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A MODULAR FRAMEWORK FOR THE BACKWARD ERROR

ANALYSIS OF GMRES

ALFREDO BUTTARI 1, NICHOLAS J. HIGHAM 2, THEO MARY 3, AND BASTIEN VIEUBLÉ 4

Abstract. The Generalized Minimal Residual methods (GMRES) for the solution of

general square linear systems is a class of Krylov-based iterative solvers for which there
exist backward error analyses that guarantee the computed solution in inexact arithmetic

to reach certain attainable accuracies. Unfortunately, these existing backward error anal-

yses cover a relatively small subset of the possible GMRES variants and cannot be used
straightforwardly in general to derive new backward error analyses for variants that do

not yet have one. We propose a backward error analysis framework for GMRES that

simplifies the process of determining error bounds of many existing and future variants of
GMRES. This framework describes modular bounds for the attainable normwise back-

ward and forward errors of the computed solution that can be specialized for a given

GMRES variant under minimal assumptions. To assess the relevance of our framework
we first show that it is compatible with the previous rounding error analyses of GMRES

in the sense that it delivers (almost) the same error bounds under (almost) the same con-
ditions. Second, we explain how to use this framework to determine new error bounds for

GMRES algorithms that do not have yet or have an incomplete backward error analysis,

such as simpler GMRES, CGS2-GMRES, and mixed precision GMRES.

1. Introduction

The Generalized Minimal Residual method (GMRES), introduced by Saad and Schultz
[46], aims to solve a nonsingular general square linear system

Ax = b, A ∈ Rn×n, 0 ̸= b ∈ Rn, (1.1)

by iteratively building optimal approximate solutions xk from a nested sequence of Krylov
subspaces Kk(A, r0) = span{r0, Ar0, . . . , A

k−1r0}. The process chooses the kth iterate xk ∈
x0+Kk(A, r0) to minimize the 2-norm of the linear system residual rk = Axk−b and delivers
the exact solution in at most k = n iterations in exact arithmetic.

In practice, GMRES is implemented in floating-point arithmetic and the true solution
cannot be computed exactly (see [10] for an up-to-date survey of floating-point arithmetic).
Therefore, to derive bounds on the attainable backward and forward errors of GMRES, that
is, bounds on the smallest backward and forward errors that can be obtained, we need a
backward error analysis of GMRES.

To the best of our knowledge, the first conclusive backward error analysis of GMRES is
presented by Drkošová et al. [20] and appears in the Ph.D. thesis of Rozložńık [44]. In their
analysis, the authors of [20] proved that GMRES with Householder orthogonalization (HH-
GMRES) is normwise backward stable, meaning that it produces a computed solution whose
normwise backward error is of order the unit roundoff of the floating-point arithmetic. They
further extended their analysis to GMRES using modified and classical Gram-Schmidt with
reorthogonalization (resp., MGS2-GMRES and CGS2-GMRES). A subsequent backward
stability result on HH-GMRES with relaxed accuracy on the matrix–vector product was
given in [22].
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2 BACKWARD ERROR ANALYSIS FRAMEWORK FOR GMRES

The second significant backward error analysis of GMRES concerns GMRES with modi-
fied Gram-Schmidt orthogonalization (MGS-GMRES). It is stated in the concluding remarks
of the analysis of HH-GMRES [20] that, even though numerical experiments suggested that
MGS-GMRES was also backward stable, the analysis of HH-GMRES cannot be straight-
forwardly extended to MGS-GMRES. The underlying reason for this difficulty is the loss of
orthogonality in the computed Krylov basis generated by the MGS orthogonalization pro-
cess. It required ten years and different keystone results, including but not limited to those
in [23] and [42], for the MGS-GMRES algorithm to be finally proven backward stable by
Paige et al. [41]. Because MGS-GMRES is generally preferred over HH-GMRES in practice,
and because of the technicality of the proof and the various sub-results needed that widen
our understanding of other algorithms, the work [41] is an important milestone in backward
error analysis.

The third and last major backward error analysis of GMRES was proposed by Arioli et
al. in [4] and [5]. It covers flexible GMRES (FGMRES), a variant of right-preconditioned
GMRES accommodating variable preconditioners [45]. The first study [5] bounds the back-
ward error of FGMRES with arbitrary preconditioners and, subsequently, uses this result to
prove the normwise backward stability of FGMRES preconditioned by the LU factors of A
computed with an unstable pivoting strategy. The second study [4] completes the previous
one by improving the earlier backward error bound with arbitrary preconditioners and by
demonstrating that FGMRES preconditioned by the LU factors computed in low precision
is normwise backward stable.

Other more recent backward error analyses of GMRES exist in the literature but are
strongly based on one of the abovementioned analyses. For example, the authors of [3]
derived a backward error bound for MGS-GMRES using an arbitrary matrix–vector product
by relying on the analysis of Paige et al. [41]. The authors of [13] proposed a backward error
analysis of a split-preconditioned FGMRES in mixed precision by extending the work of
Arioli et al. [4] and [5].

Our motivation for designing a new backward error analysis for GMRES lies in one
striking aspect of this algorithm: its large number of possible variants. It is not relevant to
enumerate them all in this article and, in the following, we only provide an idea of the scale
of this number. We redirect the reader to the recent survey [60] or the book of Saad [47]
for more details on the various implementations of GMRES. The reason for the extensive
number of variants of GMRES lies in the number of options available in each part of this
algorithm:

• At the preconditioner level we have a wide range of choices of preconditioners to
pick from. These include partial or approximate factorizations of A, approximate
inverses, polynomials, or iterative solvers, to quote a few. In addition, we need
to consider the four main ways to apply them: right-, left-, split-, or flexible-
preconditioning. More information about preconditioning can be found in [58].

• At the orthogonalization level we can pick from a range of algorithms that offer
different tradeoffs between numerical stability and performance. The most common
choices are Householder and classical or modified Gram-Schmidt with or without
reorthogonalization. Numerical comparison of these algorithms can be found in [28,
chap. 19], [24], or [36].

• At the restart level we need to choose whether or not to stop and restart GMRES
periodically and under which criteria. In doing so, we limit the size of the Krylov
subspaces and we can reduce resource consumption, but it comes at the risk of
harming the convergence.

• Finally, we need to consider all the remaining techniques that change one or multiple
of these parts. For instance, employing mixed precision arithmetic [3] or random-
ization [6], approximating the matrix–vector product [25], compressing the basis [2],
or using block orthogonalization and communication avoiding approaches [17, 31].
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Unfortunately, and importantly, among the many possible variants of GMRES only a small
number are covered by one of the previous backward error analyses. In addition, because
these previous analyses are long, sophisticated, and were not made to be modular, extending
one of them to derive a new backward error analysis for a given variant of GMRES is generally
far from straightforward.

Motivated by this issue, the core objective of this article is to present a backward error
analysis framework which simplifies the process of deriving bounds for the attainable norm-
wise backward and forward errors of the computed solutions by many GMRES algorithms,
in particular, those which do not yet have backward error analyses. As importantly, this
article also aims at unifying the existing analyses under this framework, allowing them to be
better understood and compared by highlighting their common parts and differences. To do
so, in section 2, we list the set of notations and mathematical tools we will use throughout
the article. In section 3, we develop our backward error analysis framework consisting of:
an abstract modular algorithm that can be specialized to many possible and popular GM-
RES algorithms; parametric error bounds and minimal assumptions on the operations of
this abstract algorithm; modular bounds for the attainable normwise backward and forward
errors resulting from the error analysis of this abstract algorithm. In section 4, we consider
an extension of this framework for taking into account restarted variants of GMRES. For
this purpose, we also present a slightly more general backward error convergence rate result
for iterative refinement. In section 5, we explain how to use our framework by applying
it to HH-GMRES, MGS-GMRES, and FGMRES, showing in addition that it provides (al-
most) the same results under (almost) the same conditions as the previously mentioned
existing backward error analyses of GMRES. Finally, in section 6, we use this framework to
derive error bounds for simpler GMRES and mixed precision restarted GMRES for which
no bounds existed previously in the literature. We also explain that, unlike what is stated
in [20], the HH-GMRES analysis cannot be extended to CGS2-GMRES straightforwardly
and, therefore, the previous backward stability proof for this algorithm does not hold. We
use this framework to provide a new proof for CGS2-GMRES. We further discuss how this
framework could be applied to deflated GMRES, randomized Gram-Schmidt GMRES, and
block GMRES. We provide our concluding remarks in section 7.

2. Notations

In this section we introduce our notation and briefly recall the essential mathematical
concepts and tools that we will use throughout the article.

We use the standard model of floating-point arithmetic [28, sect. 2.2], we use the notation
fl(·) to denote the computed value of a given expression, and we put a hat on variables to
denote that they represent computed quantities. For any integer k, we define

γk =
ku

1− ku
.

A superscript on γ denotes that u carries that superscript as a subscript; thus γf
k = kuf/(1−

kuf ), for example. We also use the notation γ̃k = γηk to hide modest constants η.
Our analysis is a traditional worst case analysis and the error bounds obtained depend

on some constants related to the problem dimension n and the size of the basis k. We
gather these constants into generic functions c(n, k). For the sake of readability, as these
constants are known to be pessimistic (see [19, 29, 30]), we do not always keep track of the
precise values of the functions c(n, k). Instead, we guarantee that those functions c(n, k) are
polynomials in n and k of low degree.

We use the notation ≲ and ≈ when dropping negligible second order terms in the error
bounds, and the notation Θ1 ≫ Θ2 to indicate that Θ1 is much greater than Θ2. In
particular, we consider that if Θ1 ≫ Θ2 we can safely assess that Θ1 ≫ c(n, k)Θ2, where
c(n, k) is a polynomial in n and k of low degree. We also use the notation ≡, which means
that we can take the quantity on the left, which is in our control and is not fixed, to be
equal to the quantity on the right.
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We define the normwise condition number of a square nonsingular n × n matrix M by
κ(M) = ∥M−1∥∥M∥ for a given norm, and M−1 is replaced by the pseudoinverse if M is not
square. We represent the set of singular values of M by σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M),
where we define σmin(M) = σn(M) and σmax(M) = σ1(M).

Our error analysis uses both the 2-norm and the Frobenius norm, denoted by ∥ · ∥2 and
∥ · ∥F , respectively. The 2-norm of M refers to the induced norm

∥M∥2 = maxx
∥Mx∥2
∥x∥2

= σmax(M), ∥M−1∥−1
2 = minx

∥Mx∥2
∥x∥2

= σmin(M).

We write κ2(M) and κF (M) for the corresponding condition numbers of M .
The forward error of a computed solution x̂ of the linear system (1.1) is defined as

∥x̂− x∥2
∥x∥2

,

while the normwise backward error of x̂ we are using is defined as [28, sect. 7.1]

min
{
ε : (A+∆A)x̂ = b+∆b, ∥∆A∥F ≤ ε∥A∥F , ∥∆b∥2 ≤ ε∥b∥2

}
=

∥b−Ax̂∥2
∥A∥F ∥x̂∥2 + ∥b∥2

.

In the remainder of this article, “backward error” will refer implicitly to the “normwise
backward error”.

3. Backward error analysis framework

In this section, we develop our backward error analysis framework for GMRES. This
framework is built upon an abstract algorithm which we call modular GMRES and that
is composed of four elemental operations on which we require minimal assumptions. By
specializing these operations and meeting these assumptions, modular GMRES can describe
many GMRES implementations and variants. We perform a backward error analysis of
this algorithm resulting in modular bounds on its attainable backward and forward errors.
These modular bounds can be used to derive error bounds for any specializations of modular
GMRES. This abstract algorithm, its associated assumptions, and its modular error bounds
constitute the backward error analysis framework for GMRES.

3.1. The modular GMRES algorithm and its error model. We define modular GM-
RES (MOD-GMRES) by Algorithm 1 which delivers an approximation to the solution of
the linear system (1.1). To do so, the algorithm minimizes the 2-norm of the residual of the

left-preconditioned linear system Ãx = b̃, where Ã = M−1
L A and b̃ = M−1

L b, over a subspace
Z spanned by the given full-rank basis Zk = [z1, . . . , zk]. In other words, MOD-GMRES
can be viewed as a general subspace projection method computing an approximation to the

solution of Ax = b in the space Z under the orthogonality constraint b̃− Ãxk ⊥ ÃZ, where
⊥ is the orthogonality relation induced by the ℓ2-inner-product.

A few comments are in order. First, note that MOD-GMRES initializes implicitly the
first guess of the solution to zero, namely x0 = 0. Doing so lightens our notation without
losing much generality. Note also that in Algorithm 1 the matrix ML stands for the potential
use of a left-preconditioner. Naturally, setting ML = I amounts to no left-preconditioner
used in the algorithm. The potential use of a right-preconditioner is carried by the basis
Zk which, in exact arithmetic, can take the form Zk ≡ M−1

R Vk where MR ∈ Rn×n and
Vk = [v1, . . . , vk] are the Krylov basis vectors obtained from an Arnoldi process. If we define
Zk ≡ [M−1

R,1v1, . . . ,M
−1
R,kvk] with possibly MR,i ̸= MR,j for all i ̸= j ≤ k we can even account

for non-constant right-preconditioners and flexible variants of GMRES [45]. Finally, note
that since MOD-GMRES describes a more general subspace projection method which is,
for instance, not necessarily implemented with an Arnoldi procedure (more is said about
this in the coming paragraphs), referring to it as “GMRES” might sound surprising. This
choice is motivated by the fact that we solely focus on applying our framework to GMRES
algorithms in the context of this article. For this reason, we call Algorithm 1 a GMRES
method which is consistent with the rest of the content developed in this document.
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Algorithm 1 Modular GMRES (MOD-GMRES)

Input: a matrix A ∈ Rn×n, a right-hand side b ∈ Rn, a basis Zk ∈ Rn×k, and a left-
preconditioner ML ∈ Rn×n.

Output: a computed solution xk to Ax = b.

1: Compute Ck = ÃZk ∈ Rn×k where Ã = M−1
L A ∈ Rn×n.

2: Compute b̃ = M−1
L b ∈ Rn.

3: Solve yk = argminy ∥b̃− Cky∥2.
4: Compute the solution approximation xk = Zkyk.

MOD-GMRES is an abstract modular algorithm in the sense that we are making very
few assumptions on the basis Zk, the left-preconditioner ML, and the operations at lines 1
to 4 of Algorithm 1. By specializing these different elements (or modules) and meeting their
assumptions, MOD-GMRES can describe many GMRES algorithms in the literature and
implemented in software. The following is about listing those minimal assumptions that are
mostly parametric error bounds associated with each operation and that are necessary to
derive our backward error analysis. We will later showcase in section 5 how to specialize
MOD-GMRES and how to meet its assumptions for the three previously mentioned GMRES
algorithms on which we already have backward error analyses: HH-GMRES, MGS-GMRES,
and FGMRES.

Matrix–matrix product (line 1). For nonsingular ML ∈ Rn×n and A ∈ Rn×n, and full-rank

Zk ∈ Rn×k we assume that the computed left-preconditioned matrix–matrix product Ĉk at
line 1 of Algorithm 1 satisfies

Ĉk = fl(ÃZk) = ÃZk +∆c, ∥∆c∥F ≤ εc∥ÃZk∥F , (3.1)

where ∆c ∈ Rn×k is the computing error generated during the computation of the matrix–
matrix product and εc is a parameter bounding the magnitude of this error. The product
itself can take many forms and be implemented in many ways as long as assumption (3.1)
is satisfied for a given εc. For instance, if Algorithm 1 is implemented using the Arnoldi
process, the matrix–matrix product is performed iteratively through a succession of matrix–

vector products involving the computed Arnoldi Krylov basis vectors V̂k = [v̂1, . . . , v̂k]. If,

in addition, a left-preconditioner is used we have ML ̸= I, Ã ̸= A, and Zk ≡ V̂k. In this

situation, the preconditioned matrix Ã is rarely fully formed in practice, and its application
to a vector is made by the successive applications of A and M−1

L . The linear action of the
preconditioner to a vector can be performed by explicitly forming M−1

L and computing a
standard matrix–vector product or by decomposing ML into triangular factors subsequently
used in substitution algorithms. In some cases, M−1

L might not be available as a matrix
or as a matrix decomposition, and we might only be able to compute its linear action to
a vector by another means. If a right-preconditioner is used instead, we have ML = I,

Ã = A, and Zk ≡ f l(M−1
R V̂k), where MR ∈ Rn×n is nonsingular; it is worth noticing that the

basis Zk is defined as the computed product f l(M−1
R V̂k) rather than the exact one M−1

R V̂k.
Naturally, the same previous comments we made on the left-preconditioned product apply

to the computation of the right-preconditioned product AM−1
R V̂k. Overall, MOD-GMRES

allows for different possibilities of product implementations for line 1 that potentially deliver
different backward error results leading to different values for εc. Taking a simple example by
assuming that the matrix–matrix product satisfies the classical error bound [28, eq. (3.13)],

we have ∥∆c∥F ≤ γn∥Ã∥F ∥Zk∥F and therefore εc ≡ γn∥Ã∥F ∥Zk∥F /∥ÃZk∥F .

Preconditioned right-hand side (line 2). For nonsingular ML ∈ Rn×n and b ∈ Rn we as-

sume that the computed preconditioned right-hand side b̂ at line 2 of Algorithm 1 satisfies

b̂ = fl(M−1
L b) = b̃+∆b, ∥∆b∥2 ≤ εb∥b̃∥2, (3.2)
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where ∆b ∈ Rn is the computing error introduced by the application of M−1
L on b and

εb is a parameter bounding the magnitude of this error. Just as for the computation of
the matrix–matrix product at line 1, the preconditioner application can be implemented in
various ways as long as assumption (3.2) is met. Condition (3.2) can also capture other
sources of error. For example, when the right-hand side is cast in a lower precision, which
occurs if the system is defined in high precision (e.g., IEEE fp64 double precision) but solved
by GMRES in a lower precision (e.g., IEEE fp32 single precision).

Least squares solver (line 3). For Ĉk ∈ Rn×k and 0 ̸= b̂ ∈ Rn we assume that the com-
puted solution ŷk of the least squares problem at line 3 of Algorithm 1 satisfies

ŷk = argminy ∥b̂+∆b
ls − (Ĉk +∆c

ls)y∥2,

∥
[
∆b

ls,∆
c
ls

]
ej∥2 ≤ εls∥

[̂
b, Ĉk

]
ej∥2 ∀j ≤ k + 1,

(3.3)

where ∆b
ls ∈ Rn and ∆c

ls ∈ Rn×k are the computing errors generated by the least squares
solver and εls is a parameter bounding the magnitude of these errors. Assumption (3.3) does
not enforce specific methods for solving the least squares problem. In particular, we do not
require using the Arnoldi algorithm as classically done in GMRES. In that sense, the MOD-
GMRES process is not necessarily iterative. Nevertheless, all the examples of application
of our framework throughout this article employ an Arnoldi algorithm. For instance, we
will show in section 5 that the solutions of the least squares problem via MGS [46] and
Householder [56] Arnoldi meet assumption (3.3) for specific εls. Moreover, in section 6 we
discuss various other variants of the Arnoldi algorithm for the solution of the least squares
problem at line 3 and how they meet this assumption.

Computation of the solution approximation (line 4). For Zk ∈ Rn×k and ŷk ∈ Rn we assume
that the computed approximate solution x̂k at line 4 of Algorithm 1 satisfies

x̂k = fl(Zkŷk) = Zkŷk +∆x, ∥∆x∥2 ≤ εx∥Zk∥F ∥ŷk∥2, (3.4)

where ∆x ∈ Rn is the error introduced while computing the matrix–vector product and εx
is a parameter bounding the magnitude of this error. The implementation of this operation
can take different forms, which yield potentially different values for εx. In particular, with

right-preconditioned GMRES where Zk ≡ f l(M−1
R V̂k), the application of Zk might not be a

standard matrix–vector product. In that case, Zk might not be stored explicitly and line 4

corresponds to a matrix–vector product with V̂k and the application of M−1
R .

Additional assumptions. Finally, in addition to the previous assumptions on lines 1 to 4,
we require the basis Zk not to be numerically rank deficient to the accuracy εx, that is,

σmin(Zk)≫ εx∥Zk∥F . (3.5)

In particular, this assumption means that if Zk is ill-conditioned we need correspondingly
high accuracy in computing line 4. We also require all the accuracy parameters to be
substantially less than 1; that is,

0 ≤ εc, εb, εls, εx ≪ 1. (3.6)

The role of assumption (3.6) is mostly to ensure that second order terms can be dropped
safely in our inequalities. We emphasize that the accuracy parameters do not need to be
smaller than 1 by many orders of magnitude. Guaranteeing the parameters to be equal or
lower than 0.01 for instance is likely enough for the results of this article to be valid.

3.2. The key dimension. A significant challenge in determining attainable forward and
backward errors for MOD-GMRES lies in the fact that the quality of the computed solution
depends strongly on the chosen basis Zk. As for the operations used within MOD-GMRES,
we require few assumptions on the basis Zk. In particular, the basis does not have to be
a Krylov basis or to be constructed from an Arnoldi process. That being said, it is trivial
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that good errors on the computed solution are not achieved in general for a very small basis
Zk that would span a subspace Z not descriptive enough. Therefore, we shall answer the
question: what are minimal conditions on the basis Zk such that the computed solution is
guaranteed to have reached small backward and forward errors? Thinking of the dimension
k of the basis as increasing, we can reformulate the question as: at which dimension k ≤ n
is the computed solution guaranteed to have reached small errors? We define such a key
dimension as the first k ≤ n for which Zk satisfies

(if k ≤ n− 1) σmin

([̃
bϕ, ÃZk

])
≤ c(n, k)(εc + εb + εls)∥

[̃
bϕ, ÃZk

]
∥F (3.7)

and

σmin

(
ÃZk

)
≫ (εc + εb + εls)∥ÃZk∥F , (3.8)

for all scalars ϕ > 0, and where c(n, k) is a polynomial of low degree in n and k. The role

of conditions (3.7) and (3.8) is to capture the exact moment where b̃ lies in the range of

ÃZk, that is, the moment where our basis Zk contains the linear system solution. Indeed,

condition (3.7) requires [̃bϕ, ÃZk] to be nearly rank deficient while condition (3.8) enforces

ÃZk to be full-rank. The combination of the two conditions forces b̃ to be in the range of

ÃZk. If k = n, only condition (3.8) is required since, in this case, ÃZk spans Rn and b̃ is

ultimately in the range of ÃZk.

Even though condition (3.8) requires the smallest singular value of ÃZk to be sufficiently
higher than the accuracy parameters associated with the matrix–matrix product (line 1),
the preconditioned right-hand side (line 2), and the least squares problem (line 3), it is
important to note that it does not require the quantities A, ML, or Zk to have, individu-
ally, a high enough smallest singular value relative to these accuracies. That would be a

substantially stronger assumption since ÃZk generally tends to be better conditioned than
A if the preconditioners are well-chosen.

This key dimension definition expressed by conditions (3.7) and (3.8) has been heavily
inspired by the analysis of Paige, Rozlozńık, and Strakoš [41]. In that work, the condi-
tions (3.7) and (3.8) do not appear as “conditions” or in this exact form but can be found
indirectly in [41, eq. (8.6)]. Overall, the approach is the same but it is shaped differently.
Note also that the introduction of a scalar ϕ in condition (3.7), also present in [41], becomes
necessary for the proof of Theorem 3.1 where it is used alongside [41, Thm. 2.4] to bound
the residual of the left-preconditioned linear systems.

A difficulty in applying our framework is showing that a dimension k exists such that con-
ditions (3.7) and (3.8) hold. Fortunately, for the most stable orthogonalization algorithms,
such as the Householder orthogonalization, the existence of such an iteration is relatively
direct as we will show in section 5.2. When the orthogonalization method faces loss of or-
thogonality, the proof of the existence of the key dimension is less direct. We explain how the
MGS orthogonalization, which faces such loss of orthogonality, still meets conditions (3.7)
and (3.8) in section 5.3.

3.3. Backward error analysis of MOD-GMRES. This section is dedicated to the cen-
tral theorem of this article which establishes bounds on the errors of the computed solution
to (1.1) by MOD-GMRES. In more detail, Theorem 3.1 shows that under the assumptions
made in section 3.1 and the existence of a key dimension k defined in section 3.2, the for-
ward and backward errors of the computed solution x̂k at this dimension k are bounded by
functions of the accuracy parameters εc, εb, εls, and εx.

Theorem 3.1. Suppose Algorithm 1 is applied with a basis Zk ∈ Rn×k and a left-preconditioner
ML ∈ Rn×n to solve (1.1), where conditions (3.1) to (3.8) are satisfied for given parameters
εc, εb, εls, and εx. Then the computed solution x̂k of Ax = b has backward and forward
errors satisfying respectively

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)ξκF (ML), (3.9)
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and
∥x̂k − x∥2
∥x∥2

≲ c(n, k)ξκF (Ã), (3.10)

where
ξ = αεc + βεb + βεls + λεx (3.11)

with

α = σ−1
min(Zk)

∥ÃZk∥F
∥Ã∥F

, β = max

(
1, σ−1

min(Zk)
∥ÃZk∥F
∥Ã∥F

)
,

λ = σ−1
min(Zk)∥Zk∥F ,

(3.12)

and where c(n, k) is a polynomial in n and k of low degree.
Proof. The proof is split into four parts. We will first show that the computed solution
ŷk of the least squares problem obtained at line 3 of Algorithm 1 is an accurate solution
for this least squares problem. We then show that the residual of the left-preconditioned
linear system, associated with the computed solution ŷk of the least squares problem, is
small. We subsequently use the bound on the residual to determine the backward error of
the left-preconditioned linear system from which we finally deduce bounds on the forward
and backward errors of the original linear system (1.1).

1. Backward error of the least squares problem computed solution. Given a basis Zk of rank
k ≤ n for which conditions (3.1) to (3.8) are satisfied, we begin the proof by bounding the

backward error of the computed solution ŷk for the least squares problem miny ∥b̃− ÃZky∥
at line 3 of Algorithm 1. The least squares solver, satisfying condition (3.3), is applied on

the least squares problem miny ∥b̂− Ĉky∥F which accounts for the errors generated during

the computations of the product ÃZk and the preconditioned right-hand-side at line 1 and 2.
The computed solution ŷk at line 3 therefore satisfies

ŷk = argminy ∥b̃+∆b̃(1) − (ÃZk +∆Ck)y∥2,

∥∆Ck∥F = ∥∆c +∆c
ls∥F ≲ (εc + εls)∥ÃZk∥F ,

∥∆b̃(1)∥2 = ∥∆b +∆b
ls∥2 ≲ (εb + εls)∥b̃∥2.

(3.13)

The bound on ∥∆Ck∥F comes from the combination of the errors in computing the matrix–

matrix product (3.1) and the solution of the least squares problem miny ∥b̂− Ĉky∥F ; these
errors are bounded by, respectively,

∥∆c∥F ≤ εc∥ÃZk∥F and ∥∆c
ls∥F ≤ εls∥ f l(ÃZk)∥F ≈ εls∥ÃZk∥F .

Equivalently, the bound on ∥∆b̃(1)∥2 comes from conditions (3.2) and (3.3).

2. Bound on the left-preconditioned linear system residual. The second part of the proof
consists in demonstrating that the computed solution ŷk of the least squares problem (3.13)
achieves a small enough residual

r̄k = b̃+∆b̃(1) − (ÃZk +∆Ck)ŷk (3.14)

for the left-preconditioned linear system. This is the most challenging part of the proof.
Fortunately, Paige et al. [41] opened a pathway to achieve this and our approach follows in
their footsteps. The core idea is to use the key dimension conditions (3.7) and (3.8) which
we developed in section 3.2. The proof then relies on the very useful [41, Thm. 2.4] which
gives an upper bound on the residual (3.14). To carry out the reasoning, we need to separate
the cases k ≤ n−1 and k = n; we start with the hardest case k ≤ n−1 and handle k = n at
the end of this part. Consider k ≤ n− 1, [41, Thm. 2.4] applied to the inexact least squares
problem (3.13) gives for all ϕ > 0 such that

δk =
σmin

([
(̃b+∆b̃(1))ϕ, ÃZk +∆Ck

])
σmin

([
ÃZk +∆Ck

]) < 1, (3.15)
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∥r̄k∥22 ≤ σ2
min

([
(̃b+∆b̃(1))ϕ, ÃZk +∆Ck

])(
ϕ−2 + ∥ŷk∥22/[1− δ2k]

)
. (3.16)

Essentially, the following is about choosing a proper ϕ for which we can show that the
residual is “small enough”. We proceed as in [41, sect. 8.2] and we wish to choose this ϕ
such that it satisfies

ϕ−2 = ∥ŷk∥22/[1− δ2k] (3.17)

which allows a direct simplification of the expression (ϕ−2 + ∥ŷk∥22/[1− δ2k]) in the residual
bound (3.16). The previous definition (3.17) is equivalent to the following

LHS(ϕ) = RHS(ϕ),

LHS(ϕ) ≡ σ2
min

(
ÃZk +∆Ck

)
− σ2

min

([
(̃b+∆b̃(1))ϕ, ÃZk +∆Ck

])
,

RHS(ϕ) ≡ σ2
min

(
ÃZk +∆Ck

)
∥ŷkϕ∥22.

We now need to show that there exists a ϕ satisfying the above that at the same time satisfies
ϕ > 0 and δk < 1 such that the quantities are well-defined and the theorem is applicable.
For ϕ = 0, LHS(ϕ) > RHS(ϕ), while for ϕ = ∥ŷk∥−1

2 , LHS(ϕ) < RHS(ϕ), so by continuity,
there exists ϕ ∈ (0, ∥ŷk∥−1

2 ) satisfying both (3.17) and

δk < 1, 0 < ϕ < ∥ŷk∥−1
2 . (3.18)

The remainder will be about showing that for this value of ϕ the scaled right-hand side

satisfies ∥b̃ϕ∥2 ≈ ∥ÃZk∥F , and the quantites σ2
min([(̃b + ∆b̃(1))ϕ, ÃZk + ∆Ck]) and δk are

small. From (3.7) and (3.13), we obtain

σmin

([
(̃b+∆b̃(1))ϕ, ÃZk +∆Ck

])
= min∥w∥2=1 ∥

[
(̃b+∆b̃(1))ϕ, ÃZk +∆Ck

]
w∥2

≤ min∥w∥2=1 ∥
[̃
bϕ, ÃZk

]
w∥2 +max∥w∥2=1 ∥

[
∆b̃(1)ϕ,∆Ck

]
w∥2

≤ σmin

([̃
bϕ, ÃZk

])
+ ∥
[
∆b̃(1)ϕ,∆Ck

]
∥F

≲ c(n, k)(εc + εb + εls)∥
[̃
bϕ, ÃZk

]
∥F + (εb + εls)∥b̃ϕ∥2

+ (εc + εls)∥ÃZk∥F
≤ c(n, k)(εc + εb + εls)(∥b̃ϕ∥2 + ∥ÃZk∥F ), (3.19)

from which, in addition to (3.17), we revisit (3.16) to give the following bound on the residual

∥r̄k∥22 ≲ c(n, k)(εc + εb + εls)
2(∥b̃ϕ∥2 + ∥ÃZk∥F )2ϕ−2. (3.20)

Observing that b̃ = rk + (ÃZk +∆Ck)ŷk −∆b̃(1) from (3.14) and using (3.13), (3.18), and
(3.20) yields

∥b̃ϕ∥2 ≤ ∥r̄kϕ∥2 + ∥ÃZkŷkϕ∥2 + ∥∆Ckŷkϕ∥2 + ∥∆b̃(1)ϕ∥2
≲ c(n, k)(εc + εb + εls)(∥b̃ϕ∥2 + ∥ÃZk∥F ) + ∥ÃZk∥F ,

from which we obtain

∥b̃ϕ∥2 ≲
(1 + c(n, k)(εc + εb + εls))

(1− c(n, k)(εc + εb + εls))
∥ÃZk∥F ≈ ∥ÃZk∥F . (3.21)

Using (3.21), bound (3.19), and the full-rank condition (3.8) gives

δk ≲
c(n, k)(εc + εb + εls)(∥b̃ϕ∥2 + ∥ÃZk∥F )

σmin(ÃZk)− ∥∆Ck∥F

≲
c(n, k)(εc + εb + εls)∥ÃZk∥F
σmin(ÃZk)− (εc + εls)∥ÃZk∥F

≪ 1.

(3.22)

Finally, we can now refine our bound on the residual (3.20); using (3.17), (3.21) and (3.22),
we can state

∥r̄k∥2 ≲ c(n, k)(εc + εb + εls)∥ÃZk∥F ∥ŷk∥2. (3.23)
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Now consider the case k = n, under condition (3.8) the perturbed least squares prob-
lem (3.13) is reduced to a nonsingular linear system whose solution is ŷk, that is,

(ÃZk +∆Ck)ŷk = b̃+∆b̃(1).

In this case, r̄k = 0 and (3.23) is also obviously satisfied.

3. Backward error of the left-preconditioned linear system. Now that we have a bound on

the residual expressed in terms of Ã, Zk, and ŷk, the third part of the proof will be about

retrieving the backward error of the left-preconditioned system Ãx = b̃. We define

∆Ã(1) = (∆Ckŷk − Ã∆x)∥x̂k∥−2
2 x̂T

k ,

which gives, using (3.4),

(Ã+∆Ã(1))x̂k = Ãx̂k +∆Ckŷk − Ã∆x = Ã(Zkŷk +∆x) + ∆Ckŷk − Ã∆x,

= (ÃZk +∆Ck)ŷk.

Hence, using (3.14),

r̄k = b̃+∆b̃(1) − (Ã+∆Ã(1))x̂k, (3.24)

and, using (3.4) and (3.13),

∥∆Ã(1)∥F ≲

(
εc + εls +

∥Ã∥F ∥Zk∥F
∥ÃZk∥F

εx

)
∥ÃZk∥F ∥ŷk∥2/∥x̂k∥2. (3.25)

We now form the quantities

∆b̃(2) = − ∥b̃∥2
∥Ã∥F ∥x̂k∥2 + ∥b̃∥2

r̄k and ∆Ã(2) =
∥Ã∥F ∥x̂k∥2

∥Ã∥F ∥x̂k∥2 + ∥b̃∥2
r̄k

x̂T
k

∥x̂k∥22

satisfying r̄k = ∆Ã(2)x̂k −∆b̃(2) and which can be bounded using (3.23) such that

∥∆b̃(2)∥2 ≲ c(n, k)(εc + εb + εls)
∥ÃZk∥F
∥Ã∥F

∥ŷk∥2
∥x̂k∥2

∥b̃∥2,

∥∆Ã(2)∥F ≲ c(n, k)(εc + εb + εls)
∥ÃZk∥F
∥Ã∥F

∥ŷk∥2
∥x̂k∥2

∥Ã∥F .
(3.26)

Finally, by replacing r̄k by ∆Ã(2)x̂k −∆b̃(2) in (3.24), we can conclude that MOD-GMRES
will deliver a computed solution x̂k that is the exact solution of the perturbed linear system

(Ã+∆Ã)x̂k = b̃+∆b̃ where

∆Ã ≡ ∆Ã(1) +∆Ã(2) and ∆b̃ ≡ ∆b̃(1) +∆b̃(2).

In addition, from the bounds (3.13), (3.25), and (3.26), the errors ∆Ã and ∆b̃ satisfy

∥∆Ã∥F ≲ c(n, k)(α′εc + α′εb + α′εls + λ′εx)∥Ã∥F ,

∥∆b̃∥F ≲ c(n, k)(α′εc + β′εb + β′εls)∥b̃∥2,

with

α′ =
∥ÃZk∥F
∥Ã∥F

∥ŷk∥2
∥x̂k∥2

, β′ = max

(
1,
∥ÃZk∥F
∥Ã∥F

∥ŷk∥2
∥x̂k∥2

)
, λ′ = ∥Zk∥F

∥ŷk∥2
∥x̂k∥2

.

The backward error of the left-preconditioned system therefore satisfies the bound

∥b̃− Ãx̂k∥2
∥Ã∥F ∥x̂k∥2 + ∥b̃∥2

≲ c(n, k)ξ′, (3.27)

with

ξ′ = α′εc + β′εb + β′εls + λ′εx.
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The terms ∥ŷk∥2 and ∥x̂k∥2 can be conveniently withdrawn from the bound (3.27). To
achieve this, we need to substitute ∥ŷk∥2 with ∥x̂k∥2 using the relation x̂k = fl(Zkŷk) =
Zkŷk +∆x. Using assumptions (3.4) and (3.5), we can conclude that

∥x̂k∥2 = ∥Zkŷk +∆x∥2 ≥
(
∥Zkŷk∥2
∥ŷk∥2

− ∥∆x∥2
∥ŷk∥2

)
∥ŷk∥2

≥
(
miny

∥Zky∥2
∥y∥2

− εx∥Zk∥F
)
∥ŷk∥2 ≈ σmin(Zk)∥ŷk∥2,

(3.28)

which allows us to rework (3.27) as

∥b̃− Ãx̂k∥2
∥Ã∥F ∥x̂k∥2 + ∥b̃∥2

≲ c(n, k)ξ, ξ = αεc + βεb + βεls + λεx, (3.29)

where

α = σ−1
min(Zk)

∥ÃZk∥F
∥Ã∥F

, β = max

(
1, σ−1

min(Zk)
∥ÃZk∥F
∥Ã∥F

)
, λ = σ−1

min(Zk)∥Zk∥F .

4. Forward and backward errors of the original linear system. The last part of the proof
consists in deriving bounds on the forward and backward errors of the original system. We
can bound the forward error with the backward error (3.29) and the condition number of
the left-preconditioned system. We obtain

∥x̂k − x∥2
∥x∥2

≲ c(n, k)ξκF (Ã). (3.30)

Additionally, the backward error of the original system can be bounded by using b−Ax̂k =

ML(̃b− Ãx̂k); we have

∥b−Ax̂k∥2 ≲ c(n, k)ξ∥ML∥F (∥b̃∥2 + ∥Ã∥F ∥x̂k∥2)

≤ c(n, k)ξ

(
κF (ML)∥b∥2 +

∥ML∥F ∥Ã∥F
∥A∥F

∥A∥F ∥x̂k∥2

)
.

(3.31)

This last bound in addition to the fact that ∥ML∥F ∥Ã∥F /∥A∥F ≤ κF (ML) implies in
particular

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)ξκF (ML), (3.32)

which ends the proof. □

A few points are worth noticing from the forward and backward error bounds (3.9)
and (3.10) in Theorem 3.1. First, these bounds depend on the accuracy parameters εc,
εb, εls, and εx associated with each operation in Algorithm 1. While this conclusion was
expected, it is interesting to confirm that the errors made in each of the four operations
at lines 1 to 4 play a relatively identical role in the final attainable errors of the computed
solution to (1.1) and that, therefore, none of them should be neglected.

Second, the bounds also depend on the condition number of the basis Zk carried by the
term σ−1

min(Zk)∥Zk∥F . Namely, the more the basis Zk is ill-conditioned the worse are the
bounds on the attainable errors. When the basis Zk is orthogonal, the condition number
becomes κ2(Zk) = 1, and the basis will have a limited effect on the attainable errors.
However, it is key to notice that the non-orthogonality of the basis is not what is directly
detrimental to the bounds since the basis can be well-conditioned but non-orthogonal. This
observation echoes, for instance, with conclusions in [50].

Third, right- and left-preconditioning badly affect the bounds for both forward and back-
ward errors. We recall that the employment of a right-preconditioner MR is carried by the
basis Zk, and therefore affects the condition number of Zk. Hence, when using precondition-
ers, the terms κF (ML) and σ−1

min(Zk)∥Zk∥F can be substantially larger than 1 and increase
the bounds (3.9) and (3.10). This key observation that preconditioning deteriorates the
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attainable accuracies, and which was already made in [39], [18], or [59], might sound coun-
terintuitive. This is because preconditioning is generally associated with improved numerical
behavior in the sense that it accelerates convergence if the preconditioners are well-chosen.
This benefit still applies in the finite precision world but comes at the cost of a loss of sta-
bility: we converge faster but not further. To illustrate this loss of stability, let us assume
that we implement GMRES with an Arnoldi process, that the accuracy parameters satisfy

max (αεc, βεb, βεls, λεx) ≤ c(n, k)uσ−1
min(Zk)∥Zk∥F ,

where u is the unit roundoff of the machine precision, that the absence of preconditioning

implies ML ≡ I and Zk ≡ V̂k where V̂k is the near orthogonal computed Arnoldi Krylov
basis, and that we meet all the required assumptions of Theorem 3.1. The bound (3.9) on
the backward error becomes

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)u, (3.33)

and the process is therefore backward stable. Now consider that we apply in a split-
preconditioning fashion a left- and a right-preconditioner such that ML ̸= I and Zk ≡
f l(M−1

R V̂k) ≈M−1
R V̂k, whereML,MR ∈ Rn×n are nonsingular. Observing that σ−1

min(Zk)∥Zk∥F ≲
c(n, k)κF (MR) if V̂k is near orthogonal, the backward error bound (3.9) becomes

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)uκF (MR)κF (ML),

which is substantially higher than the previous bound (3.33). In particular, we lost the
backward stability property since the backward error is not guaranteed anymore to be of
order u. A similar bound and conclusion is derived in the analysis of split-preconditioned
FGMRES in mixed precision [13, Cor. 2.2]. Fortunately, this problem can be overcome, and
we explain in section 4 how a restart process can recover the backward stability.

Finally, taking MOD-GMRES to be an iterative process, we emphasize that Theorem 3.1
does not provide information on the number of iterations required to reach the attainable
errors (3.9) and (3.10). It states instead that those errors are achieved at the key dimension
k ≤ n defined by conditions (3.7) and (3.8). In sections 5 and 6, we will provide examples
of application of Theorem 3.1 where we will prove the existence of the key dimension k ≤ n.
However, we cannot guarantee that k ≪ n or even k ̸= n. We suspect that the “GMRES
number of iterations to errors” problem is very close to the problem of having descriptive
enough and exploitable bounds for the convergence rate of GMRES in the general nonnormal
case. This problem is an ongoing research topic (e.g., [21] or [53]) which is made complex
partly because “any nonincreasing convergence curve is possible for GMRES” [26]. That is,
the spectrum of A does not determine the convergence of GMRES.

4. Backward error analysis of restarted MOD-GMRES

The cost in execution time and memory consumption of GMRES algorithms grows with
the size k of the basis Zk. By reframing GMRES to make use of multiple smaller bases,
restarted GMRES algorithms intend to bound this cost while still providing a good approx-
imation to the solution of (1.1). For instance, restarting can be very convenient or even
necessary for solving extremely large sparse linear systems where only a few dense vectors
can be stored in memory at once. Because the MOD-GMRES framework alone, presented
and studied in section 3, cannot cover restarted variants of GMRES, this section is dedi-
cated to address this lack. The central result of the section is Theorem 4.1, which presents
bounds on the attainable forward and backward errors of restarted GMRES algorithms, and
which explains that these bounds are achieved if the restart iterations manage to compute
“proper” successive corrections.
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4.1. The modular algorithm, error model, and error analysis. For our framework to
account for restarted GMRES algorithms, we introduce and study a new abstract algorithm
called restarted MOD-GMRES represented by Algorithm 2. Roughly, the algorithm consists
of the successive applications of MOD-GMRES where the (i+1)th call of MOD-GMRES uses
the solution of the ith call as a starting vector. It can also be interpreted as the computation
of successive corrections di obtained as the solutions of the linear systems Adi = ri, also
called the correction systems, solved through MOD-GMRES. We repeat the process until
we are satisfied with the quality of the computed solution. Note that with restarted MOD-
GMRES the bases Z(i)

ki ∈ Rn×ki , their sizes ki, the left-preconditioners M (i)

L ∈ Rn×n, and
the accuracy parameters ε(i)

c , ε(i)

b , ε(i)

ls , and ε(i)
x are allowed to change from a restart iteration

to another.

Algorithm 2 Restarted MOD-GMRES

Input: a matrix A ∈ Rn×n, a right-hand side b ∈ Rn, a set of bases (Z
(i)
ki

)i of size n × ki,

and a set of left-preconditioners (M
(i)
L )i of size n× n.

Output: a computed solution to Ax = b.
1: Initialize x0

2: repeat
3: Compute the residual ri = b−Axi.

4: Compute C
(i)
ki

= Ã(i)Z
(i)
ki

where Ã(i) = (M
(i)
L )−1A.

5: Compute r̃i = (M
(i)
L )−1ri.

6: Solve yi = argminy ∥r̃i − C
(i)
ki

y∥2.
7: Compute the correction di = Z

(i)
ki

yi.
8: Compute the next iterate xi+1 = xi + di.
9: i = i+ 1

10: until convergence

Equivalently as for MOD-GMRES, deriving a backward error analysis for restarted MOD-
GMRES requires some assumptions on the operations of Algorithm 2. Lines 4 to 7 of
Algorithm 2 correspond to the applications of MOD-GMRES to solve the correction systems
Adi = r̂i, where r̂i is the computed residual at line 3. We need these lines to satisfy the
assumptions (3.1) to (3.8) described in section 3 at a key dimension ki, for all restart
iterations i ≥ 0, and for given accuracy parameters ε(i)

c , ε(i)

b , ε(i)

ls , and ε(i)
x . Additionally, we

require the following two assumptions for, respectively, the computation of the residual at
line 3 and the computation of the next iterate at line 8.

For b, x̂i ∈ Rn and A ∈ Rn×n we suppose that the computed residual r̂i at line 3 of
Algorithm 2 satisfies for all i ≥ 0

r̂i = b−Ax̂i +∆ri, ∥∆ri∥2 ≤ εr(∥b∥2 + ∥A∥F ∥x̂i∥2), (4.1)

where ∆ri ∈ Rn is the error introduced while computing the matrix–vector product and the
vector subtraction and εr is a parameter bounding the magnitude of this error.

In addition, for x̂i, d̂i ∈ Rn we suppose that the computation of the next iterate x̂i+1 at
line 8 of Algorithm 2 yields for all i ≥ 0

x̂i+1 = x̂i + d̂i +∆xi, ∥∆xi∥2 ≤ εu∥x̂i+1∥2, (4.2)

where ∆xi ∈ Rn is the computing error generated from the vector addition and εu is a
parameter bounding the magnitude of this error. It is very likely that εu ≡ u where u is
the unit roundoff of the arithmetic precision used to compute line 8. We are not aware of a
relevant implementation of restarted MOD-GMRES that would provide a different outcome
for εu, but we allow our framework the possibility to handle this eventuality.

Finally, for the same reasons we require condition (3.6) for MOD-GMRES, we also require

0 ≤ εr, εu ≪ 1. (4.3)
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Under these previous assumptions, we can guarantee that restarted MOD-GMRES will
provide a solution whose backward and forward errors are bounded by functions of the
accuracy parameters εr and εu. We summarize this result in the following Theorem 4.1.

Theorem 4.1. Consider the solution of Ax = b with Algorithm 2. Suppose that for all i ≥ 0
lines 3 and 8 of Algorithm 2 satisfy conditions (4.1) to (4.3) for given parameters εr and εu,
that lines 4 to 7 applied to the correction systems Adi = r̂i satisfy conditions (3.1) to (3.8) of
Theorem 3.1 for given parameters ε(i)

c , ε(i)

b , ε(i)

ls , and ε(i)
x , and that ∥x̂i∥2 ≲ ∥x̂i+1∥2 ≲ ∥x∥2.

Then as long as

Λ
(i)
1 = c(n, k)ξ

(i)
1 κF (Ã

(i))≪ 1, (4.4)

where
ξ
(i)
1 = α

(i)
1 ε(i)c + β

(i)
1 ε

(i)
b + β

(i)
1 ε

(i)
ls + λ

(i)
1 ε(i)x (4.5)

with

α
(i)
1 = σ−1

min(Z
(i)
ki

)
∥Ã(i)Z

(i)
ki
∥F

∥Ã(i)∥F
, β

(i)
1 = max

(
1, σ−1

min(Z
(i)
ki

)
∥Ã(i)Z

(i)
ki
∥F

∥Ã(i)∥F

)
,

λ
(i)
1 = σ−1

min(Z
(i)
ki

)∥Z(i)
ki
∥F ,

(4.6)

the forward error is reduced at the iteration i by a factor (at least) Λ(i)
1 until it satisfies

∥x̂− x∥2
∥x∥2

≲ c(n, k)εrκF (A) + εu, (4.7)

where c(n, k) accounts for polynomials in n and k of low degrees. Independently, supposing

in addition that σmin(Ã
(i)Z(i)

ki )≫ εx∥Ã(i)∥F ∥Z(i)

ki ∥F , as long as

Λ
(i)
2 = min

(
c(n, k)ξ

(i)
1 ∥M

(i)
L ∥F ∥Ã

(i)∥F ∥A−1∥F , c(n, k)ξ
(i)
2 κF

(
M

(i)
L

))
≪ 1 (4.8)

where
ξ
(i)
2 = α

(i)
2 ε(i)c + β

(i)
2 ε

(i)
b + β

(i)
2 ε

(i)
ls + λ

(i)
2 ε(i)x (4.9)

with

α
(i)
2 = σ−1

min

(
Ã(i)Z

(i)
ki

)
∥Ã(i)Z

(i)
ki
∥F , β

(i)
2 = max

(
1, σ−1

min

(
Ã(i)Z

(i)
ki

)
∥Ã(i)Z

(i)
ki
∥F
)
,

λ
(i)
2 = σ−1

min

(
Ã(i)Z

(i)
ki

)
∥Z(i)

ki
∥F ∥Ã(i)∥F ,

(4.10)

the backward error is reduced at the iteration i by a factor Λ(i)
2 until it satisfies

∥b−Ax̂∥2
∥b∥2 + ∥A∥F ∥x̂∥2

≲ c(n, k)εr + εu. (4.11)

Proof. The proof relies on noticing that Algorithm 2 is an iterative refinement process, since
it can be directly rewritten as the repetition of the three following steps:

1: Compute the residual ri = b−Axi.
2: Solve Adi = ri with MOD-GMRES for given M (i)

L and Z(i)

ki .
3: Update the solution xi+1 = xi + di.

We denote by r̂i, d̂i, and x̂i+1 the computed counterparts. Hence, the abundant literature on
iterative refinement and its rounding error analyses can be summoned to study Algorithm 2;
we refer the reader to [55, chap. 3 and 4] for a survey. For this proof, we use the backward
error analysis of Carson and Higham [15]. More specifically, we shall apply [15, Thm. 3.2]
and [15, Thm. 4.1] on Algorithm 2 to prove that the restarted MOD-GMRES process delivers
the attainable forward and backward errors (4.7) and (4.11) under the convergence rates (4.4)
and (4.8). Unfortunately, there are instances where [15, Thm. 4.1] cannot provide the best
backward error convergence rate. In particular, we cannot directly use the analysis of [15]
to derive (4.8). To circumvent this issue, we provide a slight rework of [15, Thm. 4.1]
which allows for more flexibility to bound the backward error convergence rate of iterative
refinement algorithms.

We recall [15, Thm. 3.2] and present our rework of [15, Thm. 4.1] under the following
Lemma 4.2. We emphasize that Lemma 4.2 does not assume that the correction systems
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Adi = r̂i are computed with MOD-GMRES. The lemma presents instead the more general
result of [15] that holds for a generic linear solver. The point of this proof will be to
specialize this general result for the case where the linear solver employed to solve Adi = r̂i
is MOD-GMRES.

Lemma 4.2. Let the iterative refinement process be applied to the nonsingular linear sys-
tem (1.1). In addition, let the computation of the residual and the update of the solution
satisfy conditions (4.1) to (4.3) for given parameters εr and εu. If for a given iteration i ≥ 0

the computed solution d̂i of the correction system Adi = r̂i satisfies

d̂i = (I + uiEi)di with ui∥Ei∥F < 1, (4.12)

for a nonnegative scalar ui and a matrix Ei ∈ Rn×n with nonnegative entries, the computed
iterate x̂i+1 has an absolute error satisfying

∥x̂i+1 − x∥2 ≤ Λ
(i)
1 ∥x̂i − x∥2 + λ

(i)
1 ,

Λ
(i)
1 = 2uiκF (A)µi + ui∥Ei∥F , λ

(i)
1 = 2(1 + ui)εrκF (A)(∥x∥2 + ∥x̂i∥2) + εu∥x̂i+1∥2,

(4.13)
where µi is defined as ∥A(x̂i − x)∥2 = µi∥A∥F ∥x̂i − x∥2. Independently, if for a given

iteration i ≥ 0 the computed correction d̂i satisfies

∥r̂i −Ad̂i∥2 ≤ wi∥b−Ax̂i∥2 + ωi(∥b∥2 + ∥A∥F ∥x̂i+1∥2), (4.14)

for nonnegative scalar ωi and wi, the computed iterative refinement iterate x̂i+1 has a resid-
ual satisfying

∥b−Ax̂i+1∥2 ≲ Λ
(i)
2 ∥b−Ax̂i∥2 + λ

(i)
2 ,

Λ
(i)
2 = wi, λ

(i)
2 = (εr + εu + ωi) (∥b∥2 + ∥A∥F ∥x̂i+1∥2) .

(4.15)

Proof. The part of Lemma 4.2 concerning the forward error convergence, which includes
(4.12) and (4.13), is a rewritting of [15, Thm. 3.2]. However, we let the reader know that we
proceeded to some minor adjustments in the analysis of [15] so that Lemma 4.2 presents a
slightly different variations of [15, Thm. 3.2]. Specifically, the original result of [15, Thm. 3.2]
is based on the assumption that the residual at line 3 is computed through a standard
matrix–vector product in precision of unit roundoff ur and satisfies

r̂i = b−Ax̂i +∆ri, |∆ri| ≤ γr
n(|b|+ |A||x̂i|). (4.16)

Identically, the next iterate at line 8 is assumed to be computed in precision of unit roundoff
u and satisfies

x̂i+1 = x̂i + d̂i +∆xi, |∆xi| ≤ u|x̂i+1|. (4.17)

In addition, these theorems deliver convergence conditions and bounds on the attainable
errors in the infinity norm. This departs from our conditions (4.1) and (4.2) on the com-
putation of the residual and the next iterate which are normwise instead of componentwise,
and with accuracy parameters εr and εu instead of unit roundoffs ur and u. It also departs
from our resulting error bounds (4.13) and (4.15) which are in 2-norm and Frobenius norm
instead of infinity norm. Nevertheless, the analysis of [15] can be straightforwardly adapted
to the case where (4.16) and (4.17) are exchanged with (4.1) and (4.2), and to the case where
2-norm and Frobenius norms are used instead of infinity norm. Another difference is that
the scalars ui, ωi, and wi are fixed for all iterations i ≥ 0 in [15], since the authors assumed
that the same linear solver is applied to each correction system Adi = r̂i. However, their
results also straightforwardly extend to cases where these scalars vary from one iteration to
another. Lastly, what is noted “r̂i” in [15] is not directly the computed residual as defined
in (4.1) (or (4.16)), but is instead the computed residual cast in the precision at which the
correction system Adi = r̂i is solved. Since the authors of [15] study “mixed precision”
iterative refinement, the precision at which the residual and correction system are computed
can be different. With our framework, the error introduced by a (potential) cast of the
residual in a lower precision should be accounted by the parameter ε(i)

b . Technically, with
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this change, certain error terms in (4.13) could be removed since they will be introduced
through ε(i)

b instead, but for the ease of comparison with the work in [15] and because these
terms have no incidence on our result, we keep them.

To recover (4.14) and (4.15) concerning the backward error convergence, we need to
rework [15, sect. 4 and Thm. 4.1]. We recall the necessary details from [15], but we do not
provide much insight on the preliminary reasoning carried in [15, sects. 1 to 3]. We start
with [15, eq. (4.1)],

Ax̂i+1 − b = ∆ri +Ad̂i − r̂i +A∆xi, (4.18)

and wish to bound ∥b − Ax̂i+1∥2. The terms ∆ri and ∆xi are the errors associated with
the computation of the residual and update defined by (4.1) and (4.2). In the original
proof, the authors of [15] used the less flexible assumption [15, eq. (2.4)] which leads to the
emergence of a term κF (A) = ∥A∥F ∥A−1∥F in the bounds after [15, eq. (4.1)] and which
is detrimental to the sharpness of the backward error convergence rate in some cases. We
propose instead to assume that the residual of the correction system satisfies (4.14), which,
in addition of (4.1), (4.2), (4.18), and considering ∥x̂i∥2 ≲ ∥x̂i+1∥2, provides

∥b−Ax̂i+1∥2 ≤ εr(∥b∥2 + ∥A∥F ∥x̂i∥2) + wi∥b−Ax̂i∥2 + ωi(∥b∥2 + ∥A∥F ∥x̂i+1∥2) + εu∥A∥F ∥x̂i+1∥2
≲ wi∥b−Ax̂i∥2 + (εr + εu + ωi)(∥b∥2 + ∥A∥F ∥x̂i+1∥2),

which ends the proof. □

We now apply Lemma 4.2 to Algorithm 2. We recall that lines 3 and 8 of Algorithm 2
satisfy conditions (4.1) to (4.3) by assumption, so that the corresponding conditions on the
computation of the residual and the update in Lemma 4.2 are met. It is explained in [14,
sect. 2.1] or [55, sect. 4.2.2] that µi is expected to be small and that 2uiκF (A)µi is negligible
in front of ui∥Ei∥F in the expression of Λ(i)

1 in (4.13). Assuming that ui ≪ 1 for all i ≥ 0,
that ∥x̂i∥2 ≲ ∥x̂i+1∥2 ≲ ∥x∥2, and dropping second order terms, we guarantee that if for all
i ≥ 0

Λ
(i)
1 ≈ ui∥Ei∥F ≪ 1 and Λ

(i)
2 = wi ≪ 1, (4.19)

then the forward and backward errors are improved respectively by factors (at least) Λ(i)
1

and Λ(i)
2 at each iteration i until they reach their bounds on the attainable errors

∥x̂− x∥2
∥x∥2

≲ c(n, k)εrκF (A) + εu and
∥b−Ax̂∥2

∥b∥2 + ∥A∥F ∥x̂∥2
≲ εr + εu + ωi. (4.20)

We wish to bound ∥r̂i − Ad̂i∥2 to identify some wi and ωi for which condition (4.14)
is met, and use these values in (4.19) and (4.20). Under the assumption of Theorem 4.1,

parts 3 and 4 of the proof of Theorem 3.1 hold for the computed solution d̂i of the correction

system. Hence, since σmin(Ã
(i)Z(i)

ki )≫ εx∥Ã(i)∥F ∥Z(i)

ki ∥F by assumption and using (3.4), we
have

∥Ã(i)d̂i∥2 = ∥Ã(i)Z
(i)
ki

ŷi + Ã(i)∆(i)
x ∥2 ≥

(
∥Ã(i)Z

(i)
ki

ŷi∥2
∥ŷi∥2

− ∥Ã
(i)∆

(i)
x ∥2

∥ŷi∥2

)
∥ŷi∥2

≥

(
miny

∥Ã(i)Z
(i)
ki

y∥2
∥y∥2

− ε(i)x ∥Ã(i)∥F ∥Z(i)
ki
∥F

)
∥ŷi∥2 ≈ σmin

(
Ã(i)Z

(i)
ki

)
∥ŷi∥2.

(4.21)

Using this previous upper bound for ∥ŷi∥2 in (3.27) gives the following bound on the left-
preconditioned residual of the correction system

∥(M (i)
L )−1r̂i − Ã(i)d̂i∥2 ≲ c(n, k)ξ

(i)
2

(
∥(M (i)

L )−1r̂i∥2 + ∥Ã(i)d̂i∥2
)
, (4.22)
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where ξ
(i)
2 is defined by (4.9). Observing that r̂i − Ad̂i = M (i)

L ((M (i)

L )−1r̂i − Ã(i)d̂i) and
using (4.22) gives

∥r̂i −Ad̂i∥2 ≤ ∥M (i)
L ∥F ∥(M

(i)
L )−1r̂i − Ã(i)d̂i∥2 ≲ c(n, k)ξ

(i)
2 κF (M

(i)
L )

(
∥r̂i∥2 + ∥Ad̂i∥2

)
≤ c(n, k)ξ

(i)
2 κF (M

(i)
L )

(
∥r̂i∥2 + ∥r̂i −Ad̂i∥2 + ∥r̂i∥2

)
,

which finally provides, under (4.8), using (4.1), and dropping second order terms,

∥r̂i −Ad̂i∥2 ≲
c(n, k)ξ

(i)
2 κF (M

(i)
L )

1− c(n, k)ξ
(i)
2 κF (M

(i)
L )
∥r̂i∥2

≲ c(n, k)ξ
(i)
2 κF (M

(i)
L )
(
∥b−Ax̂i∥2 + εr(∥b∥2 + ∥A∥F ∥x̂i∥2)

)
.

(4.23)

From (4.23), we identify wi ≡ c(n, k)ξ(i)
2 κF (M

(i)

L ) and ωi ≡ c(n, k)ξ(i)
2 κF (M

(i)

L )εr ≪ εr. If
instead of (4.21) we use (3.28) in (3.27) and carry out a similar reasoning, we can derive an al-

ternative bound for ∥r̂i−Ad̂i∥2 where we would identify wi ≡ c(n, k)ξ(i)
1 ∥M

(i)

L ∥F ∥Ã(i)∥F ∥A−1∥F .
Finally, under the assumption of Theorem 4.1, the forward error of the correction system

satisfies (3.10) at each restart iteration i ≥ 0 for some accuracy parameters ε(i)
c , ε(i)

b , ε(i)

ls ,
and ε(i)

x , left preconditioners M (i)

L , and bases Z(i)

ki , and we conclude that condition (4.12) of

Lemma 4.2 is met for ui∥Ei∥F ≡ c(n, k)ξ(i)
1 κF (Ã

(i)). Hence, by using these values of ui, Ei,
ωi, and wi in (4.19), we identify

Λ
(i)
1 ≈ c(n, k)ξ

(i)
1 κF (Ã

(i))≪ 1

and

Λ
(i)
2 ≈ min

(
c(n, k)ξ

(i)
1 ∥M

(i)
L ∥F ∥Ã

(i)∥F ∥A−1∥F , c(n, k)ξ
(i)
2 κF (M

(i)
L )
)
≪ 1,

which ends the proof. □

4.2. Discussion around the restarted MOD-GMRES framework. The result of The-
orem 4.1 can be interpreted as follows: if at each restart MOD-GMRES can compute a

correction d̂i with a few correct digits, Algorithm 2 will eventually improve the computed
solution x̂i to its maximal attainable accuracy defined by (4.7) and (4.11). In addition,
because the model allows M (i)

L , Z(i)

ki , ε
(i)
c , ε(i)

b , ε(i)

ls , and ε(i)
x to change from an iteration to

another, the theorem is applicable to algorithms where the GMRES variant can be modified
between each restart iteration (e.g., switch from MGS-GMRES to FGMRES after a restart).
It is also worth remarking that if only one restart iteration is used in Algorithm 2, then the
process becomes equivalent to MOD-GMRES using an intial guess x0 ̸= 0.

It is essential to remark that the bounds on the attainable errors of MOD-GMRES ((3.9)
and (3.10)) and restarted MOD-GMRES ((4.11) and (4.7)) are different. Namely, compared
with MOD-GMRES, the bounds of restarted MOD-GMRES depend solely on the accuracy
parameters εr and εu, and not on M (i)

L , Z(i)

ki , ε
(i)
c , ε(i)

b , ε(i)

ls , and ε(i)
x which only affect the

convergence conditions (4.8) and (4.4). This has major implications, namely if εr and εu are
of order the unit roundoff of the machine precision u and if the convergence condition (4.8)
as well as the other assumptions of Theorem 4.1 are met, restarted MOD-GMRES is back-
ward stable regardless of the used preconditioners and the accuracies at which lines 4 to 7
are computed. In other words, restarting can make a non-backward stable GMRES variant
backward stable. One can also exploit this property to enhance the computing performance
of GMRES algorithms. For instance, computing lines 4 to 7 in cheaper IEEE fp32 sin-
gle precision while computing lines 3 and 8 in IEEE fp64 double precision would enable
the algorithm to deliver a double precision accuracy solution in potentially less time and
memory, regardless of the fact that most of the flops are carried out in low accuracy IEEE
fp32 arithmetic. This type of mixed precision approach has been proposed by Turner and
Walker [54] and we provide more details on how to apply our framework to this particular
mixed precision GMRES in section 6.3.
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The statement that restarted GMRES is more stable than GMRES without restart might
appear contradictory at first. Indeed, compared with restarted GMRES, GMRES can build
higher dimensional Krylov subspaces better suited to deal with numerically difficult prob-
lems. Moreover, it is well-known that implementations of restarted GMRES imposing a
fixed maximum size m (ki ≤ m ≪ n) on the bases Z(i)

ki are not always able to provide
correct solutions for those difficult problems due to the limited size of the Krylov spaces
used; this is true in exact arithmetic. It is however important to understand that our claim
is different and does not invalidate the previous statement. In particular, those “classical”
restarted GMRES implementations using a fixed maximum number of iterations m as a
stopping criterion do not necessarily meet the key dimension conditions (3.7) and (3.8) and
ultimately do not enjoy the stability results of Theorem 4.1. The reason stems from the fact
that we cannot guarantee the solution to be improved under a given fixed number of iter-
ations since “any nonincreasing convergence curve is possible for GMRES” [26]. However,
with less practical restart criteria, we can build stable restarted versions of GMRES. It is
the case, for example, when the restart criterion is based on a tolerance τ on the backward
error of the (left-preconditioned) linear system, that is, we restart when we have computed

d̂i satisfying

∥r̃i − Ã(i)d̂i∥2
∥r̃i∥2 + ∥Ã(i)∥F ∥d̂i∥2

≤ τ ;

see [55, Thm. 5.3] for an example of stability result with a restarted left-preconditioned
GMRES with tolerance. While this criterion cannot ensure that the size of the bases will
stay bounded, the tolerance τ can be set to a very large value such that the bases can
still be expected to remain empirically small. Overall, while our result cannot be directly
applied to practical implementations of restarted GMRES using a fixed maximum number of
iterationsm as a restart criterion, it instead participates in the better understanding of those
methods. In particular, it mitigates the idea that restarting is solely harmful to the stability
of GMRES, and it explains that it can bring desirable numerical properties. Namely, at its
core, restarting is an iterative refinement process that improves the attainable accuracies
and might recover backward stability if the successive corrections are good enough; that is,
if they are computed with a few correct digits.

5. Application and compatibility of the framework with previous error
analyses

In this section, we show how our framework can be used to derive backward error anal-
yses for HH-GMRES, MGS-GMRES, and FGMRES mentioned in section 1 and for which
we already have analyses in the literature. Our aim is twofold: firstly, we want to demon-
strate pedagogically how Theorem 3.1 can be used and, secondly, we want to show that our
framework is compatible with all the major existing analyses, namely it delivers (almost)
the same error bounds under (almost) the same conditions up to some differences in the
constants related to the problem dimension n and the size of the basis k.

5.1. On the application of the MOD-GMRES framework. In order to apply the
MOD-GMRES framework, the basis Zk, the left-preconditioner ML, and the operations at
lines 1 to 4 of Algorithm 1 have to be specialized to describe the GMRES algorithm of
interest. Once MOD-GMRES is specialized, we have access to more information on Zk, ML,
and how the operations are computed, and we can determine the accuracy parameters εc,
εb, εls, and εx. The task of determining these accuracy parameters requires backward error
analysis results for the given specialized operations used at each line in Algorithm 1. Note
that, since rounding error analyses of the most “standard” matrix–matrix product, least
squares solver, and matrix–vector product algorithms already exist in the literature, this
process can be relatively straightforward. With these accuracy parameters determined, we
can check whether the framework assumptions (3.1) to (3.8) are met. Under those assump-
tions, Theorem 3.1 holds and can be used to derive bounds for the attainable backward and
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forward errors of the GMRES algorithm of interest. To this end the modular backward and
forward error bounds (3.9) and (3.10) of Theorem 3.1 are to be specialized by using the
determined εc, εb, εls, εx, Zk and ML.

Overall, our framework reduces the process of deriving new error bounds for GMRES
to the four following tasks: (1) specialize the four operations of MOD-GMRES to describe
the algorithm of interest; (2) determine the parameters εc, εb, εls, and εx for each of these
operations; (3) check that the assumptions (3.1) to (3.8) are met; (4) apply Theorem 3.1
and specialize the backward and forward error bounds (3.9) and (3.10). The approach is
identical for the restarted MOD-GMRES framework.

5.2. HH-GMRES. As in [20], we study HH-GMRES run in precision of unit roundoff u.
To apply our framework, we can specialize MOD-GMRES to HH-GMRES as follows. We

specify ML ≡ I and Zk ≡ V̂k since we assume no preconditioning. The matrix V̂k is the
Krylov basis computed by the Arnoldi process using the Householder orthogonalization. In
exact arithmetic, the kth step of the Arnoldi process can be viewed as a column-oriented
Householder QR factorization of the matrix [b, AVk] delivering the following recurrence[

b, AVk

]
= Vk+1Rk+1, Rk+1 =

[
βe1, H̄k

]
, (5.1)

where H̄k ∈ R(k+1)×k is upper Hessenberg and β = ∥b∥2. The least squares problem at
line 3 of Algorithm 1 is then solved by computing the solution of the transformed least

squares problem miny ∥βe1 − H̄ky∥2 with Givens rotations. Assuming that V̂k is explicitly
formed and stored in memory, the products at lines 1 and 4 are made from standard matrix–

vector products with A and V̂k, respectively. Using our framework, we recover the result
of Drkošová et al. [20] and show, in particular, that HH-GMRES is backward stable; we
summarize our conclusion by the following theorem.

Theorem 5.1. Consider solving Ax = b with HH-GMRES run in precision of unit roundoff
u≪ 1. As long as the system is not numerically singular, that is,

σmin(A)≫ u∥A∥F , (5.2)

then there exists an iteration k ≤ n such that

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)u, (5.3)

where c(n, k) is a polynomial in n and k of low degree.
Proof. To use Theorem 3.1 to derive (5.3) under (5.2), we need to show that the condi-
tions (3.1) to (3.8) are met for given accuracy parameters εc, εb, εls, and εx at a given
iteration k. We will first show that conditions (3.1) to (3.6) are met for all iterations k ≤ n
and for accuracy parameters that we will identify. Subsequently, we will demonstrate that
at k = n we meet condition (3.8) and Theorem 3.1 is applicable.

1. Orthogonality of V̂k. First and foremost, we need to exploit one major property of the

Householder orthogonalization: it preserves the orthogonality of the computed basis V̂k for
all k ≤ n. From [28, Thm. 19.4] and the rest of the comments in [28, p. 360] the basis

Zk ≡ V̂k, which corresponds to the computed “reduced-size” Q-factor by the Householder
orthogonalization process, satisfies for all k ≤ n

V̂k = Ṽk(Ik +∆Ik), ∥∆Ikej∥2 ≤ γ̃n2 , ∀j = 1 : k, (5.4)

where Ṽk is an exactly orthogonal matrix and Ik,∆Ik ∈ Rk×k. It follows that the smallest

singular value of V̂k stays close to 1. More precisely we have

σmin(V̂k) = min
∥x∥2=1

∥Ṽk(Ik +∆Ik)x∥2 ≥ σmin(Ṽk)− ∥Ṽk∆Ik∥F ≥ 1− n
1
2 γ̃n2 ,

σmin(V̂k) ≤ σmin(Ṽk) + ∥Ṽk∆Ik∥F ≤ 1 + n
1
2 γ̃n2 ,

(5.5)
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from which we deduce, by dropping second order terms,

∀k ≤ n σmin(V̂k) ≈ 1, ∥V̂k∥F ≈ k
1
2 , and σmin(AV̂k) ≥ σmin(A)σmin(V̂k) ≈ σmin(A).

(5.6)

2. Identifying εc. Let us now consider the standard matrix–matrix product Ĉk = fl(AV̂k)

corresponding to line 1 of Algorithm 1. We let V̇k = [v̇1, . . . , v̇k] denote V̂k with its columns
correctly normalized; that is, for j ≤ k,

v̂j = v̇j +∆vj , ∥∆vj∥2 ≤ γ̃n,

V̂k = V̇k +∆Vk, ∆Vk = [∆v1, . . . ,∆vk],
(5.7)

where ∆vj is the error for the normalization of v̂j and ∆Vk is the accumulated error for the
normalization of the basis at step k. By [28, eq. (3.11)] and (5.7), we have

ĉj = fl(Av̂j) = (A+∆A)v̂j = Av̂j +∆cj ,

where

∥∆cj∥2 ≤ γ̃n∥A(v̇j +∆vj)∥2 ≲ γ̃n∥A∥F
since ∥v̇j∥2 = 1. We therefore obtain for all k ≤ n

Ĉk = AV̂k +∆c, ∥∆c∥F ≲ k
1
2 γ̃n∥A∥F , (5.8)

where ∆c is the error in the matrix–matrix product at line 1. From (5.8), we identify

εc ≡ k1/2γ̃n∥A∥F /∥AV̂k∥F for which assumption (3.1) is satisfied.

3. Identifying εb. In HH-GMRES, no left-preconditioner is used (i.e., ML = I). There-
fore, there is no error in forming the left-preconditioned right-hand side at line 2. We have
∆b = 0 and εb ≡ 0, and assumption (3.2) is straightforwardly satisfied.

4. Identifying εls. We turn our attention to the error generated while solving the least

squares problem miny ∥b − Ĉky∥2 at line 3 with the Householder Arnoldi algorithm. For
conciseness and readability, we offload the backward error analysis of this process in the
appendix under the form of Theorem A.1 and its associated proof. Accounting for (5.2)

and (5.6), Ĉk satisfies the full-rank condition (A.2) of Theorem A.1 for all k ≤ n. Therefore,
invoking the error bound (A.3) of Theorem A.1 directly gives

ŷk = argminy ∥(b+∆b
ls)− (Ĉk +∆c

ls)y∥2,

∥[∆b
ls,∆

c
ls]ej∥2 ≲ γ̃nk+2(n+k)−2∥[b, Ĉk]ej∥2, j ≤ k + 1.

From this error bound we identify εls ≡ γ̃nk+2(n+k)−2 such that assumption (3.3) is satisfied.

5. Identifying εx. Then, we consider the error made while computing the action of the

basis V̂k on ŷk at line 4. Depending on the implementation of HH-GMRES, this operation

might be computed from the Householder vectors without the need to store the basis V̂k

explicitly in memory. However, for simplicity we consider the case where the computed basis

V̂k is formed explicitly and where line 4 is computed by a standard matrix–vector product

with V̂k. In this case, from [28, eq. (3.11)] the product V̂kŷk satisfies for all k ≤ n

f l(V̂kŷk) = (V̂k +∆Vk)ŷk, ∥∆Vk∥F ≤ γn∥V̂k∥F ,

and we identify ∆x ≡ ∆Vkŷk and εx ≡ γn for which assumption (3.4) is satisfied.

6. Remaining conditions and key dimension. Condition (3.5) is guaranteed by (5.6). Us-

ing (5.6) again combined with (5.2) and remarking that ∥AV̂k∥F ≥ σmin(AV̂k), we obtain
for all k ≤ n

εc ≡ k
1
2 γ̃n∥A∥F /∥AV̂k∥F ≲ k

1
2 γ̃n∥A∥F /σmin(A)≪ 1,
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which guarantees that condition (3.6) is met. Finally, under assumption (5.2) and us-
ing (5.6), condition (3.8) is met for all k ≤ n. In particular, condition (3.8) is met for k = n,
which ensures the existence of the key dimension.

7. Application of Theorem 3.1. Therefore, at the iteration k = n, HH-GMRES meets all

the conditions of Theorem 3.1 which is applicable for εc ≡ k1/2γ̃n∥A∥F /∥AV̂k∥F , εb ≡ 0,
εls ≡ γ̃nk+2(n+k)−2, and εx ≡ γn. Using (5.6) we identify in (3.11)

αεc ≈ k
1
2 γ̃n, βεls ≲ k

1
2 γ̃nk+2(n+k)−2, λεx ≈ k

1
2 γn, and ξ ≲ c(n, k)u,

which reduces the backward error bound (3.9) of Theorem 3.1 to (5.3) and ends the proof. □

5.3. MGS-GMRES. Compared with HH-GMRES, MGS-GMRES uses MGS orthogonal-
ization instead of Householder to solve the least squares problem at line 3 of Algorithm 1
and, apart from this slight variation, the operations of MGS-GMRES are identical to those
of HH-GMRES described in section 5.2. However, this change is not insignificant since,

unlike HH-GMRES, the computed Krylov basis V̂k by MGS-GMRES faces loss of orthog-
onality. This phenomenon can be explained as follows. The Krylov basis computed by

MGS-GMRES satisfies the Arnoldi iterative process (5.1), where V̂k+1 is the Q-factor of the

QR decomposition of [b, Ĉk] computed by MGS. Assuming the MGS orthogonalization is

run in precision of unit roundoff u, [28, Thm. 19.13] ensures that the computed V̂k+1 satisfies

∥I − V̂ T
k+1V̂k+1∥F ≤ c(n, k)uκF

([
b, Ĉk

])
, (5.9)

whereas the Householder orthogonalization provides

∥I − V̂ T
k+1V̂k+1∥F ≤ c(n, k)u. (5.10)

As can be seen, the orthogonality of V̂k+1 is dependent on the condition number of [b, Ĉk]
with MGS. Unfortunately, as we get closer to the solution the right-hand side b lies more

and more in the range of AZk, the matrix [b, Ĉk] becomes nearly rank deficient, its condition
number grows, and the upper bound in (5.9) becomes very large. Overall, as MGS-GMRES
converges to the solution its computed basis will most likely fully lose its orthogonality.
This phenomenon is a major challenge to proving the backward stability of MGS-GMRES.
To relate to the proof of Theorem 5.1 on the backward stability of HH-GMRES, the loss
of orthogonality invalidates the statement (5.4) and ultimately (5.6) is not guaranteed to
hold anymore for all k ≤ n. As a result, the reasoning carried out for HH-GMRES does not
extend straightforwardly to MGS-GMRES.

In the remainder of this section, we apply our framework to MGS-GMRES, demonstrate
how we can account for the loss of orthogonality, and recover the backward stability result
of Paige et al. [41] which we summarize in the following theorem.

Theorem 5.2. Consider solving Ax = b with MGS-GMRES run in precision of unit round-
off u≪ 1. As long as the system is not numerically singular, that is,

σmin(A)≫ u∥A∥F , (5.11)

then there exists an iteration k ≤ n such that

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)u, (5.12)

where c(n, k) is a polynomial in n and k of low degree.
Proof. Similarly to the proof of Theorem 5.1 for HH-GMRES, we shall demonstrate that
conditions (3.1) to (3.8) are met at a certain iteration k and for certain accuracy parameters
in order to apply Theorem 3.1. As in this previous proof, conditions (3.1), (3.2), and (3.4)

are met for εc ≡ k1/2γ̃n∥A∥F /∥AV̂k∥F , εb ≡ 0, and εx ≡ γn for all k ≤ n because the
implementations of lines 1, 2, and 4 are left unchanged compared with HH-GMRES. The
remainder of this proof consists in demonstrating that the rest of the conditions are still
met.
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1. Identifying εls. The least squares problem miny ∥b − Ĉky∥2 at line 3 is solved with the
MGS Arnoldi algorithm. Using the result developed in [41, sect. 7], and more particularly
referring to [41, eq. (7.13)] which is a similar result to (A.3) for Householder Arnoldi, we
have

ŷk = argminy ∥(b+∆b
ls)− (Ĉk +∆c

ls)y∥2,

∥
[
∆b

ls,∆
c
ls

]
ej∥2 ≲ jγ̃n∥

[
b, Ĉk

]
ej∥2, j ≤ k + 1,

(5.13)

and condition (3.3) is met for εls ≡ γ̃n(k+1) as long as Ĉk is numerically full-rank, namely

σmin(Ĉk)≫ u∥Ĉk∥F . This full-rank condition is satisfied at the specific iteration k we will
define below.

As a first remark, Theorem A.1, which assesses the error in the least squares prob-
lem solved by Householder Arnoldi, could be adapted relatively straightforwardly to MGS
Arnoldi. It would require a few modifications in its proof, namely exchanging (A.5) with [28,
Thm. (19.13)], adapting the constants, and adapting the text since MGS computes the
“reduced-size” QR factorization instead of the “full-size” one as for the Householder orthog-
onalization. As a second remark, meeting (5.13) either in [41, sect. 7] or from adapting
Theorem A.1, is substantially simplified by MGS’s Householder equivalence developed in [9]

which leads to the existence of a perfectly orthogonal matrix Ṽk+1 associated with the com-

puted R-factor [β̂e1, Ĥk] of [b, Ĉk] by MGS such that[
b, Ĉk

]
+
[
∆b

qr,∆
c
qr

]
= Ṽk+1[β̂e1, Ĥk], ∥

[
∆b

qr,∆
c
qr

]
ej∥F ≤ c(n, k)∥

[
b, Ĉk

]
ej∥2, j ≤ k + 1;

(5.14)
see also [28, Thm. (19.13)]. Under this result, the difference between the original least
squares problem and the Arnoldi transformed least squares problem does not suffer from

the loss of orthogonality of V̂k+1 and we have

miny ∥
[
b, Ĉk

] [ 1
−y

]
∥2 = miny ∥

(
Ṽk+1

[
β̂e1, Ĥk

]
−
[
∆b

qr,∆
c
qr

]) [ 1
−y

]
∥2

= miny ∥(β̂e1 − Ṽ T
k+1∆

b
qr)− (Ĥk − Ṽ T

k+1∆
c
qr)y∥2.

2. Addressing the loss of orthogonality. We now identify a key iteration k ≤ n for which
conditions (3.7) and (3.8) are met. This is where the loss of orthogonality brings some chal-
lenges. A successful approach proposed in [41] consists in exploiting [23, Thm. 3.1], which

says that as long as [b, AV̂k] is not nearly rank deficient to machine precision, the set of

vectors V̂k+1 computed by MGS, which forms the next basis, is very well-conditioned. This

result stems from the observation that a growing condition number for V̂k+1 is associated
with a full loss of orthogonality. In our own proof, we will use the reworking of this the-
orem by [41, sect. 6] and make a slight simplification. Namely, the results in [41, sect. 6]

are derived for V̇k which is V̂k with its columns correctly normalized, but for the sake of

conciseness we consider that these results hold for V̂k; this amounts to ignoring second order

terms which are harmless to our analysis. In addition, since the colums of V̂k are normalized

up to errors of the level of the machine precision, we will use ∥V̂k∥F ≈ k1/2.
First, we consider the case where we never fully lose the orthogonality of the basis; that

is, for all k ≤ n, we keep κ2(V̂k) ≤ 4/3 and, since σmin(V̂k) ≤ ∥v̂1∥2 ≈ 1 ≤ σmax(V̂k), we
have

κ2(V̂k) ≤ 4/3, σ−1
min(V̂k) ≤ 4/3, σmax(V̂k) ≤ 4/3. (5.15)

In this case, similarly to HH-GMRES, condition (3.8) is met for k = n since σmin(AV̂n) ≥
3σmin(A)/4 ≫ u∥A∥F by assumption (5.11), and the key dimension exists. Conversely,
consider that there is an iteration where the basis fully loses its orthogonality and that,

therefore, κ2(V̂k) ≤ 4/3 is not valid for all k ≤ n. For the first k ≤ n such that κ2(V̂k+1) >

4/3, we have κ2(V̂k) ≤ 4/3 and, hence, V̂k satisfies (5.15). Using [41, sects. 5 and 6] which
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develop an equivalent result to [23, Thm. 3.1], and more particularly using [41, eqs. (6.2)

and (6.3)], we guarantee that since κ2(V̂k+1) > 4/3 then

σmin

([
bϕ, Ĉk

])
< c(n, k)u∥

[
bϕ, Ĉk

]
∥F , ∀ϕ > 0. (5.16)

The assertion (5.16) is stating that if the Q-factor V̂k+1 of [b, Ĉk] computed by MGS is ill-

conditioned, then [b, Ĉk] itself must be ill-conditioned; this is the converse of [23, Thm. 3.1].
Using (3.1) and (5.16) we obtain for all ϕ > 0

σmin

([
bϕ,AV̂k

])
= σmin([bϕ,AV̂k +∆c −∆c]) < c(n, k)u∥

[
bϕ, Ĉk

]
∥F + ∥∆c∥F

≲ c(n, k)(u+ εc)∥
[
bϕ,AV̂k

]
∥F ,

(5.17)

and using (5.15) we obtain

σmin(AV̂k) ≥ σmin(A)σmin(V̂k) ≥ 3/4σmin(A). (5.18)

Hence, at this specific iteration k ≤ n condition (3.5) is met by (5.15), and from (5.18)
and (5.11) we have

εc ≡ k
1
2 γ̃n∥A∥F /∥AV̂k∥F ≤ k

1
2 γ̃n∥A∥F /σmin(AV̂k)≪ 1,

and condition (3.6) is met. Moreover, (5.17) and (5.18) together with (5.11) guarantee,
respectively, that conditions (3.7) and (3.8) are met. Then, at the key iteration k, which is

defined as the first iteration where κ2(V̂k+1) > 4/3, the conditions (3.1) to (3.8) are met.

3. Application of Theorem 3.1. Thus, Theorem 3.1 is applicable under conditions that
reduce to those of [41]. Observing that

σ−1
min(V̂k)∥AV̂k∥F /∥A∥F ≤ σ−1

min(V̂k)∥V̂k∥F ≤ k
1
2κ2(V̂k) ≤ 4k

1
2 /3

by using (5.15), we obtain ξ ≲ c(n, k)u from which we deduce the backward error bound (5.12)
and which concludes the proof. □

5.4. Flexible GMRES. Flexible GMRES (FGMRES) is a variant of right-preconditioned
GMRES allowing for non-constant preconditioners. More precisely, it uses a basis Zk ≡
[f l(M−1

R,1v̂1), . . . , f l(M
−1
R,kv̂k)], where V̂k = [v̂1, . . . , v̂k] is the associated computed basis by

the Arnoldi algorithm which is orthonormal in exact arithmetic and {MR,j}j is a set of
right-preconditioners; possibly MR,i ̸= MR,j for all i ̸= j ≤ k. Backward error analyses of
FGMRES using the MGS orthogonalization were carried out by Arioli et al. in [4] and [5],
and we are specifically interested in [4, Thm 3.1] which bounds the backward error of FGM-
RES for an unspecified set of right-preconditioners {MR,j}j . This result is subsequently

used to prove the backward stability of FGMRES when MR,j ≡ MR ≡ L̂Û for all j ≤ k,

where L̂ and Û are the LU factors of A computed approximately. Except the fact that the
basis Zk is not a computed Krylov basis anymore but is rather unspecified, the operations
at lines 1 to 4 of Algorithm 1 are identical to those of MGS-GMRES. Accounting for dif-
ferent assumptions that we will comment on later in this section and minor differences in
the constants depending on n and k, we recover closely the results of [4, Thm. 3.1] when we
apply our framework to FGMRES. We summarize our conclusions in the following theorem.

Theorem 5.3. Consider solving Ax = b with FGMRES run in precision of unit roundoff
u≪ 1. As long as the basis Zk is not numerically rank deficient, that is,

σmin(Zk)≫ u∥Zk∥F , (5.19)

and if there exists an iteration k ≤ n such that for all ϕ > 0 we have

(if k ≤ n− 1) σmin([bϕ,AZk]) ≤ c(n, k)u
∥A∥F ∥Zk∥F
∥AZk∥F

∥
[
bϕ,AZk

]
∥F (5.20)

and

σmin(AZk)≫ u∥A∥F ∥Zk∥F , (5.21)
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then, at this iteration k, the backward error of x̂k satisfies

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)uσ−1
min(Zk)∥Zk∥F , (5.22)

where c(n, k) accounts for polynomials in n and k of low degrees.
Proof. We proceed identically as for the proofs of Theorem 5.1 and 5.2 where we are looking
for meeting the conditions of Theorem 3.1 in order to apply it. For the same reasons as for
these previous proofs, conditions (3.2) and (3.4) are met for εb ≡ 0 and εx ≡ γn. We shall
now demonstrate that the other conditions are met.

1. Identifying εc. The matrix–matrix product AZk is computed through a succession of
standard matrix–vector products Azj and satisfies

f l(AZk) = AZk +∆c, ∥∆c∥F ≤ γn∥A∥F ∥Zk∥F .

Hence, we meet condition (3.1) for εc ≡ γn∥A∥F ∥Zk∥F /∥AZk∥F , and εc ≪ 1 by assump-
tion (5.21).

2. Identifying εls. The least squares problem at line 3 is solved through MGS Arnoldi.
As for the proof of Theorem 5.2 on MGS-GMRES, we rely on the analysis of [41, sect. 7].
By assumption (5.21) we have

σmin(Ĉk) ≥ σmin(AZk)− ∥∆c∥F ≫ u∥A∥F ∥Zk∥F ≳ u∥Ĉk∥F ,

and so Ĉk is full-rank. The result of [41, sect. 7] are applicable on the least squares problem

miny ∥b− Ĉky∥2, and from [41, eq. (7.13)] condition (3.3) is met for εls ≡ γ̃n(k+1).

3. Other conditions and application of Theorem 3.1. Condition (3.5) is satisfied by assump-
tion (5.19), and condition (3.6) is satisfied since all the accuracy parameters are sufficiently
less than 1. Finally, by assumptions (5.20) and (5.21) conditions (3.7) and (3.8) are met.
Observing that σ−1

min(Zk)∥AZk∥F /∥A∥F ≤ σ−1
min(Zk)∥Zk∥F , we can apply Theorem 3.1 with

ξ ≤ c(n, k)uσ−1
min(Zk)∥Zk∥F which concludes the proof. □

As Theorem 5.3 slightly differs in its result and assumptions from [4, Thm 3.1], we
comment on these differences. The major discrepancy between the two is the presence
of assumptions (5.20) and (5.21) in Theorem 5.3 which are not in [4, Thm. 3.1]. These
assumptions can hardly be simplified without more knowledge on the basis Zk. In particular,
assumption (5.21) requires

σmin(AZk)

∥A∥F ∥Zk∥F
=

∥AZk∥2
∥A∥F ∥Zk∥F

κ2(AZk)
−1 ≫ u,

which will be met if:

• The right-preconditioners {Mr,j}j are good approximations of the inverse of A such
that κ2(AZk) ≥ 1 is small enough.

• The cancellation occurring in the productAZk is small, that is, ∥AZk∥F / ∥A∥F ∥Zk∥F
≈ 1. Unfortunately, this tends to conflict with the previous point since, for a
good preconditioner, we expect AMr,j ≈ I potentially leading to ∥AMrj∥F ≪
∥A∥F ∥Mrj∥F .

• In all cases, if A and Zk are relatively well-conditioned, and the unit roundoff of the
machine precision is small enough, the previous condition should be met.

Nevertheless, assumptions (5.20) and (5.21) are not more restrictive than the ones in [4,
Thm. 3.1]. What makes the comparison complex is that the assumption [4, eq. (3.5)] of
[4, Thm. 3.1] is too optimistic in general because it requires [b, AZk] to be numerically full-
rank for all k ≤ n. As explained in section 3.2, a good approximation to the solution is
reached when b lies in the range of AZk and, therefore, when [b, AZk] is nearly column rank
deficient. It makes assumption [4, eq. (3.5)] unlikely and [4, Thm. 3.1] inapplicable when
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the computed solution reaches its attainable accuracies at an iteration k < n, before the last
iteration possible k = n.

Another difference between Theorem 5.3 and [4, Thm 3.1] is the form of their error
bounds. The error bound provided by [4, Thm. 3.1] is

∥b−Ax̂k∥ ≲ c(n, k)u
(
∥b∥2 + ∥A∥F ∥x0∥+ ∥A∥F ∥|Zk||ŷk|∥+ ∥AZk∥F ∥ŷk∥2

)
, (5.23)

where ŷk is the computed solution of the least squares problem at line 3 of Algorithm 1
and x0 is an initial guess of the solution. The error bound (5.23) is actually very close
to the bound (3.27) derived for MOD-GMRES, and which can be specialized to FGMRES
by using the accuracy parameters determined in the proof of Theorem 5.3. One notable
difference however is that the bound (3.27) imposes x0 = 0. The FGMRES backward
error bound (5.22) we provide in Theorem 5.3 is obtained by substituting ∥ŷk∥2 with ∥x̂k∥2
using (3.28) in (3.27), and could also be obtained by substituting ∥ŷk∥2 in (5.23).

In [4], the error bound (5.23) is further specialized to the case where FGMRES uses

MR,j ≡ MR ≡ L̂Û for all j ≤ k such that Zk ≡ f l(Û\L̂\V̂k), where L̂ and Û are the LU
factors of A computed in single precision of unit roundoff ulow; the rest of the FGMRES
operations are run in double precision of unit roundoff uhigh. It is shown, using (5.23) and
assuming κF (A)ulow ≪ 1, that this process is backward stable, that is, the backward error
is bounded by c(n, k)uhigh. To obtain this result, the authors of [4] exploit two properties
specific to this choice of preconditioner. First, they use the fact that the LU factors computed
in single precision are a very close approximation of A. Supposing that the growth factor
of the Gaussian elimination is kept small by employing a good pivoting strategy, we have
from [28, Thm. 9.3 and Lem. 9.6]

L̂Û = A+∆LU , ∥∆LU∥F ≤ c(n)ulow∥A∥F , (5.24)

where c(n) is a polynomial of low degree in n. Second, the authors exploit the fact that

their initial approximation to the solution x0 = fl(Û\L̂\b) is already a good approximation
to the solution of the linear system (1.1) in the backward error sense. Using [28, Thm. 9.4
and Lem. 9.6], we have

∥Ax0 − b∥2 ≤ c(n)ulow∥A∥F ∥x0∥2. (5.25)

Because exploiting (5.25) is critical to prove the stability of the process and recover the
result of [4], we cannot directly use Theorem 5.3 which accounts for x0 = 0. Instead, we

should frame the process as one iteration of restarted FGMRES to compute a correction d̂0
to an already good approximation x0. Doing so, we can use the restarted MOD-GMRES
framework described in section 4. Under this framework, lines 3 and 8 of Algorithm 2
compute the residual r0 = b−Ax0 and the update x1 = x0 + d0, lines 4 to 7 correspond to
the operations of Algorithm 1 whose implementations stay identical to what was prescribed
earlier in this section, and only one restart iteration is performed in Algorithm 2. To recover

the result of [4], we wish to apply Theorem 4.1 to show that the computed correction d̂0
reduces the backward error (5.25) to the level of the double precision unit roundoff.

First we need to study the quantity σmin(AZk). The vectors zj = Û\L̂\v̂j of the basis Zk

are computed with two triangular solves in single precision. From [28, Thm. 8.5], we have(
L̂+∆L(j)

)
z′j = v̂j , |∆L(j)| ≤ γlow

n |L̂|,(
Û +∆U (j)

)
zj = z′j , |∆U (j)| ≤ γlow

n |Û |.
(5.26)

Hence, using the approximation (Û + ∆U (j))−1 ≈ Û−1 − Û−1∆U (j)Û−1, we have for all
j ≤ k

zj = fl(Û\L̂\v̂j) =
(
Û +∆U (j)

)−1 (
L̂+∆L(j)

)−1

v̂j

≈
(
Û−1 − Û−1∆U (j)Û−1

)(
L̂−1 − L̂−1∆L(j)L̂−1

)
v̂j

= Û−1L̂−1v̂j +∆zj ,
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where

∆zj =
(
−Û−1∆U (j)Û−1L̂−1 − Û−1L̂−1∆L(j)L̂−1 + Û−1∆U (j)Û−1L̂−1∆L(j)L̂−1

)
v̂j .

Using (5.24), (5.26), [28, Lem. 9.6], the assumption ulowκF (A) ≪ 1, the fact that v̂j is
well-normalized (i.e., ∥v̂j∥2 ≈ 1), and dropping second order terms give

∥AÛ−1∆U (j)Û−1L̂−1v̂j∥2 ≲ γlow
n ∥|L̂||Û |∥F ∥Û−1L̂−1∥F ≲ γlow

n κF (A),

∥AÛ−1L̂−1∆L(j)L̂−1v̂j∥2 ≲ γlow
n κF (A), ∥AÛ−1∆U (j)Û−1L̂−1∆L(j)L̂−1v̂j∥2 ≲

(
γlow
n κF (A)

)2
,

which provides ∥A∆zj∥2 ≲ γlow
n κF (A). Noting ∆Zk = [∆z1, . . . ,∆zk] and using (5.24), we

have

AZk ≈ AÛ−1L̂−1V̂k +A∆Zk = A(A+∆LU )
−1V̂k +A∆Zk

≈ A(A−1 −A−1∆LUA
−1)V̂k +A∆Zk = V̂k −∆LUA

−1V̂k +A∆Zk,

which, in addition of ∥V̂k∥F ≈ k1/2 and ∥A∆Zk∥F ≲ c(n, k)ulowκF (A), leads to

σmin(AZk) ≈ miny
∥AZky∥2
∥y∥2

≳ miny
∥V̂ky∥2
∥y∥2

− ∥A∆Zk −∆LUA
−1V̂k∥F

≳ σmin(V̂k)− c(n, k)ulowκF (A).

(5.27)

Identically, we can also conclude

Zk = A−1V̂k−A−1∆LUA
−1V̂k+∆Zk, ∥Zk∥F ≲ c(n, k)

(
1+ulowκF (A)

)
∥A−1∥F . (5.28)

For standard implementations of the residual r0 = b − Ax0 and update x1 = x0 + d0,
conditions (4.1) to (4.3) are met for εr ≡ c(n)uhigh and εu ≡ uhigh. With an identical
reasoning as for the proof of Theorem 5.2 for MGS-GMRES and using (5.27), we can show
that there exists a key iteration k ≤ n for which the conditions (3.7) and (3.8) (or (5.20)
and (5.21)) are satisfied under the assumption ulowκF (A)≪ 1. In particular, the computed

Arnoldi basis V̂k satisfies (5.15) at the key dimension, giving σmin(AZk) ≳ σmin(V̂k) ≥ 3/4.
Under the accuracy parameters εc, εb, εls, and εx identified in the proof of Theorem 5.3, the
conditions of application of Theorem 4.1 are met, and we guarantee using (5.28) that the

computed correction d̂0 reduces the backward error (5.25) by a factor

Λ
(0)
2 = c(n, k)σ−1

min(AZk)∥Zk∥F ∥A∥Fuhigh ≲ c(n, k)uhighκF (A) ≤ c(n, k)ulow.

Assuming for simplicity that uhigh = u2
low, the backward error is brought to the double

precision unit roundoff level after the correction, recovering the conclusion of [4].

6. New backward error analyses of GMRES algorithms

In this section we use our modular framework to derive error bounds on several GMRES
algorithms for which a backward error analysis has not yet been proposed or is incomplete.
We cover simpler GMRES, CGS2-GMRES, and a mixed precision strategy for restarted
GMRES. In addition, we provide insights on how our framework might be used to derive
error bounds for deflated GMRES, randomized Gram-Schmidt GMRES, and block GMRES.

6.1. Simpler GMRES. Simpler GMRES is a variant of GMRES that uses a “simpler”
approach to solve the least squares problem at step 3 of Algorithm 1. It has been first
described in [57], but we will consider the more general form proposed by Jiránek et al. [34]
which uses an unspecified basis Zk and which is referred in their work as the “generalized
simpler approach”.

In exact arithmetic, a “standard” GMRES factorizes[
b, AZk

]
= Vk+1Rk+1, Rk+1 =

[
βe1, H̄k

]
,

and triangularizes the resulting Hessenberg matrix H̄k with Givens rotations to solve the
Arnoldi transformed least squares problem miny ∥βe1−H̄ky∥2 equivalent to the original least
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squares problem miny ∥b−AZky∥2. Instead of computing a QR factorization of [b, AZk] as
for standard GMRES, simpler GMRES factorizes AZk as

AZk = VkRk, (6.1)

where Vk ∈ Rn×k is orthogonal and Rk ∈ Rk×k is triangular. The least squares problem
at line 3 of Algorithm 1 is then solved by forming yk = R−1

k V T
k b. This leads to a more

traditional or “simpler” approach to solve the least squares problem miny ∥b−AZky∥2 that
does not involve upper Hessenberg factorization.

To derive a backward error analysis of simpler GMRES, we suppose that there is no
left-preconditioner (i.e., ML ≡ I), that lines 1 and 4 of Algorithm 1 are computed from
standard matrix–vector products, and that the QR factorization (6.1) is obtained from the
MGS orthogonalization. It should be noted that with the MGS method, the least squares

problem should not be solved by forming explicitly the products yk = R̂−1
k V̂ T

k b which would
lead to stability issues. Instead, as explained in [28, sect. 20.3], the augmented matrix
technique proposed by Björck [8] should be employed. Applying our framework to simpler
GMRES yields the following theorem.

Theorem 6.1. Consider solving Ax = b with simpler GMRES run in precision of unit
roundoff u≪ 1. As long as the basis Zk is not numerically rank deficient, that is,

σmin(Zk)≫ u∥Zk∥F , (6.2)

and if there exists an iteration k ≤ n such that for all ϕ > 0 we have

(if k ≤ n− 1) σmin([bϕ,AZk]) ≤ c(n, k)u
∥A∥F ∥Zk∥F
∥AZk∥F

∥
[
bϕ,AZk

]
∥F (6.3)

and
σmin(AZk)≫ u∥A∥F ∥Zk∥F , (6.4)

then, at this iteration k, the backward error of x̂k satisfies

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)uσ−1
min(Zk)∥Zk∥F , (6.5)

where c(n, k) are polynomials in n and k of low degrees.
Proof. The proof is almost identical to the one of Theorem 5.3 for FGMRES. The only
difference lies in the fact that the least squares problem at line 3 of Algorithm 1

min
y
∥b− Ĉky∥2 (6.6)

is now solved by the MGS QR factorization of Ĉk. The backward error analysis of this
process is covered by [28, Thm. 20.3]. Actually, [28, Thm. 20.3] concerns the Householder
orthogonalization, but it is explained in [28, sect. 20.3] that it holds for MGS with the
augmented matrix technique of Björck [8]. Using this previous result guarantees that the
computed solution ŷk of the least squares problem satisfies

ŷk = argminy ∥b+∆b
ls − (Ĉk +∆c

ls)y∥2,

∥
[
∆b

ls,∆
c
ls

]
ej∥2 ≤ c(n, k)u∥

[
b, Ĉk

]
ej∥2, j ≤ k + 1.

Therefore, condition (3.3) is met for εls ≡ c(n, k)u. The rest of the proof is identical to the
one of Theorem 5.3 for FGMRES. □

The original form of simpler GMRES, which is described in [57], uses a basis Zk ≡
[b/∥b∥2, V̂k−1] which spans the Krylov subspace Kk(A, b) and where V̂k−1 are the k − 1
first Arnoldi vectors computed iteratively through the orthogonalization process (6.1). In

this case, the Arnoldi process starts with v1 = Ab/∥Ab∥ and V̂k−1 spans the subspace
AKk−1(A, b).

Unfortunately, for this particular choice of basis Zk, the key dimension conditions (6.3)
and (6.4) will hardly be met. This is because the convergence of the solution amounts to b

lying in the range of V̂k and, thus, the basis Zk becomes rank deficient as we converge to the
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solution. In particular, it is explained in [34] that κF (Zk) is of the same order of magnitude
as the ratio ∥b∥2/∥rk−1∥2 (see [34, Thm. 3.2] and comments around). Hence, supposing
∥b∥2 ≈ 1 and taking the lower bound σmin(AZk) ≥ σmin(A)σmin(Zk), we deduce from
condition (6.4) the following more stringent condition for the application of Theorem 6.1

σmin(A)∥A∥−1
F σmin(Zk)∥Zk∥−1

F ≥ κF (A)−1κF (Zk)
−1 ≫ u, (6.7)

which will break once the residual is of order uκF (A). Condition (6.7) is not expected to
be significantly pessimistic compared with (6.4) since we have no reason to expect large
cancellations in the matrix–matrix product AZk, and is therefore a good indication of the
difficulty to meet condition (6.4). Note that this problem is independent of the orthogonal-
ization process used, and simpler GMRES with Householder or MGS orthogonalization face
the same issue.

Jiránek et al. [34] proposed a basis based on the normalized residuals Zk ≡ [r0/∥r0∥, . . . , rk−1/∥rk−1∥]
in exact arithmetic. In particular, it is explained that as long as there is no stagnation of
the computed solution, namely rj ̸≈ rj+1 for all j < k, the vectors of the basis Zk will stay
linearly independent which prevents the previous issue. The conditions of Theorem 6.1 are
more likely to be met for this choice of basis under good non-stagnation conditions; note
that, however, we do not provide further investigations on the applicability of Theorem 6.1
for this choice of basis Zk in this article.

6.2. CGS2-GMRES. Compared with MGS or Householder orthogonalization, the clas-
sical Gram-Schmidt orthogonalization (CGS) preserves the least the orthogonality of the
computed Krylov basis vectors. Indeed, the Pythagorean variant of CGS introduced in [51]

and run in precision of unit roundoff u computes V̂k+1 satisfying

∥I − V̂ T
k+1V̂k+1∥F ≤ c(n, k)uκF

([
b, Ĉk

])2
, (6.8)

which is substantially worse than (5.9) and (5.10) for MGS and Householder, respectively;
note that the “standard” CGS implementation can achieve a much worse loss of orthogo-
nality. For this reason, the CGS-GMRES variant suffers from stability issues. A common
remedy is to reapply the CGS process a second time. The resulting classical Gram-Schmidt
with reorthogonalization algorithm (CGS2) has been shown to preserve the orthogonality of

the computed vectors close to the machine precision level as long as [b, Ĉk] is numerically
full-rank, namely

∥I − V̂ T
k+1V̂k+1∥F ≤ c(n, k)u; (6.9)

see [24, Thm. 2]. We say in this case that V̂k+1 is “orthogonal to machine precision”.
Naturally, this increased stability comes at the cost of increased flops. However, it is

important to remark that while CGS2 requires twice as many flops as MGS, it can leverage
higher-level BLAS kernels and requires less communication in distributed computing. For
these reasons, CGS2-GMRES can achieve better overall computing performance than MGS-
GMRES depending on the hardware and the problem. For instance, it has been remarked
in [37] that CGS2-GMRES is more competitive on GPU accelerators than MGS-GMRES.

The first and, to our knowledge, only attempt at a backward error analysis of CGS2-
GMRES was proposed by Drkošová et al. [20]. At the time of this study, a similar bound
to (6.9) on the loss of orthogonality was used by the authors of [20] but was not formally
proven. For this reason, they based their argumentation around the conjecture of Hoff-
man [32] that they recall in [20, Assumption 3.7]. They explained that under [20, Assump-
tion 3.7], the HH-GMRES analysis extends naturally (up to minor differences) to the CGS2-
GMRES and MGS2-GMRES variants. A formal complete proof for the loss of orthogonality
of the CGS2 orthogonalization process validating the conjecture of Hoffman [32] was pub-
lished ten years later in [24]; the final result is presented in [24, Thm. 2]. Importantly, [24,

Thm. 2] unveils that the guaranteed small loss of orthogonality (6.9) is conditional to [b, Ĉk]
being numerically full-rank which is, therefore, less powerful than the Householder counter-
part delivering this property unconditionally. We redirect the reader to [17, Table 3] for a
comprehensive summary of orthogonalization methods, their loss of orthogonality bounds,
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and their associated conditions. This distinction between the CGS2 and Householder orthog-
onalization does not appear directly in [20, Assumption 3.7] and is not taken into account
in [20], but it is critical for the proof to hold. As explained in section 5.3, the convergence

of the solution to machine precision level leads [b, Ĉk] to become numerically column rank
deficient. For this reason, contrary to the Householder case, the bound (6.9) on the loss
of orthogonality of CGS2 cannot be guaranteed for all iterations k ≤ n, which is what is
assumed in [20]. Circumventing this difficulty to provide a completed proof for the backward
stability of CGS2-GMRES is not straightforward and it is the main goal of this section.

To carry out the backward error analysis, we suppose that the operations at lines 1, 2,
and 4 of Algorithm 1 are identical to those of MGS-GMRES studied in section 5.3. Compared
with this previous algorithm, the only difference is that line 3 is now computed with the
CGS2 orthogonalization process. There are different implementations possible for CGS2,
and we use the CGS with inner reorthogonalization variant studied in [24]. Applying our
framework on CGS2-GMRES yields the following theorem.

Theorem 6.2. Consider solving Ax = b with CGS2-GMRES run in precision of unit round-
off u ≪ 1. Under the same assumptions as Theorem 5.2, the backward error at the key
iteration k satisfies

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)u, (6.10)

where c(n, k) is a polynomial in n and k of low degree.
Proof. The approach is very similar to proving Theorem 5.2 on the backward stability
of MGS-GMRES. Nonetheless, CGS2-GMRES offers new difficulties compared with MGS-
GMRES; specifically, the MGS’s Householder equivalence [9] does not extend to the CGS2
orthogonalization, and certain useful simplifications made in the proof of Theorem 5.2 are
now impossible. In addition, the proof also requires a range of side results on the CGS2
orthogonalization that are developed in the appendix but whose absence in the main text
of this proof should not be critical for understanding our reasoning. These side results are
a rework of [24] and, to our knowledge, are not present in the literature. The differences
with the proof of MGS-GMRES mostly concern conditions (3.3), (3.7), and (3.8) which we
rework as follows.

1. Existence of the key dimension. Demonstrating the existence of a key iteration k ≤ n at
which conditions (3.7) and (3.8) are met can be done very similarly to the proof of The-
orem 5.2 for MGS-GMRES. In this previous proof, we defined the key iteration with the

condition number of the computed Arnoldi bases V̂k. To be more precise, we chose the key

iteration to be the first k ≤ n such that κ2(V̂k+1) > 4/3 and κ2(V̂k) ≤ 4/3, which amounts

to the full loss of orthogonality of V̂k+1. For this proof, our description of the key iteration
is slightly different but conveys the same meaning. We consider the first k ≤ n such that

the basis V̂k+1 has lost its orthogonality to the level of machine precision, that is,

∥I − V̂ T
k+1V̂k+1∥F > c(n, k)u and ∥I − V̂ T

k V̂k∥F ≤ c(n, k)u, (6.11)

where c(n, k) accounts for polynomials of low degree in n and k; it is not critical for the rest
of the reasoning to identify the specific values of these c(n, k).

To show that we meet conditions (3.7) and (3.8) at this iteration k satisfying (6.11), we
will show that (5.15) and (5.16) in the MGS-GMRES proof also hold for CGS2-GMRES
such that the rest of the reasoning is properly identical to the MGS-GMRES proof. We
first use Lemma C.2 developed in the appendix, which guarantees that the computed basis

V̂k is (very) well-conditioned as long as V̂k is orthogonal to machine precision. Namely
under (6.11) we have

σmin(V̂k) ≈ σmax(V̂k) ≈ κ2(V̂k) ≈ 1; (6.12)

from this we recover (5.15). To recover (5.16), we use Corollary C.4 also developed in

the appendix, which shows that if CGS2 computes V̂k+1 not orthogonal to the machine
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precision level then the orthogonalized matrix [bϕ, Ĉk] must be numerically rank deficient.
More precisely, under (6.11) the assumptions of Corollary C.4 are met at the key iteration
k ≤ n and (C.18) guarantees

σmin(
[
bϕ, Ĉk

]
) < c(n, k)u∥

[
bϕ, Ĉk

]
∥F , ∀ϕ > 0;

thus (5.16) is met. The rest of the reasoning of the paragraph “Addressing the loss of
orthogonality” in the proof of Theorem 5.2 holds, we similarly recover (5.17) and (5.18), and
conditions (3.7) and (3.8) are satisfied. In the case where we never lose the orthogonality

we have ∥I − V̂ T
k V̂k∥F ≤ c(n, k)u for all k ≤ n, we meet condition (3.8) in particular for

k = n by knowing that V̂k satisfies (6.12) and by using the same reasoning as in the proof
of Theorem 5.2.

2. Identifying εls. The least squares problem miny ∥b− Ĉky∥2 at line 3 is solved with CGS2

Arnoldi. If Ĉk is numerically full-rank, which is the case at the key iteration k by using (6.12)
and assumption (5.11), this process provides a backward stable solution to the least squares
problem as for Householder or MGS Arnoldi; namely the computed solution ŷk satisfies

ŷk = argminy ∥(b+∆b
ls)− (Ĉk +∆c

ls)y∥2,

∥
[
∆b

ls,∆
c
ls

]
ej∥2 ≲ c(n, k)u∥

[
b, Ĉk

]
ej∥2, j ≤ k + 1.

(6.13)

Proving this statement at the key iteration k satisfying (6.11) can be done almost identically
as in the proof of Theorem A.1 for Householder Arnoldi. For this reason, we do not provide
the full details but rather highlight the main differences. Adapting this proof to CGS2
mainly consists in replacing (A.5), which holds for the Householder orthogonalization, by[

b, Ĉk

]
+
[
∆b,∆C

(1)
k

]
= V̂k+1

[
β̂e1, Ĥk

]
,

∥
[
∆b,∆C

(1)
k

]
ej∥2 ≤ c(n, k)u∥

[
b, Ck

]
ej∥2, j ≤ k + 1,

(6.14)

obtained from Theorem B.1 developed in the appendix and which is a columnwise extension

of [24, eq. (8)], where β̂ ≈ ∥b∥2 and Ĥk ∈ R(k+1)×k. This result holds for CGS and a fortiori
for CGS2. A subtle but yet crucial difference to notice between (A.5) and (6.14) is that, in

the former, Ṽk+1 is perfectly orthogonal whereas, in the latter, V̂k+1 is not even orthogonal
to the machine precision level. It stems from the fact that the CGS2 orthogonalization does
not enjoy the Householder equivalence as for MGS [9]; the benefits of the MGS’s Householder
equivalence were briefly evoked in the proof of Theorem 5.2 for the backward stability of
MGS-GMRES. It makes the proof substantially more difficult since it prevents multiple
convenient simplifications in, for instance, (A.6) or in the transition from (A.8) to (A.9).

However, this can be overcome by observing that at the key iteration k ≤ n satisfy-
ing (6.11), CGS2-GMRES computes

Ĉk +∆C
(1)
k = V̂k+1Ĥk = V̂kĤ

⋆
k + ŵk+1e

T
k ≈ V̂kĤ

⋆
k , ∥ŵk+1∥2 < c(n, k)u∥ĉk∥2,

Ĥk(k + 1, 1 : k) =
[
0, · · · , 0, ∥ŵk+1∥2

]
, Ĥ⋆

k = Ĥk(1 : k, 1 : k),
(6.15)

where Ĥ⋆
k ∈ Rk×k is Ĥk with its last row removed, and ŵk+1 is the result of the two

consecutive applications of the projection (I − V̂kV̂
T
k ) on ĉk = Ĉkek = fl(Av̂k) meant to

orthonormalize the vector ĉk against the vectors of V̂k; see [47, prop. 6.5]. The key approach

to prove (6.15) is to relate the loss of orthogonality of the basis V̂k+1 to a GMRES numerical
happy breakdown; that is, at the moment where the orthogonality is lost to machine preci-

sion, the vector ŵk+1 vanishes such that Ĥk(k+1, k) = ∥ŵk+1∥2 is at the machine precision
level. To achieve this, we can use another outcome of the application of Corollary C.4 in

the appendix which states that if CGS2 does not keep the orthogonality of V̂k to machine
precision from an iteration k to the next (k + 1), then necessarily ĉk lies in the range of



BACKWARD ERROR ANALYSIS FRAMEWORK FOR GMRES 31

V̂k, yielding a very small projection (I − V̂kV̂
T
k )ĉk in the orthogonal complement of V̂k. Un-

der (6.11), the conditions of application of Corollary C.4 are met at the key iteration k, and
we conclude from (C.16) that CGS2 computes ŵk+1 satisfying (6.15).

Using (6.15) we rewrite (6.14) as[
b, Ĉk

]
+
[
∆b,∆C

(2)
k

]
= V̂k

[
β̂e1, Ĥ

⋆
k

]
, ∆C

(2)
k = ∆C

(1)
k − ŵk+1e

T
k ,

∥
[
∆b,∆C

(2)
k

]
ej∥2 ≤ c(n, k)u∥

[
b, Ck

]
ej∥2, j ≤ k + 1,

(6.16)

and replace (A.5) by (6.16) in the proof of Theorem A.1. The rest of the proof of Theorem A.1

can be easily adapted by applying Givens rotations on the square Hessenberg matrix Ĥ⋆
k and

taking into account the loss of orthogonality of V̂k defined by (6.11). For the latter, we can
have a reasoning very similar to what is proposed at the end of [20, sect. 3] by considering the

polar decomposition V̂k = UH, where U ∈ Rn×k is orthogonal and H ∈ Rk×k is symmetric

positive-semidefinite. We can show that the difference E = V̂k − U has small norm by
using [27, Lem. 5.1] and (6.11), which directly provide the following bound

∥E∥F ≤ ∥I − V̂ T
k V̂k∥F ≤ c(n, k)u.

Then, we replace V̂k by U+E and we account for the error of order ∥E∥F in the proof of The-
orem A.1. Hence, an equivalent theorem can be derived for CGS2 Arnoldi, we recover (6.13),
and condition (3.3) is met for εls ≡ c(n, k)u. □

6.3. Mixed precision restarted GMRES. One of the oldest and most successful mixed
precision implementations of GMRES has been described by Turner and Walker [54] and
subsequently investigated at great length in, for instance, [15], [3], or [37]. This mixed
precision strategy, which we simply refer to as mixed precision GMRES in this article, uses

M (i)

L ≡ I and Z(i)

ki ≡ V̂ (i)

ki for all i in Algorithm 2, where V̂ (i)

ki is the Krylov basis computed
by MGS Arnoldi at the ith restart and is fully formed and stored in memory. The residual
and the update at lines 3 and 8 of Algorithm 2 are computed with standard matrix–vector
product and vector addition/subtraction in high precision, while the rest of the operations
from lines 4 to 7 are identical to those of MGS-GMRES already described in section 5.3 and
are computed in low precision. This process delivers a solution accurate to the level of the
higher precision after a suitable number of restarts. Moreover, as the residual and update
computed in high precision are expected to be of negligible cost compared with the rest of
the operations computed in low precision, mixed precision GMRES can substantially reduce
time and memory consumption with respect to a full high precision restarted MGS-GMRES
while providing the same solution accuracy.

Backward error analyses providing error bounds for mixed precision restarted left-preconditioned
MGS-GMRES can be found in the literature [15], [3], or [16]. Interestingly, while these anal-
yses cover restarted GMRES variants up to five precisions, their bounds are too dependent
on the preconditioners used to cover the unpreconditioned case that we analyze in this
section.

To carry out the backward error analysis we allow an unbounded number of Arnoldi
iterations at each restart. Applying our framework to mixed precision GMRES yields the
following theorem.

Theorem 6.3. Consider solving Ax = b with mixed precision GMRES which computes
the residual and update in precision of unit roundoff uhigh and the rest of its operations in
precision of unit roundoff ulow. As long as

Λ = c(n, k)ulowκF (A)≪ 1, (6.17)

the backward and forward errors reduce at each iteration by a factor (at least) Λ until they
reach

∥b−Ax̂∥2
∥b∥2 + ∥A∥F ∥x̂∥2

≲ c(n, k)uhigh and
∥x̂− x∥2
∥x∥2

≲ c(n, k)uhighκF (A), (6.18)

where c(n, k) accounts for polynomials in n and k of low degree.
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Proof. Applying Theorem 4.1 on mixed precision GMRES requires conditions (4.1) to (4.3)
and (3.1) to (3.8) to be met for all restart iterations i and for given parameters εr, εu, ε

(i)
c ,

ε(i)

b , ε(i)

ls , and ε(i)
x .

The computation of the residual and update at lines 3 and 8 are standard matrix–vector
product and vector addition/subtraction computed in high precision, they satisfy respec-
tively

r̂i = b−Ax̂i +∆ri, |∆ri| ≤ γhigh
n (|b|+ |A||x̂i|), (6.19)

and
x̂i+1 = x̂i + d̂i +∆xi, |∆xi| ≤ uhigh|x̂i+1|, (6.20)

where we identify εr ≡ γhigh
n and εu ≡ uhigh and for which conditions (4.1) to (4.3) are met.

The remaining conditions (3.1) to (3.8) concern the computation of the correction d̂i
obtained from the application of MGS-GMRES to Adi = r̂i in low precision of unit roundoff
ulow. Fortunately, the work done in the analysis of MGS-GMRES in section 5.3 is applicable
to the case where the operations are performed in low precision. It only remains to verify
that condition (3.2) is still met under the errors introduced by casting the right-hand side
r̂i in low precision. Noting r̂′i the corresponding computed residual cast in low precision, we
have for all i ≥ 0

r̂′i = fllow(r̂i) = r̂i +∆
(i)
b , ∥∆(i)

b ∥2 ≤ ulow∥r̂i∥,

and condition (3.2) is met for ε
(i)
b ≡ ulow. Hence, from the proof of Theorem 5.2 we know

that for all i ≥ 0 there exists a key iterations ki at which the conditions (3.1) to (3.8) are
met as long as σmin(A) ≫ ulow∥A∥F , which is guaranteed by assumption (6.17). Using

ε(i)
c , ε(i)

ls , and ε(i)
x identified in the proof of Theorem 5.2 and simplifying α

(i)
1 , β

(i)
1 , and λ

(i)
1

with (5.15), we have

ξ
(i)
1 ≲ c(n, k)ulow (6.21)

in (4.5). Since M (i)

L ≡ML ≡ I, we can simplify Λ(i)
1 and Λ(i)

2 in Theorem 4.1 and obtain

max(Λ
(i)
1 ,Λ

(i)
2 ) ≤ Λ = c(n, k)ulowκF (A)

for a given c(n, k). From assumption (6.17) we have Λ≪ 1, and applying Theorem 4.1 ends
the proof. □

6.4. Discussion of other GMRES algorithms. To conclude this section we discuss other
popular variants of GMRES on which our framework might be conclusive. These discussions
do not intend to give error bounds on these algorithms nor give suitable backward error
analyses. Instead, we discuss how our framework might be used and aim at identifying
potential difficulties in proving error bounds for these algorithms as well as giving a few
indications of how these difficulties might be addressed.

Deflated GMRES.. The distribution of the eigenvalues of A does not fully determine the
convergence of GMRES but can influence it. In particular, deflating small eigenvalues by
having its corresponding eigenvector in the subspace Z spanned by Zk can substantially im-
prove the convergence rate of the method. This is the basis of deflated GMRES algorithms.
In this paragraph we consider the deflated GMRES algorithm presented by Morgan [40]
which can be seen as a variant of restarted GMRES. In a nutshell, the process of deflated
GMRES consists in:

• At the end of the (i− 1)th restart, computing the jth smallest harmonic Ritz pairs.
• Building an orthogonal basis V (i)

j+1 ∈ Rn×(j+1) which is a Krylov subspace containing
the smallest Ritz vectors previously computed and its associated matrix H̄(i)

j ∈
R(j+1)×j such that AV (i)

j = V (i)
j+1H̄

(i)
j holds. It is important to remark that the

process does not yield H̄(i)
j as a Hessenberg matrix.

• Restarting GMRES by starting from the (j + 1)th iteration and computing the
remaining ki − j − 1 vectors of the basis V (i)

ki with the usual Arnoldi process, where
ki is the size of the basis at the end of the ith restart.
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• Solving the least squares problem miny ∥(V (i)

ki+1)
T b − H̄(i)

ki y∥, updating the solution,
and repeating the process.

To derive a backward error analysis of deflated GMRES one should use Theorem 4.1. How-
ever, showing that we meet the conditions of application of the theorem is not straightforward
and, in the following, we briefly identify the difficulties that one should address to use our
framework on deflated GMRES.

Compared with restarted MGS-GMRES, deflated GMRES mainly differs in how the basis
V (i)

ki is built and how the least squares problem at line 6 of Algorithm 2 is solved. These
changes mainly affect conditions (3.3), (3.7), and (3.8) which need further work to be proven.
In more detail, the j + 1 first vectors of the basis at the ith restart are obtained from the
deflation process and, therefore, the Arnoldi process does not construct V (i)

ki+1 as the Q-factor
of the matrix [b, AV (i)

ki ] anymore; it is true in exact arithmetic. In particular, the resulting
matrix H̄(i)

ki used to solve the transformed least squares problem miny ∥(V (i)

ki+1)
T b − H̄(i)

ki y∥
is not Hessenberg. As a result, the process used to compute a solution to the least squares
problem at line 6 is slightly different and, for this reason, it needs its own backward error
analysis which would guarantee that condition (3.3) is still met. Moreover, to prove that
conditions (3.7) and (3.8) are met, one might want to relate, as in the proof of MGS-GMRES
in section 5.3 or the proof of CGS2-GMRES in section 6.2, the loss of orthogonality of the

computed basis V̂ (i)

ki+1 to the near column rank deficiency of [bϕ, Ĉ(i)

ki ]. To achieve this,

these previous proofs relied on the fact that V̂ (i)

ki+1 is the computed Q-factor of [b, Ĉ(i)

ki ] by

the MGS or CGS2 orthogonalization process. However, since V̂ (i)

ki+1 is not a Q-factor with
deflated GMRES, the reasoning carried out for MGS-GMRES or for CGS2-GMRES has to
be adequately revised and, in particular, it needs to consider the first (j+1) vectors obtained
through the deflation process.

Randomized Gram-Schmidt GMRES.. A successful implementation of GMRES taking ad-
vantage of random sketching techniques is proposed by Balabanov and Grigori [6]. The so-
called RGS-GMRES is built upon a randomized Gram-Schmidt process (RGS) and reduces
computational resources by computing the expensive inner-products of the Gram-Schmidt
orthogonalization in a lower-dimensional space. The resulting basis is orthogonal in the
sketched space but no longer orthogonal with respect to the usual ℓ2-inner-product in exact
arithmetic. Namely (ΘVk)

T (ΘVk) = I but V T
k Vk ̸= I for all k ≤ n, where Θ ∈ Rs×n is the

sketched matrix with s≪ n.
As RGS-GMRES can only iterate up to s≪ n iterations, it is likely that bounds on the

attainable errors cannot be guaranteed in general. This intuition stems from the assertion
“any nonincreasing convergence curve is possible for GMRES” [26], so that we can always
find problems for which the errors on the computed solution are high after a prescribed
number of iterations strictly lower than n. Hence, to derive error bounds for RGS-GMRES,
additional sufficient condition(s) enforcing the solution to be attainable under s iterations
might be necessary.

Assuming such condition(s), error bounds on the solution computed by RGS-GMRES
could be derived using Theorem 3.1. The proof would follow closely, for instance, the one of
MGS-GMRES developed in section 5.3. As the operations at lines 1, 2, and 4 of Algorithm 1
are specialized identically as for MGS-GMRES, the conditions associated to those lines still
hold. The difference with the MGS-GMRES proof would concern conditions (3.3), (3.7),
and (3.8) that are affected by the use of the RGS orthogonalization process. One should
use the extensive resources provided in [6] to prove that these conditions are still met. In
particular, for the key iteration conditions (3.7) and (3.8), [6, Thms. 3.2 and 3.3] could

be used to show that RGS computes a well-conditioned basis V̂k+1 as long as [b, Ĉk] is not
numerically column rank deficient. Assuming that this result can be reworked to consider the

scaled matrix [bϕ, Ĉk] instead, we could show that if V̂k+1 is not well-conditioned therefore

[bϕ, Ĉk] is numerically rank deficient, allowing an identical reasoning as in the proof of MGS-
GMRES (or CGS2-GMRES). Finally, to prove condition (3.3) one might want to adapt the
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proof of Theorem A.1 for Householder Arnoldi to the RGS Arnoldi process. In that regard,
the backward error result for the RGS QR factorization described in [6, Thm. 3.2] should
be made columnwise and substitute (A.5) in the proof of Theorem A.1. In addition, as
the basis Vk is not orthogonal anymore in exact arithmetic, the transformed least squares
problem miny ∥βe1 − H̄ky∥2 is not exactly equivalent to the original one miny ∥b − Cky∥2.
To adapt the proof of Theorem A.1, which relies on showing that those two least squares
problem are near equivalent under rounding errors, one might want to use [6, sect. 4.2] that
links the solutions of the RGS Arnoldi transformed least squares problem to the original
one.

Block GMRES.. Computing a linear system with multiple right-hand sides AX = B with
B,X ∈ Rn×b can be done efficiently through block GMRES; see for instance [48, 35, 43, 7].
In exact arithmetic, this algorithm builds at each iteration k the optimal set of approximate
solutions Xk ∈ Rn×b that minimizes the norm of the residuals associated with each right-
hand side Rk = AXk−B in the block Krylov subspace Kk(A,B) = span{B,AB, . . . , Ak−1B}
spanned by the full-rank block Arnoldi basis Vk = [V1, . . . , Vk] with Vj ∈ Rn×bj and bj ≤ b.
It has the advantage over a GMRES applied on each individual linear system to rely on
BLAS-3 operations that are more cache-friendly and can offer improved performance. In
addition, this version of GMRES enables the solution vectors associated with each right-
hand side to share their Krylov spaces leading to potentially faster convergence. We explain
how one might try to use our framework to derive backward and forward error bounds on
each individual solution of the system solved by block GMRES.

We consider a block GMRES implementation using a block modified Gram-Schmidt
(BMGS) scheme and the Householder orthogonalization to perform the intra-block QR fac-
torizations; we call this algorithm BMGS-GMRES. Other choices of block Gram-Schmidt
schemes or intra-block orthogonalizations could be used for implementing the block Arnoldi
process. We refer the reader to [17] for more information relative to block Gram-Schmidt
algorithms and their stability; in particular, we refer to [17, sect. 4.5] for a discussion on the
stability of BMGS with Householder intra-block orthogonalization.

Theorem 3.1 could be used to bound the errors of the computed solutions associated with
each right-hand side individually. Satisfying conditions (3.1) and (3.4) should not raise any

particular difficulties. We have Zk ≡ V̂k with block GMRES, and analyzing the numerical

errors generated by computing the products AV̂k at line 1 and V̂kYk at line 4 of Algorithm 1
is direct if those products are standard matrix–matrix products. To prove condition (3.3),
one natural way would be to adapt the proof of Theorem A.1 for Householder Arnoldi to
BMGS Arnoldi. To that end, one could inject in (A.5) the backward error result on the
computed QR factors by BMGS [33, prop. 4.2], giving

[B, Ĉk] + ∆qr = V̂k+1R̂, Ĉk = fl(AV̂k), ∥∆qr∥F ≤ c(n, k)∥[B, Ĉk]∥Fu; (6.22)

it might be needed to rework (6.22) in columnwise or block-columnwise form. In [7], MGS’s
Householder equivalence [9] is discussed and extended to some BMGS variants. For those
variants, (6.22) could take the form of (5.14) which holds for an exactly orthogonal Q-factor

Ṽk+1 instead of the non-orthogonal V̂k+1 in (6.22). The BMGS’s Householder equivalence
presented in [9] might be necessary to carry out the proof or, at least, would simplify it.
Adapting the remainder of the proof of Theorem A.1 to the “reduced-size” QR factoriza-
tion (because the proof of Theorem A.1 considers the “full-size” QR factors) and to block

operations (e.g., Ĥk is band-Hessenberg and has b subdiagonals instead of only one, the
triangular solve is now applied on a matrix, etc.) might deliver a similar bound to (A.3) on
each individual solution of the least squares problem.

Meeting conditions (3.7) and (3.8) is a substantial challenge for applying our framework
on BMGS-GMRES. The difficulty originates from the variation in convergence rates of the
solutions associated with each right-hand side. It means, in particular, that some solu-
tions will reach their attainable accuracies (or user-defined accuracies) earlier than others.
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Naturally, BMGS-GMRES is completed when all those solutions have converged to their
required accuracies. To better understand the source of the problem, we can interpret the

block Arnoldi basis V̂k+1 at the (k+1)th iteration as the computed Q-factor of [B, f l(AV̂k)]

by the BMGS QR factorization; see (6.22). Hence, because [B,AV̂k] becomes numerically
rank deficient once the first solution has converged to the machine precision accuracy, that

is, when the associated right-hand side lies in the range of AV̂k, BMGS-GMRES yields po-

tentially numerically column rank deficient next computed iterate bases V̂k̄ for k < k̄. This
phenomenon is evoked by Langou in his Ph.D. thesis [35, sect. 2.6.6.1.2]. Consequently, after
the convergence of the first solution, condition (3.8) becomes impracticable and Theorem 3.1
is not applicable on the remaining solutions. Fortunately, this issue can be prevented by
modifying the Arnoldi procedure to account for the convergence variability of the set of so-
lutions. Those methods generally consist in discarding directions prone to instability during

the basis expansion to avoid V̂k becoming nearly rank deficient. The strategy of Robbé and
Sadkane [43], for instance, is popular and has been reused in [1] and [52]. To successfully
apply our framework, it is likely that such a variant of BMGS-GMRES has to be considered.

7. Conclusion

We developed a modular framework for the backward error analyses of GMRES algo-
rithms. This framework consists of a set of minimal assumptions under which we obtain
modular normwise backward and forward error bounds that can be specialized to any GM-
RES algorithms meeting the framework assumptions. At the core of the framework are
Theorems 3.1 and 4.1 which result from the backward error analyses of the abstract MOD-
GMRES and restarted MOD-GMRES algorithms, respectively, and which can be used to
derive bounds on the attainable backward and forward errors of a given GMRES algorithm.
We dedicated a substantial amount of this article to applying these theorems to a wide range
of GMRES algorithms in order to prove our framework’s practicality, illustrate how it can
be used, and unify existing results. To that end, we first assessed the correctness of our
framework by showing that it delivers (almost) identical error bounds under (almost) iden-
tical conditions as the major already existing backward error analyses of GMRES. Second,
we used this framework to derive error bounds for three GMRES algorithms on which, to
our knowledge, no conclusive backward error analyses existed. We further discussed how our
framework might be used on three other GMRES algorithms without providing complete
analyses; we gave insights into the difficulties of analyzing these algorithms and proposed
approaches to address them.

We believe that the framework we proposed and the various examples we reviewed can
help the community to derive error bounds for current and future GMRES algorithms. We
emphasize that many GMRES variants on which the application of our framework can be
considered have not been mentioned in this article. We give a quick acknowledgment to some
of them here: s-step communication-avoiding GMRES algorithms [31, 12] which are based on
block orthogonalization algorithms that we evoked in section 6.4 and on which more details
can be found in [17]; the Q-OR algorithm presented in [38] that generates a non-orthogonal
Krylov basis; mixed precision GMRES iterative refinement and split-preconditioned FGM-
RES covered respectively in [3] and [13] and on which we already have backward error
analyses; inner-outer FGMRES algorithms which are FGMRES preconditioned by another
GMRES algorithm, see for instance [49] or [11].
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Appendix A. Least squares problem via Householder Arnoldi

Theorem A.1. Consider the solution of the HH-GMRES least squares problem

min
y
∥b− Cky∥2, Ck ∈ Rn×k, 0 ̸= b ∈ Rn×n, (A.1)

via the Householder Arnoldi process run in precision of unit roundoff u≪ 1. For all k ≤ n,
as long as Ck is numerically full-rank, that is,

σmin(Ck)≫ u∥Ck∥F , (A.2)

the computed solution satisfies

ŷk = argminy ∥(b+∆b)− (Ck +∆Ck)y∥2,
∥
[
∆b,∆Ck

]
ej∥2 ≲ γ̃nk+2(n+k)−2∥

[
b, Ck

]
ej∥2, j ≤ k + 1.

(A.3)

Proof. The least squares problem minimizing the Arnoldi residual solved by HH-GMRES
is not directly miny ∥b − Cky∥2 but is instead miny ∥βe1 − H̄ky∥2, where H̄k and β are
defined in (5.1). In exact arithmetic, the two share the same solution, but the second is
computationally less expensive to solve. Thus, we need to show that the computed solution
of the second least squares problem in floating-point is a backward stable solution of the
first. Proofs already exist in the literature in some forms, see [20]. However, they are not
compliant with our notations and not necessarily easy to appreciate by someone reading this
article. Therefore, for the sake of completeness, we present what we think is an elegant and
compact way to prove it.

As explained in section 5.2, the Householder Arnoldi process can be seen as a column-
oriented Householder QR factorization of the matrix [b, Ck] ∈ Rn×(k+1). The solution of the
least squares problem miny ∥βe1−H̄ky∥2 is then obtained by triangularizing the Hessenberg
matrix H̄k extracted from the resulting R-factor. This triangularization is simply another
QR factorization performed with Givens rotations. To carry out the proof, we need to
consider separately the cases k < n and k = n. This is because in the first case, the matrix
[b, Ck] is overdetermined, while in the second, it is underdetermined, leading to QR factors
of different shapes.

We first address the case k < n. Consider the solution of the least squares problem

min
y
∥R̂
[
1
−y

]
∥2, (A.4)

where R̂ ∈ R(k+1)×(k+1) is the computed R-factor from the QR factorization of [b, Ck] using
the Householder orthogonalization. From [28, Thm. 19.4], we know that the QR factors of
[b, Ck] satisfy [

b, Ck

]
+
[
∆b(1),∆C

(1)
k

]
=
[
Ṽk+1, Q̃2

] [R̂
0

]
∥
[
∆b(1),∆C

(1)
k

]
ej∥2 ≤ γ̃n(k+1)∥

[
b, Ck

]
ej∥2, j ≤ k + 1,

(A.5)

where Ṽk+1 ∈ Rn×(k+1) and Q̃2 ∈ Rn×(n−k−1) are orthogonal. In particular, R̂ is upper

triangular and can be decomposed as R̂ = [β̂e1, Ĥk], where β̂ ≈ ∥b∥2 and Ĥk ∈ R(k+1)×k is an
upper Hessenberg matrix. Hence, the least squares problem (A.4) is essentially miny ∥βe1−
H̄ky∥2, but where the quantities β and H̄k are replaced by their computed counterparts. To
solve (A.4), we transform the upper Hessenberg matrix in a trapezoidal matrix by applying
Givens rotations. We then compute the solution of the resulting triangular system. In the
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following we aim to show that, accounting for the rounding errors, this process provides a
backward stable solution for (A.4). From [28, Thm. 19.10], we have

Q′T (R̂+∆R(1)) =

[
w T̂
ω 0

]
, ∥∆R(1)ej∥2 ≤ γ̃n+k−2∥R̂ej∥2,

where [T̂ , 0]T ∈ R(k+1)×k is the computed upper triangular R-factor of Ĥk, Q
′ ∈ R(k+1)×(k+1)

is orthogonal, w ∈ Rk is a vector, and ω is a scalar such that [w,ω]T = Q′T (βe1). The com-

puted solution of the least squares problem is obtained through a triangular solve with T̂

and satisfies (T̂ + ∆T )ŷk = w where ∥∆Tej∥2 ≤ γk∥Tej∥2 ≲ γk∥R̂ej+1∥2 for j = 1, . . . , k,

see [28, Thm. 8.5]. The triangular solve is well-defined since T̂ is nonsingular for all k.

Indeed, from (A.5) and because R̂ = [β̂e1, Ĥk], we have

Ck +∆C
(1)
k = Ṽk+1Ĥk = Ṽk+1Q

′Q′T Ĥk = Ṽk+1Q
′(T̂ −Q′T∆R

(1)
2: ). (A.6)

As Ṽk+1 and Q′ are orthogonal, the rank of T̂ is that of Ck + ∆C
(1)
k + Ṽk+1∆R

(1)
2: , which

is full-rank by condition (A.2). Accounting for both errors in the Givens rotations and the
triangular solve, we conclude that ŷk is the exact solution of the following perturbed least
squares problem

ŷk = argminy ∥(R̂+∆R(2))

[
1
−y

]
∥2, ∥∆R̂(2)ej∥2 ≲ γ̃n+2k−2∥R̂ej∥2, (A.7)

which shows that ŷk is a backward stable solution of (A.4) for all k < n. It remains to
show that this is a backward stable solution of the original least squares problem (A.1).
From (A.5), we have

R̂+∆R(2) = Ṽ T
k+1(

[
b, Ck

]
+
[
∆b(1),∆C

(1)
k

]
+ Ṽk+1∆R(2)), (A.8)

which combined with (A.7) gives

ŷk = argminy ∥(
[
b, Ck

]
+
[
∆b(2),∆C

(2)
k

]
)

[
1
−y

]
∥2,

∥
[
∆b(2),∆C

(2)
k

]
ej∥2 ≲ γ̃nk+2(n+k)−2∥

[
b, Ck

]
ej∥2, j ≤ k + 1,

(A.9)

since ∥R̂ej∥2 ≈ ∥[b, Ck]ej∥2, which ends the proof for k < n.
The case k = n is slightly different because Householder orthogonalizes an underdeter-

mined system [b, Cn] ∈ Rn×(n+1). The application of HH-GMRES at step k = n produces[
b, Cn

]
+
[
∆b(1),∆C(1)

n

]
= ṼnR̂, (A.10)

where R̂ = [β̂e1, Ĥn] ∈ Rn×(n+1) is the computed upper trapezoidal R-factor, the errors

[∆b(1),∆C
(1)
n ] ∈ Rn×(n+1) are equivalently defined as in (A.5), Ṽn ∈ Rn×n is orthogonal

and is close to the computed Q-factor of the first n columns of [b, Cn], and Ĥn ∈ Rn×n is a

square Hessenberg matrix which is a subtle difference with the case k < n where Ĥk is not

square. As for the case k < n, we apply Givens rotations to Ĥn followed by a triangular
solve to obtain the solution. Carrying the same reasoning as for k < n, we can obtain an
equivalent result as (A.9) which ends the proof for k = n. □

Appendix B. Columnwise backward error result for CGS

Theorem B.1. Suppose that the CGS method run in floating-point arithmetic with unit

roundoff u ≪ 1 is applied to B ∈ Rn×k of rank k, yielding computed matrices Q̂ ∈ Rn×k

and R̂ ∈ Rk×k. Then the computed QR factors satisfy

B +∆B = Q̂R̂, ∥∆Bej∥2 ≲ c(n, k)u∥Bej∥2, j ≤ k, (B.1)

for some polynomial of low degree c(n, k) in n and k.
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Proof. In exact arithmetic, the CGS algorithm computes the Q = [q1, . . . , qk] and R =
[r1, . . . , rk] factors of B = [b1, . . . , bk] with the following recurrence

vj =
[
I −Q1:j−1Q

T
1:j−1

]
bj , qj = vj/∥vj∥2,

r1:j−1,j = QT
1:j−1bj , rj,j = ∥vj∥2,

where Q1:j−1 ∈ Rn×(j−1) is the matrix composed of the (j−1)th vectors of Q and r1:j−1,j ∈
Rj−1 is the vector composed of the (j − 1)th entries of rj . Accounting for the floating-
point errors in computing the vector subtractions, norms, and ℓ2-inner-products, the process
satisfies instead for all j ≤ n

v̂j = bj −
∑j−1

l=1
q̂lr̂l,j +∆vj , ∥∆vj∥2 ≤ c(n, k)u∥bj∥2, (B.2)

q̂j = v̂j/∥v̂j∥2 +∆qj , ∥∆qj∥2 ≤ c(n, k)u, (B.3)

r̂l,j = q̂Tl bj + δrl,j , |δrl,j | ≤ c(n, k)u∥q̂l∥2∥bj∥2, ∀l ≤ j − 1, (B.4)

r̂j,j = ∥v̂j∥2 + δrj,j , |δrj,j | ≤ c(n, k)u∥v̂j∥2. (B.5)

Combining (B.3) and (B.5) we obtain

q̂j r̂j,j = (v̂j/∥v̂j∥2 +∆qj)(∥v̂j∥2 + δrj,j) ≈ v̂j +∆qj∥v̂j∥2 + δrj,j v̂j/∥v̂j∥2,
which, used alongside (B.2), gives

bj +∆vj +∆qj∥v̂j∥2 + δrj,j v̂j/∥v̂j∥2 ≈
∑j

l=1
q̂lr̂l,j . (B.6)

Using (B.2), (B.3), and (B.4), we have the following bound

∥v̂j∥2 ≲ ∥bj∥2 +
∑j−1

l=1
∥q̂l∥2∥q̂Tl ∥2∥bj∥2 ≈ j∥bj∥2,

which, by defining ∆bj = ∆vj +∆qj∥v̂j∥2 + δrj,j v̂j/∥v̂j∥2 in (B.6), finally gives

bj +∆bj ≈ Q̂r̂j , ∥∆bj∥2 ≲ c(n, k)u∥bj∥2,
and completes the proof. □

Appendix C. On when CGS2 generates a closely-orthogonal set of vectors

In [24], it is shown that CGS2 computes a set of vectors orthogonal to the machine
precision level as long as the orthogonalized matrix B is not numerically rank deficient; see
the following Theorem C.1. In this appendix, we build on this foundation to derive a set of
useful results required to analyze CGS2-GMRES.

Theorem C.1. (Rewrite of [24, Thm. 2]) Suppose CGS2 run in precision of unit roundoff

u≪ 1 is applied to B ∈ Rn×k of rank k yielding a computed Q-factor Q̂ ∈ Rn×k. Then, as

long as c(n, k)uκ2(B) ≤ 1, Q̂ satisfies

∥I − Q̂T Q̂∥F ≤ c(n, k)u, (C.1)

where c(n, k) are polynomials in n and k of low degree.

Lemma C.2. Consider Q̂ ∈ Rn×k. If ∥I − Q̂T Q̂∥F ≤ c(n, k)u, then Q̂ is well-conditioned
and we have

σmin(Q̂) ≈ σmax(Q̂) ≈ κ2(Q̂) ≈ 1, (C.2)

where c(n, k) are polynomials in n and k of low degree.

Proof. By assumption the vectors of Q̂ are orthogonal to machine precision and we have

∥I − Q̂T Q̂∥F ≤ c(n, k)u. (C.3)

To evaluate the smallest and largest singular values of Q̂ we consider the polar decomposition

Q̂ = UH, where U ∈ Rn×k is orthogonal and H ∈ Rk×k is symmetric positive-semidefinite.

Using [27, Lem. 5.1] combined with (C.3) we can bound the distance from Q̂ to U , we obtain

∥Q̂− U∥F ≤ ∥I − Q̂T Q̂∥F ≤ c(n, k)u.
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Using Q̂ = Q̂− U + U we can write

σmin(Q̂) = minx
∥(Q̂− U + U)x∥2

∥x∥2
≤ σmin(U) + ∥Q̂− U∥F ≤ 1 + c(n, k)u,

σmin(Q̂) ≥ σmin(U)− ∥Q̂− U∥F ≥ 1− c(n, k)u,

which provides σmin(Q̂) ≈ 1. The same reasoning can be used to show that σmax(Q̂) ≈ 1

from which we deduce κ2(Q̂) ≈ 1 and which ends the proof. □

Condition c(n, k)uκ2(B) ≤ 1 of Theorem C.1 on the non numerical rank deficiency of

B can be exchanged with conditions on the norms of the projections (I − Q̂j−1Q̂
T
j−1)bj for

j ≤ k and where Q̂j−1 ∈ Rn×(j−1) is the (j − 1) first columns of Q̂. Namely, we will show

that if for all j ≤ k the norm of the projection (I − Q̂j−1Q̂
T
j−1)bj , which is the projection of

bj on the orthogonal complement of Q̂j−1 formed by CGS2 at the jth iteration to compute

Q̂j , is large enough, then the conclusion of Theorem C.1 holds. In exact arithmetic, those
conditions on the projections (I − Qj−1Q

T
j−1)bj enforce bj for all j ≤ k to never lie in the

range of Qj−1, that is, the range of Bj−1 = [b1, . . . , bj−1], and, therefore, enforce the columns
of B to be independent so that B is full-rank.

Theorem C.3. Suppose that the first k−1 iterations of CGS2 run in precision of unit round-

off u ≪ 1 and applied to Bk−1 ∈ Rn×(k−1) yields a computed Q-factor Q̂k−1 ∈ Rn×(k−1)

satisfying

∥I − Q̂T
k−1Q̂k−1∥F ≤ c(n, k)u. (C.4)

Consider the kth iteration of CGS2 applied on Bk = [Bk−1, bk] of rank k and yielding a

computed Q-factor Q̂k = [Q̂k−1, q̂k]. As long as ∥(I − Q̂k−1Q̂
T
k−1)bk∥2 ≥ c(n, k)u∥bk∥2, the

orthogonality of Q̂k is preserved and we have

∥I − Q̂T
k Q̂k∥F ≲ c(n, k)u, (C.5)

where c(n, k) accounts for polynomials in n and k of low degree.
Proof. The following proof is a direct revisit of [24, Thm. 2]. While our proof is self-
contained, it does not provide the level of details and insights present in [24]. Therefore, we
strongly recommend reading this work for a deeper understanding of the CGS2 orthogonal-
ization in floating-point.

Under condition (C.4) and since

I − Q̂T
k Q̂k =

[
I − Q̂T

k−1Q̂k−1 −Q̂T
k−1q̂k

−q̂Tk Q̂k−1 1− q̂Tk q̂k

]
,

proving (C.5) reduces to show that ∥Q̂T
k−1q̂k∥2 ≤ c(n, k)u. We apply the kth iteration of

CGS2 on Bk to compute q̂k. Accounting for the floating point errors, the process yields the
following two set of projections

v̂k = bk −
k−1∑
j=1

q̂j r̂j,k +∆vk, ∥∆vk∥2 ≤ c(n, k)u∥bk∥2, (C.6)

ŵk = v̂k −
k−1∑
j=1

q̂j ŝj,k +∆wk, ∥∆wk∥2 ≤ c(n, k)u∥v̂k∥2, (C.7)

associated, respectively, to the first and second application of the Gram-Schmidt orthogo-
nalization. The computed orthogonalization coefficients r̂j,k and ŝj,k for j ≤ k − 1 satisfy

r̂j,k = q̂Tj ak + δrj,k, ŝj,k = q̂Tj v̂k + δsj,k, ŝk,k = ∥ŵk∥2 + δsk,k,

|δrj,k| ≤ c(n, k)u∥q̂Tj ∥2∥bk∥2, |δsj,k| ≤ c(n, k)u∥q̂Tj ∥2∥v̂k∥2, |δsk,k| ≤ c(n, k)u∥ŵk∥2,
(C.8)
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and q̂k is finally obtained as

q̂k = ŵk/∥ŵk∥2 +∆qk, ∥∆qk∥2 ≤ c(n, k)u, ∥q̂k∥2 ≤ 1 + c(n, k)u. (C.9)

To bound ∥Q̂T
k−1q̂k∥2 we first need to derive bounds for ∥v̂k∥2, ∥Q̂T

k−1v̂k∥2/∥v̂k∥2, and

∥Q̂T
k−1ŵk∥2/∥ŵk∥2.
We start by providing a lower bound for ∥v̂k∥2; from (C.6), (C.8), and (C.9) we have

∥v̂k∥2 = ∥(I − Q̂k−1Q̂
T
k−1)bk −

k−1∑
j=1

q̂jδrj,k +∆vk∥2

≥ ∥(I − Q̂k−1Q̂
T
k−1)bk∥2 −

k−1∑
j=1

∥q̂j∥2|δrj,k| − ∥∆vk∥2

≳ ∥(I − Q̂k−1Q̂
T
k−1)bk∥2 − c1(n, k)u∥bk∥2,

where c1(n, k) is a polynomial in n and k of low degree. Under the assumption

∥(I − Q̂k−1Q̂
T
k−1)bk∥2 ≥ c0(n, k)u∥bk∥2 (C.10)

of the Theorem, and by choosing c0(n, k) sufficiently larger than c1(n, k), we guarantee

∥v̂k∥2 ≳
[
c0(n, k)− c1(n, k)

]
u∥bk∥2 = c(n, k)u∥bk∥2. (C.11)

We emphasize that we are not interested in determining a specific value for c0(n, k) in
assumption (C.10). Our goal is only to validate that there exists such a polynomial c0(n, k)
of low degree in n and k such that the Theorem holds.

Multiplying the expression (C.6) from the left by Q̂T
k−1 yields

Q̂T
k−1v̂k = (I − Q̂T

k−1Q̂k−1)Q̂
T
k−1bk + Q̂T

k−1

− k−1∑
j=1

q̂jδrj,k +∆vk

 ,

and taking the norm of this expression accounting for the assumption (C.4), the bounds on

the errors (C.6) and (C.8), and the fact that ∥Q̂k−1∥F ≈ (k − 1)1/2 gives the bound

∥Q̂T
k−1v̂k∥2 ≤ ∥(I − Q̂T

k−1Q̂k−1)∥F ∥Q̂T
k−1∥F ∥bk∥2 + ∥Q̂T

k−1∥F
k−1∑
j=1

∥q̂j∥2|δrj,k|+ ∥∆vk∥2

≲ c2(n, k)u∥bk∥2.

Therefore, combining this previous bound with (C.11) and enforcing c0(n, k) to be sufficiently
larger than c2(n, k) + c1(n, k) gives

∥Q̂T
k−1v̂k∥2/∥v̂k∥2 ≲ c2(n, k)/

[
c0(n, k)− c1(n, k)

]
< 1. (C.12)

We now provide a bound for ∥Q̂T
k−1ŵk∥2/∥ŵk∥2. We can rewrite (C.7) in the following

form

ŵk = (I − Q̂k−1Q̂
T
k−1)v̂k −

k−1∑
j=1

q̂jδsj,k +∆wk

from which, accounting for the bounds (C.7), (C.8), and (C.12), we deduce

∥ŵk∥2
∥v̂k∥2

≥ ∥v̂k∥2
∥v̂k∥2

− ∥Q̂k−1∥F
∥Q̂T

k−1v̂k∥2
∥v̂k∥2

−
∑k−1

j=1 ∥q̂j∥2|δsj,k|
∥v̂k∥2

− ∥∆wk∥2
∥v̂k∥2

≳ 1− c3(n, k)

c0(n, k)− c1(n, k)
− c(n, k)u.

Hence, choosing, for instance, c0(n, k) ≤ 2c3(n, k) + c1(n, k) leads to

∥v̂k∥2/∥ŵk∥2 ≲ 2. (C.13)
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In the same fashion as for deriving the bound (C.12), multiplying the expression (C.7) from

the left by Q̂T
k−1, taking the norm, and using the bounds (C.4), (C.8), and (C.13) yields

∥Q̂T
k−1ŵk∥2
∥ŵk∥2

≤ ∥(I − Q̂T
k−1Q̂k−1)∥F ∥Q̂T

k−1∥F
∥v̂k∥2
∥ŵk∥2

+ ∥Q̂T
k−1∥F

∑k−1
j=1 ∥q̂j∥2|δsj,k|+ ∥∆wk∥2

∥ŵk∥2
≲ c(n, k)u. (C.14)

Finally, taking Q̂T
k−1q̂k = Q̂T

k−1ŵk/∥ŵk∥2+Q̂T
k−1∆qk and using (C.9) and (C.14) we write

∥Q̂T
k−1q̂k∥2 ≤ ∥Q̂T

k−1ŵk∥2/∥ŵk∥2 + ∥Q̂T
k−1∆qk∥2 ≲ c(n, k)u,

which ends the proof. □

From Theorem C.3, we can derive the following Corollary where we explain that the loss

of orthogonality of the computed vectors of Q̂k by CGS2 at the iteration k can only be the

consequence of a small projection norm ∥(I − Q̂k−1Q̂
T
k−1)bk∥2.

Corollary C.4. Suppose that the first k − 1 iterations of CGS2 run in precision of unit

roundoff u ≪ 1 and applied to Bk−1 ∈ Rn×(k−1) yields a computed Q-factor Q̂k−1 ∈
Rn×(k−1) satisfying ∥I − Q̂T

k−1Q̂k−1∥F ≤ c(n, k)u. Consider the kth iteration of CGS2

applied on Bk = [Bk−1, bk] of rank k and yielding a computed Q-factor Q̂k = [Q̂k−1, q̂k]. If

∥I − Q̂T
k Q̂k∥F > c(n, k)u, then

∥(I − Q̂k−1Q̂
T
k−1)bk∥2 < c(n, k)u∥bk∥2, (C.15)

the vector ŵk resulting from the computation of the two consecutive applications of the pro-

jection (I−Q̂k−1Q̂
T
k−1) yielding in exact arithmetic w̃k = (I−Q̂k−1Q̂

T
k−1)(I−Q̂k−1Q̂

T
k−1)bk

satisfies

∥ŵk∥2 ≲ c(n, k)u∥bk∥2, (C.16)

and Bk is numerically rank deficient

σmin(Bk) ≤ c(n, k)u∥Bk∥F , (C.17)

where c(n, k) are some polynomials in n and k of low degree.

Proof. The converse of Theorem C.3 implies that if ∥I − Q̂T
k Q̂k∥F > c(n, k)u but ∥I −

Q̂T
k−1Q̂k−1∥F ≤ c(n, k)u, then we must have

∥(I − Q̂k−1Q̂
T
k−1)bk∥2 < c(n, k)u∥bk∥2,

and we recover (C.15).
From (C.6) and (C.7) we have

v̂k = (I − Q̂k−1Q̂
T
k−1)bk −

k−1∑
j=1

q̂jδrj,k +∆vk and ŵk = (I − Q̂k−1Q̂
T
k−1)v̂k −

k−1∑
j=1

q̂jδsj,k +∆wk,

where δrj,k, δsj,k, ∆vk, and ∆wk are defined in (C.6), (C.7), and (C.8). Accounting for (C.9)
we have ∥q̂j∥2 ≈ 1, and using in addition (C.15) we deduce

∥v̂k∥2 ≤ ∥(I − Q̂k−1Q̂
T
k−1)bk∥2 +

k−1∑
j=1

∥q̂j∥2|δrj,k|+ ∥∆vk∥2 ≲ c(n, k)u∥bk∥2.

Moreover, considering ∥Q̂k−1∥F ≈ (k − 1)1/2, we obtain

∥ŵk∥2 ≤ (∥I∥F + ∥Q̂k−1∥2F )∥v̂k∥2 +
k−1∑
j=1

∥q̂j∥2|δsj,k|+ ∥∆wk∥2 ≲ c(n, k)∥v̂k∥2 ≲ c(n, k)u∥bk∥2,

from which we recover (C.16).
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Finally, from Theorem B.1, which holds for CGS and a fortiori for CGS2, the kth first
iterations of CGS2 yields computed factors satisfying

Bk = [Bk−1, bk] =
[
Q̂k−1, q̂k

] [R̂k−1 r̂1:k−1,k

0 ∥ŵk∥2

]
+∆B

(1)
k , ∥∆B

(1)
k ej∥2 ≤ c(n, k)u∥Bkej∥2, j ≤ k.

Since CGS2 constructs q̂k = ŵk/∥ŵk∥2 +∆qk with ∥∆qk∥2 ≤ c(n, k)u, see (C.9), we obtain

Bk +∆B
(2)
k = Q̂k−1

[
R̂k−1, r̂1:k−1,k

]
, ∆B

(2)
k = −(ŵk +∆qk∥ŵk∥2)eTk −∆B

(1)
k ,

and using (C.16), we bound

∥∆B
(2)
k ej∥2 ≲ c(n, k)u∥Bkej∥2, j ≤ k.

Because Q̂k−1 is a n×(k−1) matrix and
[
R̂k−1, r̂1:k−1,k

]
is a (k−1)×k matrix, Bk+∆B

(2)
k

is of rank k − 1 and is rank deficient. Hence,

0 = σmin(Bk +∆B
(2)
k ) ≥ σmin(Bk)− ∥∆B

(2)
k ∥F

leading to

σmin(Bk) ≲ c(n, k)u∥Bk∥F
which proves (C.17) and ends the proof. □

Because the computed Q̂ by CGS2 is invariant by column scaling B ← BD for all diagonal
D > 0, at least if D comprises powers of the machine base (see comments in [28, p. 373]
and [36, p 502]), (C.17) in Corollary C.4 can be replaced by

σmin(BD) < c(n, k)u∥BD∥F , for all diagonal D > 0. (C.18)

The result remains true even when including the cases where the entries of D are not all
powers of the machine base, but for the sake of conciseness we do not attempt a proof of
this statement in this article.
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Perturbed LDLT Decomposition with Static Pivoting. SIAM J. Sci. Comput., 29(5):2024–2044, 2007.
[6] Oleg Balabanov and Laura Grigori. Randomized Gram–Schmidt Process with Application to GMRES.

SIAM J. Sci. Comput., 44(3):A1450–A1474, June 2022.
[7] Jesse L. Barlow. Block Modified Gram–Schmidt Algorithms and Their Analysis. SIAM J. Matrix Anal.

Appl., 40(4):1257–1290, January 2019.
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[9] Åke Björck and Christopher C. Paige. Loss and recapture of orthogonality in the modified gram–schmidt

algorithm. SIAM J. Matrix Anal. Appl., 13(1):176–190, January 1992.
[10] Sylvie Boldo, Claude-Pierre Jeannerod, Guillaume Melquiond, and Jean-Michel Muller. Floating-point

arithmetic. Acta Numerica, 32:203–290, May 2023.
[11] Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Piotr Luszczek, and Stanimir Tomov. Using Mixed

Precision for Sparse Matrix Computations to Enhance the Performance while Achieving 64-bit Accuracy.

ACM Trans. Math. Software, 34(4):1–22, July 2008.

[12] Erin Carson. Communication-Avoiding Krylov Subspace Methods in Theory and Practice. PhD thesis,
University of California, Berkeley, 2015.
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trix–Vector Product and Its Application to Krylov Solvers. SIAM J. Sci. Comput., 46(1):C30–C56,
January 2024.
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