = \{(e,f) \mid e \in p \& f \in q\}$

 – the Cartesian product

• Theorem: $p \times (q \cup r) = p \times q \cup p \times r$

 $(q \cup r) \times p = q \times p \cup r \times p$
Composition

• Let \(p, q, r \subseteq Ev \) (behaviours)
• Let \(seq \subseteq Ev \times Ev \) (arbitrary relation)
• Define \(p; q = p \cup q \) if \(p \times q \subseteq seq \)
 & \(p, q \) are defined
 – and is undefined otherwise
• Define \(p \sqsubseteq q \) as \(p = q \) or \(p \) is undefined

Theorem: \(; \) is monotonic wrto \(\leq \)
Theorem: \((p \; q) \; r = p \; (q \; r)\)

- **Proof:** when they are both defined, each side is equal to \((p \cup q \cup r)\).

- We still need to prove that LHS is defined iff ant RHS is defined.
Theorem: \((p \ ; q) \ ; r = p \ ; (q \ ; r)\)

LHS is defined \text{iff} \quad (\text{by definition of } ;)

\[p \times q \subseteq \text{seq} \ \& \ \ (p \cup q) \times r \subseteq \text{seq} \]

iff \[p \times q \subseteq \text{seq} \ \& \ \ p \times r \subseteq \text{seq} \ \& \ \ q \times r \subseteq \text{seq} \ (*) \]

iff \[p \times (q \cup r) \subseteq \text{seq} \ \& \ \ q \times r \subseteq \text{seq} \ (*) \]

iff RHS is defined

(by \times \text{ distrib } \cup)
Sequential composition (strong)

• Define \(\text{seq} = \leq \)

• Then \(p;q \) is (strong) sequential composition

• means that \(p \) must finish before \(q \) starts

 – every event in \(p \) comes before every event in \(p \)

• Example: \(\text{Ev} \) is \(\text{NN} < \leq \text{is numerical} <\)

 – \{1, 7, 19\} ; \{21, 32\} = \{1, 7, 19, 21, 32\}

 – \{1, 7, 19\} ; \{19, 32\} is undefined
Sequential composition (weak)

• Define $\text{seq} = \text{not} \geq$

• Then $p; q$ is (weak) sequential composition

• means that p can finish before q starts
 – no event in q comes before any event in p
 – but q can often start before end of p,

 provided the exchanged events are independent.
Concurrent Composition

Define \(\text{par} = \text{Ev} \times \text{Ev} \)

Note: \(\text{seq} \subseteq \text{par} = \text{par}^\circ \) (converse)

Theorem: \(\text{pxq} \subseteq \text{par} \)

Define \(p \mid\mid q = p \cup q \)

Theorem: \(\mid\mid \) is associative and commutative.

and satisfies exchange law with ; (weak)
Examples

- Example: E_B is \mathbb{N}

- $\{1, 7, 19\} \cup \{21, 32\} = \{1, 7, 19, 21, 32\}$
- $\{1, 7, 19\} \cup \{19, 32\}$ is undefined
- $\{1, 7, 19\} \cup \{3, 10, 32\} = \{1, 3, 7, 10, 19, 32\}$
\[(q \parallel q') \land (r \parallel r') \Rightarrow (q ; r) \parallel (q' ; r')\]

- Proof: when LHS is defined, it equals RHS
 \[q \cup r \cup q' \cup r'\]
\[(q \parallel q') \; ; \; (r \parallel r') \implies (q \; ; \; r) \parallel (q' \; ; \; r')\]

LHS defined \iff \(q \times q' \subseteq \text{par} \; \& \; \; r \times r' \subseteq \text{par}\)

\& \((q \cup q') \times (r \cup r') \subseteq \text{seq}\)

implies \(q' \times r' \cup q \times r \cup q' \times r \cup q \times r' \subseteq \text{seq}\)

implies \(q' \times r' \subseteq \text{seq} \; \& \; q \times r \subseteq \text{seq}\)

\& \((q \cup r) \times (q' \cup r') \subseteq \text{par}\)

implies RHS defined.
4. The laws are useful
Tools for Software Engineering

Verification Compilation

Testing
based on semantics

Verification
deductive (Hoare)

Compilation
operational (Milner)

Testing
denotational (Scott)
Laws prove consistency

- Verification deductive
- Compilation operational
- Testing denotational
5. Conclusion
The Laws

• The laws are useful
 – they shorten formulae, theorems, proofs
 – they prove consistency of proof rules
 with the implementation

• The laws are true
 – of specifications, designs, products
 – hardware/software/the real world

• The laws are beautiful
Isaac Newton

Communication with Richard Gregory (1694)

“Our specious algebra [the infinitesimal calculus] is fit enough to find out [is ok as a heuristic], but entirely unfit to consign to writing and commit to posterity.”
Bertrand Russell

• The method of postulation has many advantages. They are the same as the advantages of theft over honest toil.

Introduction to Mathematical Philosophy.
Gottfried Leibnitz

• Calculemus.
Examples: hardware

• a rising edge \rightarrow next falling edge on same wire

• a rising edge \rightarrow rising edge on another wire
Example: Petri nets

\[e \rightarrow f' \quad \& \quad f' \rightarrow \quad g \]

\[e \rightarrow f \quad \& \quad f \rightarrow \quad g \]
Message sequence chart

app sql net
Additional operators

• $p \lor q$ describes all traces of p and all of q
 – describes options in design
 – choice (non-determinism) in execution

• $p \land q$ describes all traces of both p and q
 – conjunction of requirements (aspects) in design
 – lock-step concurrency in execution
Axioms

• \(\lor \) is the disjunction and \(\land \) is the conjunction of a Boolean Algebra (even with negation).

• Axiom: \(; \) and \(|| \) distribute through \(\lor \)
 – which validates reasoning by cases
 – and implementation by non-deterministic selection
Choice

• \(\{p\} q \{r\} \quad \{p\} q' \{r\} \)
 \(\{p\} (q \lor q') \{r\} \)
 – both choices must be correct
 – proof: distribution of \(; \) through \(\lor \)

\[\begin{array}{c}
 r \Rightarrow p \\
 \hline
 (r \lor r') \Rightarrow p \\
\end{array} \]

– only one of the alternatives is executed
– proof: \(r \Rightarrow r \lor r' \)
Axioms proved from calculi

<table>
<thead>
<tr>
<th>from Hoare</th>
<th>from Milner</th>
</tr>
</thead>
<tbody>
<tr>
<td>• $p ; (q \vee r) \Rightarrow p ; q \vee p ; r$</td>
<td>• $(p \vee q) ; r \Rightarrow (p ; r) \vee (q ; r)$</td>
</tr>
<tr>
<td>• $p ; r \vee q ; r \Rightarrow (p \vee q) ; r$</td>
<td>• $p ; q \vee p ; r \Rightarrow p ; (q \vee r)$</td>
</tr>
</tbody>
</table>

| from both |
|-----------------|-----------------|
| • $p ; (q ; r) \Rightarrow (p ; q) ; r$ | • $(p ; q) ; r \Rightarrow p ; (q ; r)$ |
| • exchange law |