
ADAPTIVE PRECISION SPARSE MATRIX–VECTOR PRODUCT
AND ITS APPLICATION TO KRYLOV SOLVERS∗

STEF GRAILLAT† , FABIENNE JÉZÉQUEL‡ , THEO MARY† , AND ROMÉO MOLINA§

Abstract. We introduce a mixed precision algorithm for computing sparse matrix-vector products and use
it to accelerate the solution of sparse linear systems by iterative methods. Our approach is based on the idea
of adapting the precision of each matrix element to their magnitude: we split the elements into buckets and use
progressively lower precisions for the buckets of progressively smaller elements. We carry out a rounding error
analysis of this algorithm that provides us with an explicit rule to decide which element goes into which bucket
and allows us to rigorously control the accuracy of the algorithm. We implement the algorithm on a multicore
computer and obtain significant speedups (up to a factor 7×) with respect to uniform precision algorithms, without
loss of accuracy, on a range of sparse matrices from real-life applications. We showcase the effectiveness of our
algorithm by plugging it into various Krylov solvers for sparse linear systems and observe that the convergence of
the solution is essentially unaffected by the use of adaptive precision.

Key words. mixed precision, adaptive precision, multiple precision, matrix–vector product, sparse matrix,
SpMV, numerical linear algebra, rounding error analysis, floating-point arithmetic, Krylov solver, GMRES, CG,
BiCGstab, iterative solver, linear system

AMS subject classifications. 65G50, 65F05, 65F08, 65F50, 65F10

1. Introduction. Motivated by the growing availability of lower precision arithmetics,
mixed precision algorithms are being developed for a wide range of numerical computations [18].
One subclass of mixed precision algorithms that has recently and increasingly proven successful
is what we call adaptive precision algorithms. These algorithms are based on the idea of adapting
the precision to the data involved in the computation, by selecting a level of precision proportional
to the importance of the data, where the definition of “importance” is application dependent.
For example, Anzt et al. [6], [13] have proposed an adaptive precision block Jacobi preconditioner
in which the precision of each block is chosen based on its condition number. Another example
is the mixed precision low-rank compression proposed by Amestoy et al. [5], which partitions a
low-rank matrix into several low-rank components of decreasing norm and stores each of them in
a correspondingly decreasing precision. Ahmad et al. [1] develop a sparse matrix–vector product
algorithm in which elements in the range [−1, 1] are switched to single precision while the other
elements are kept in double precision. Diffenderfer et al. [12] propose a “quantized” dot product
algorithm that adapts the precision of each vector element based on its exponent. For a unified
presentation of these adaptive precision algorithms, see [18, sect. 14].

In this article, we propose an adaptive precision algorithm at the element level for matrix–
vector products. Specifically, our matrix–vector product algorithm partitions the elements into
several buckets and uses a different precision for each bucket. We perform a rounding error
analysis of this algorithm that reveals how the precisions should be chosen: we prove that it
suffices to take the precisions to be proportional to the magnitude of the elements, that is,
elements of large magnitude should be kept in high precision, but elements of smaller magnitude
can be switched to correspondingly lower precisions. Intuitively, this discovery can be explained
by the fact that the least significant bits of the smaller elements end up being lost when they
are summed to the larger elements: hence, we might as well avoid computing those bits to begin
with.

Based on this analysis, we develop an adaptive precision sparse matrix–vector product and
evaluate experimentally its performance and accuracy on a range of real-life large sparse matrices.
We show that the storage and hence the data movement costs of the product can be significantly
reduced for many matrices, while preserving a user-prescribed accuracy target. We develop an
implementation for CPUs that uses double and single precision arithmetic as well as dropping

∗Version of May 12, 2023
†Sorbonne Université, CNRS, LIP6, Paris, F-75005, France (stef.graillat@lip6.fr,theo.mary@lip6.fr)
‡Sorbonne Université, CNRS, LIP6, Paris, F-75005 and Université Paris-Panthéon-Assas, Paris, F-75006,

France (fabienne.jezequel@lip6.fr)
§Sorbonne Université, CNRS, LIP6 and Université Paris-Saclay, Paris, F-75005, France (romeo.molina@lip6.fr)

1

mailto:stef.graillat@lip6.fr,theo.mary@lip6.fr
mailto:fabienne.jezequel@lip6.fr
mailto:romeo.molina@lip6.fr

(discarding sufficiently small elements), and obtain speedups of up to an order of magnitude on
a multicore computer. We then apply our algorithm to the solution of sparse linear systems by
plugging it into various Krylov solvers with iterative refinement. Our experiments demonstrate
that the convergence of the solution is essentially unaffected by the use of adaptive precision.

The rest of this paper is organized as follows. We begin by recalling the error analysis
of the standard matrix–vector product in uniform precision in section 2. Then, we propose in
section 3 an adaptive precision matrix–vector product algorithm and carry out its error analysis.
In section 4, we investigate experimentally both its accuracy and performance. In section 5 we
apply this algorithm to the solution of linear systems with Krylov solvers. Finally, we provide
our concluding remarks in section 6.

2. Uniform precision matrix–vector product. Before proposing an adaptive precision
matrix–vector product, let us recall the error analysis of the uniform precision case, where the
same precision is used across all operations.

Throughout the article we use the standard model of floating-point arithmetic [15, sec. 2.2]

f l(a op b) = (a op b)(1 + δ), |δ| ≤ u, op ∈ {+,−,×, /}, (2.1)

where u is the unit roundoff of the precision used and fl represents the computed results in
floating-point arithmetic.

Let yi =
∑

j∈Ji
aijxj be the inner product between the ith row of A and x, where Ji is the

set of the column indices of the nonzero elements in row i of A. In uniform precision u, the
computed ŷi satisfies

|ŷi − yi| ≤ #Jiu
∑
j∈Ji

|aijxj |, (2.2)

where #Ji denotes the cardinality of Ji. Note that here, and throughout the article, we have
used the analysis of inner products of Jeannerod and Rump [19] to obtain more refined bounds,
where constants of the form γn = nu/(1 − nu) can be replaced simply by nu. The analysis
of [19] assumes the use of rounding to nearest, but it was later shown in [20, Corollary 3.3] that
these refined bounds also hold for directed roundings by replacing u with 2u. We also note that
constants n could be further reduced to

√
n to obtain probabilistic bounds that hold with high

probability [16, 17, 10]. In this article the size of the constants is not the main focus (as they are
typically small for sparse matrices), and so we use the more general worst-case error bounds.

Algorithm 2.1 Uniform precision matrix–vector product.

1: Input: A ∈ Rm×n, x ∈ Rn. Ji is the set of column indices of the nonzeros in row i of A.
2: Output: y = Ax
3: for i = 1: m do
4: yi = 0
5: for j ∈ Ji do
6: yi ← yi + aijxj

7: end for
8: end for

As a consequence of the Oettli–Prager [15, Thm. 7.3], [24] and Rigal–Gaches [15, Thm. 7.1],
[27] theorems, we have the following formulas for the componentwise backward error

εcw = min {ε : ŷ = (A+∆A)x, |∆A| ≤ ε|A|} = max
i

[|ŷi − yi|∑
j∈Ji
|aijxj |

]
(2.3)

and for the normwise backward error

εnw = min {ε : ŷ = (A+∆A)x, ∥∆A∥ ≤ ε∥A∥} = ∥ŷ − y∥
∥A∥∥x∥ , (2.4)

2

respectively. Throughout this article, the unsubscripted norm ∥ · ∥ denotes the infinity norm

∥A∥∞ = max
i

∑
j

|aij |.

Note that the componentwise error is always larger than the normwise one, since we have

εnw =
∥ŷ − y∥
∥A∥∥x∥ ≤

∥ŷ − y∥
∥|A||x|∥ =

maxi |ŷ − y|i
maxi(|A||x|)i

≤ max
i

|ŷ − y|i
(|A||x|)i

= εcw. (2.5)

Moreover, using (2.2), we obtain the bound

εnw ≤ εcw ≤ pu, (2.6)

where p = maxi #Ji is the maximum number of nonzero elements per row of A.

3. Adaptive precision matrix–vector product: error analysis. In this section we
propose an adaptive precision matrix–vector product algorithm. To do so we perform the error
analysis of a general mixed precision matrix–vector product that partitions the nonzero elements
of the matrix into buckets and computes the partial inner products associated with each bucket
in a different precision. Our analysis shows how to build these buckets so as to minimize the
precisions used while achieving a prescribed backward error.

We analyze Algorithm 3.1, which computes a mixed precision matrix–vector product y = Ax
using q precisions u1 < u2 < · · · < uq. Each row i of A is partitioned into q buckets Bik ⊂ [[1, n]],

k = 1: q, and the inner product y
(k)
i =

∑
j∈Bik

aijxj associated with bucket Bik is computed in
precision uk. All the partial inner products are then summed in precision u1.

For Algorithm 3.1 to be well defined, we require that the Bik form a partition of Ji (the
nonzero elements in row i of A), that is, that they are disjoint and that their union is equal to
Ji.

Algorithm 3.1 Adaptive precision matrix–vector product in q precisions u1 < · · · < uq.

1: Input: A ∈ Rm×n, x ∈ Rn, a partitioning of A into buckets Bik

2: Output: y = Ax
3: for i = 1: m do
4: for k = 1: q do

5: y
(k)
i = 0

6: for j ∈ Bik do

7: y
(k)
i ← y

(k)
i + aijxj in precision uk

8: end for
9: end for

10: yi =
∑q

k=1 y
(k)
i in precision u1

11: end for

According to (2.2) the computed partial inner product ŷ
(k)
i satisfies

|ŷ(k)i − y
(k)
i | ≤ pikuk(1 + uk)

2
∑

j∈Bik

|aijxj |, (3.1)

where pik = #Bik and where the (1 + uk)
2 term accounts for the need to first convert both aij

and xj to precision uk. Then, defining yi =
∑q

k=1 ŷ
(k)
i as the exact sum of the ŷ

(k)
i , and as

yi =
∑q

k=1 y
(k)
i , we have

|yi − yi| ≤
q∑

k=1

[
pikuk(1 + uk)

2
∑

j∈Bik

|aijxj |
]
, (3.2)

3

and the computed ŷi satisfies

|ŷi − yi| ≤ (q − 1)u1

q∑
k=1

|ŷ(k)i | (3.3)

≤ (q − 1)u1

q∑
k=1

[(
1 + pikuk(1 + uk)

2
) ∑
j∈Bik

|aijxj |
]
, (3.4)

where the conversion of ŷ
(k)
i back to precision u1 does not introduce any error since u1 ≤ uk for

all k. Using the fact that the Bik form a partition of Ji, we have that

q∑
k=1

∑
j∈Bik

|aijxj | =
∑
j∈Ji

|aijxj |

and we therefore obtain

|ŷi − yi| ≤ |ŷi − yi|+ |yi − yi| (3.5)

≤ (q − 1)u1

∑
j∈Ji

|aijxj |+ (1 + (q − 1)u1)

q∑
k=1

[
pikuk(1 + uk)

2
∑

j∈Bik

|aijxj |
]
. (3.6)

Dividing both sides by
∑

j∈Ji
|aijxj |, we obtain the componentwise backward error bound

εcw ≤ (q − 1)u1 + (1 + (q − 1)u1)max
i

[q∑
k=1

pikuk(1 + uk)
2αik

]
, (3.7)

which shows that the ratios

αik =

∑
j∈Bik

|aijxj |∑
j∈Ji
|aijxj |

(3.8)

play a fundamental role in controlling the size of the backward error.
Now we want to determine how to build the buckets Bik such that the backward error is

at most in O(ϵ), where ϵ ≥ u1 is a user-prescribed target accuracy. The analysis above shows
that to do so, we need to control the ratios αik, which are essentially a measure of how large the
elements in bucket Bik are with respect to all the elements in Ji. Thus, the analysis tells us that
elements smaller in magnitude can be placed in lower precision buckets. Specifically, writing ai
the ith row of A so that

∑
j∈Ji
|aijxj | = |ai|T |x|, let us define the intervals

Pik =


(
ϵ|ai|T |x|/u2, +∞

)
for k = 1,(

ϵ|ai|T |x|/uk+1, ϵ|ai|T |x|/uk

]
for k = 2: q − 1,[

0, ϵ|ai|T |x|/uq

]
for k = q,

(3.9)

which form a partition of [0,+∞), and let us define the buckets Bik as the column indices of the
nonzero elements of A such that |aijxj | belongs to the corresponding interval Pik:

Bik = {j ∈ Ji : |aijxj | ∈ Pik} . (3.10)

The definition of the Pik intervals is illustrated with four precisions in Figure 3.1. This construc-
tion yields αik ≤ pikϵ/uk; note that this holds for k = 1 since ϵ ≥ u1. Therefore, by (3.7),

εcw ≤ (q − 1)u1 + cϵ = O(ϵ), (3.11)

with

c = (1 + (q − 1)u1)max
i

q∑
k=1

p2ik(1 + uk)
2. (3.12)

4

0 ϵθi/u4 ϵθi/u3 ϵθi/u2 +∞

precision u4 precision u3 precision u2 precision u1

Fig. 3.1: Illustration of the bucket construction with four precisions u1 < u2 < u3 < u4. The
real line [0,+∞) is partitioned into intervals Pik defined by (3.9) (componentwise criteria, θi =
|ai|T |x|) or (3.17) (normwise criteria, θi = ∥A∥).

We note that we have not taken into account any rounding error occuring in the computation of
the intervals Pik, which we assume to be evaluated in sufficiently high precision to be considered
exact. Indeed, as a sum of positive values, the problem is well conditioned.

Since, by (2.5), εnw ≤ εcw, this bucket construction also yields a normwise backward error
in O(ϵ). However, if we only need to bound the normwise backward error, and can afford a
potentially large componentwise error, we can improve the use of low precisions by modifying the
buckets as follows. Taking norms in (3.6) shows that

εnw ≤ (q − 1)u1 + (1 + (q − 1)u1)max
i

[q∑
k=1

pikuk(1 + uk)
2βik

]
, (3.13)

where it is now the ratios

βik =

∑
j∈Bik

|aijxj |
∥A∥∥x∥ (3.14)

that play a role in controlling the size of the normwise backward error. Importantly, unlike the
ratios αik in (3.8), the ratios βik can be bounded above independently of x:

βik ≤
∑

j∈Bik
|aij |

∥A∥ . (3.15)

As a result, we can redefine the buckets as

Bik = {j ∈ Ji : |aij | ∈ Pik} . (3.16)

with the intervals Pik as in (3.9) with |ai|T |x| replaced with ∥A∥:

Pik =


(
ϵ∥A∥/u2, +∞

)
for k = 1,(

ϵ∥A∥/uk+1, ϵ∥A∥/uk

]
for k = 2: q − 1,[

0, ϵ∥A∥/uq

]
for k = q.

(3.17)

This is sufficient to ensure that βik ≤ pikϵ/uk and thus that εnw = O(ϵ). However, in this case we
can no longer guarantee a small εcw, since the ratios αik/βik = ∥A∥∥x∥/|ai|T |x| can be arbitrarily
large for some rows i.

We summarize the main conclusions of our analysis in the next theorem.

Theorem 3.1. Let A ∈ Rm×n and x ∈ Rn and let y = Ax be computed with Algorithm 3.1.
If the bucket partitioning is defined by (3.9)–(3.10), then we have

εnw ≤ εcw ≤ (q − 1)u1 + cϵ,

where the expression of c is given by (3.12). If instead it is defined by (3.16)–(3.17), then we only
have

εnw ≤ (q − 1)u1 + cϵ.

Remark 3.1. For sparse matrices, since the performance of SpMV is memory bound, in
principle we could only store the elements of A in lower precisions and keep the floating-point

5

operations in precision u1 in order to avoid error accumulation. The error analysis above can be
easily adapted to this scenario by replacing (3.1) with

|ŷ(k)i − y
(k)
i | ≤

(
piku1(1 + uk) + uk

) ∑
j∈Bik

|aijxj |, (3.18)

which roughly reduces the p2ik term in (3.12) to pik.

Remark 3.2. Our analysis allows for the case where some elements of A are simply dropped.
Indeed, this can be modeled as using a “precision” uq = 1, since replacing an element by zero
introduces a relative perturbation equal to 1. Thus, taking uq = 1 in (3.9) or (3.17) shows
that elements of magnitude smaller than ϵ|ai|T |x| or ϵ∥A∥ can be dropped while preserving a
componentwise or normwise backward error of order ϵ, respectively.

Remark 3.3. Our analysis can be trivially specialized to adaptive precision inner products,
for which A is a row vector, and to adaptive precision summation, for which A = e = [1, . . . , 1].

3.1. A more practical componentwise bucket criteria. The approach presented above
presents a practical limitation: to guarantee componentwise backward stability, the adaptive
precision representation of matrix A must depend on the vector x we want to multiply it with, as
shown by (3.9)–(3.10). Unfortunately, taking the values of x into account is unrealistic, since it
would require to change the representation of A every time we want to compute its product with
a different vector. A more practical scenario is to compute an adaptive precision representation
of A independent of x and use it to accelerate many SpMVs with different vectors. The bucket
construction defined by (3.16)–(3.17) satisfies this practical constraint, but can only guarantee
normwise stability.

This motivates us to propose a bucket construction

Bik = {j ∈ Ji : |aij | ∈ Pik} (3.19)

with the definition of the intervals Pik modified as follows:

Pik =


(
ϵ|ai|T e/u2, +∞

)
for k = 1,(

ϵ|ai|T e/uk+1, ϵ|ai|T e/uk

]
for k = 2: q − 1,[

0, ϵ|ai|T e/uq

]
for k = q,

(3.20)

where e = [1, . . . , 1]T , so that |ai|T e =
∑

j∈Ji
|aij |. This modified definition essentially amounts

to drop x in the componentwise bucket construction (3.9)–(3.10). With this bucket construction,
we can bound the ratios αik (3.8)

αik ≤
pikϵ

uk

|ai|T e
|ai|T |x|

∥x∥, (3.21)

whereas with the normwise bucket construction (3.16)–(3.17), the best bound on αik we can get
is

αik ≤
pikϵ

uk

∥A∥
|ai|T |x|

∥x∥. (3.22)

Clearly, the right-hand side of (3.22) can be larger than that of (3.21), especially for badly scaled
matrices with rows such that ∥ai∥ ≪ ∥A∥. Therefore, we can expect that at least in some
cases, construction (3.19)–(3.20) can lead to much smaller εcw than construction (3.16)–(3.17).
It is important to note that, unfortunately, construction (3.19)–(3.20) cannot always guarantee
a small εcw, since the ratio |ai|T e/|ai|T |x| can be arbitrarily large for an unlucky choice of vector x.

4. Adaptive precision SpMV: numerical experiments. We now evaluate the perfor-
mance of our adaptive precision matrix–vector product, Algorithm 3.1, by applying it to a range
of real-life large sparse matrices.

6

4.1. Implementation. We have developed a Fortran code that implements Algorithm 3.1
and made it publicly available1. Our code uses up to seven different precisions: the IEEE binary64
and binary32 formats (hereinafter denoted as fp64 and fp32), the bfloat16 format, and four custom
formats using 56, 48, 40, and 24 bits, which we will refer to as “fpx”, with x the number of bits.
The fp56, fp48, and fp40 formats use 11 bits for the exponent and thus have unit roundoffs
2−45, 2−37, and 2−29, whereas the fp24 format uses 8 bits for the exponent, which corresponds
to a unit roundoff 2−16. This choice of formats aims at spanning as uniformly as possible the
range of precisions used. In principle, we could have used many more precision formats by
adapting the precision bit by bit, but focusing on formats that use multiples of 8 bits simplifies
the implementation of the cast operations. We also do not experiment with formats using a
reduced number of bits for the exponent, such as IEEE binary16. In addition to these seven
precision formats, we also drop the matrix elements that are sufficiently small, as explained in
Remark 3.2. The list of precision formats is summarized in Table 4.1.

Table 4.1: List of precision formats used in our experiments.

Numbers of bits Range Unit roundoff
Sign Exponent Significand

bfloat16 1 8 7 10±38 2−8 ≈ 4× 10−3

fp24 1 8 15 10±38 2−16 ≈ 2× 10−5

fp32 1 8 23 10±38 2−24 ≈ 6× 10−8

fp40 1 11 28 10±308 2−29 ≈ 2× 10−9

fp48 1 11 36 10±308 2−37 ≈ 7× 10−12

fp56 1 11 44 10±308 2−45 ≈ 3× 10−14

fp64 1 11 52 10±308 2−53 ≈ 1× 10−16

For the cast from fp64 to fp32 we use the Fortran REAL function, whereas for casting to the
other custom formats (including bfloat16, which our hardware does not support), we use our
own cast implementation, which uses the MVBITS subroutine of the GNU Fortran compiler. To
be specific, for each coefficient we chop the desired bits by moving the bits that are to be kept
in a variable of smaller size; for example, to cast an fp32 variable to fp24 format, we move the
leading 24-bit to a 3-byte variable. Our environment only supports floating-point operations in
fp64 or fp32. As a result, after casting the matrix elements to these custom precision formats, we
must cast them back during the computation, either to fp32 (in the case of bfloat16 and fp24)
or to fp64 (in the case of fp40, fp48, and fp56). As mentioned in Remark 3.1, performing the
computations in a higher precision than the storage format only affects the constants in the error
bounds. The “cast back” operation also relies on MVBITS: we simply move all the bits into an
fp32 or fp64 variable and add as many zeros as needed. For example, to cast an fp24 variable
back to fp32, we must add one byte of zeros.

We must mention that this cast implementation is far from optimized, and leads to a heavy
performance overhead. We aim to use it only to validate the numerical behavior of our approach,
rather than to provide acceleration with custom precision formats. However, it is important to
note that achieving performance gains from the use of custom precisions is certainly possible, by
relying on more efficient, lightweight cast implementations. For example, such implementations
are described by Mukunoki and Imamura [23], or more recently by Grützmacher et al. [14]. This
suggests that the three- and seven-precision versions could meet their potential with a more
optimized implementation. Moreover lower precision formats such as bfloat16 are increasingly
supported in hardware. The implementation of the adaptive precision SpMV on top of such an
efficient accessor is therefore one of the main research perspectives of this work.

Our SpMV implementation uses the CSR format for all matrices and is multithreaded by
parallelizing the loop on the row indices with OpenMP. We recall that the CSR format consists

1https://gitlab.com/romeomolina/adaptive-spmv

7

https://gitlab.com/romeomolina/adaptive-spmv

of a row index array of size n + 1, a column index array of size nnz , and a value array of size
nnz . As a result, in the uniform precision case, the total storage for the matrix is equal to

(nnz + n+ 1)sint + nnzsfp, (4.1)

where sint is the size of the integer type and sfp is the size of the floating-point type. For all our
matrices, 4-byte integers suffice. For the adaptive precision SpMV, we use a different CSR matrix
for each precision. Since each nonzero element belongs to a unique CSR matrix, the column index
and value arrays of size nnz are splitted among the different CSR matrices, and so do not require
any extra storage. However, the row index array of size n+1 must be duplicated. This represents
a storage increase of approximately qnsint, where q is the number of precisions. In most cases this
increase is compensated by the storage reduction of the floating-point values, but for matrices
with low potential for low precisions and a small number of nonzeros per row (small nnz/n ratio),
this may lead to a noticeable overhead cost. In our experiments we take into account the cost of
reading the indices in addition to the one of reading the floating-point values when measuring the
storage cost of the SpMV. In particular, the index access cost explains why the use of dropping
may have a huge impact on the performance: storing an element in any precision does not change
the need to store its column index, whereas dropping it allows for dropping its index too. We
will further analyze this effect in section 4.4.

4.2. Experimental setting. All the experiments were performed on one node of the Olympe
supercomputer, which is equipped with two 18-core Intel Skylake 6140 processors (for a total of
36 cores). We use 18 threads thoughout the experiments, as this seems to be the optimal setting
as we will observe in section 4.5. For the time measurements, we perform one hundred products
and report the average timings. We do not include the time for reading the matrix from a file
and putting it into CSR format. We also do not include the time for preprocessing the matrix
into its adaptive precision representation (that is, for computing the bucket partitioning and
creating the corresponding data structures). This preprocessing requires at most two passes over
the nonzero elements of the matrix: one to compute the intervals Pik (which is optional for the
normwise criteria if ∥A∥ is already known or can be cheaply estimated) and another to place the
nonzeros into the corresponding bucket (CSR matrix). Therefore the cost of the preprocessing
is negligible as long as we require several SpMVs (say, at least a dozen) with the same matrix,
which is typically the case in iterative solvers.

Most of the matrices used in these experiments come from the SuiteSparse collection [11].
The others come from our industrial partners (see Table 4.2) and are described below. The
thmgaz matrix corresponds to a coupled thermal, hydrological, and mechanical problem. The
series of matrices Aghora DGO{2,3,4} arise from the resolution of adjoint RANS equations in the
context of high-fidelity simulations of turbulent compressible flows in aerodynamics. The spatial
discretization of these equations relies on a high-order discontinuous Galerkin (DG) method with
third, fourth, and fifth order accurate schemes. The test case corresponds to a subsonic laminar
flow over a NACA0012 airfoil. Jacobian matrices have been built with the ONERA Aghora DG
solver [26] and are real, nonsymmetric, not positive definite, with a blockwise structure and a
symmetric pattern.

Clearly, by its very design, the potential of the adaptive precision algorithm completely
depends on the matrix values: there must be sufficient variations in their magnitudes. For
example, SuiteSparse has several binary matrices (with only zeros and ones) that present no
potential at all. In our experiments, we have selected a range of matrices that present at least
some potential, listed in Table 4.2. As for the vector x, we set it to e = [1, . . . , 1]T throughout
the experiments. We emphasize that our adaptive precision SpMV is guaranteed to deliver
the requested accuracy ϵ, and so must “work” for any matrix. The worst possible behavior is
obtained for a matrix that presents no potential for mixed precision, which will lead the adaptive
precision algorithm to use the highest precision for all elements, becoming equivalent to the
uniform precision algorithm.

4.3. Main results. We begin in Figure 4.1 by evaluating the accuracy of our adaptive
precision algorithm to confirm that we are able to control the backward error, which, according

8

Table 4.2: List of matrices used in our experiments.

Number Matrix n nnz

0 Transport 1.6e+ 06 2.4e+ 07
1 Serena 1.4e+ 06 3.3e+ 07
2 A DGO3.mtx 1.5e+ 05 1.8e+ 07
3 vas stokes 4M 4.4e+ 06 1.3e+ 08
4 A DGO4.mtx 2.6e+ 05 5.1e+ 07
5 Emilia 923 9.2e+ 05 2.1e+ 07
6 A DGO5.mtx 3.8e+ 05 1.1e+ 08
7 Hook 1498 1.5e+ 06 3.1e+ 07
8 ML Geer 1.5e+ 06 1.1e+ 08
9 ML Laplace 3.8e+ 05 2.8e+ 07
10 vas stokes 1M 1.1e+ 06 3.5e+ 07
11 stokes 1.1e+ 07 3.5e+ 08
12 Geo 1438 1.4e+ 06 3.2e+ 07
13 ss 1.7e+ 06 3.5e+ 07
14 vas stokes 2M 2.1e+ 06 6.5e+ 07
15 Fault 639 6.4e+ 05 1.5e+ 07
16 Queen 4147 4.1e+ 06 1.7e+ 08
17 PFlow 742 7.4e+ 05 1.9e+ 07
18 Flan 1565 1.6e+ 06 5.9e+ 07
19 Cube Coup dt0 2.2e+ 06 6.5e+ 07
20 Long Coup dt6 1.5e+ 06 4.4e+ 07
21 CoupCons3D 4.2e+ 05 2.2e+ 07
22 Long Coup dt0 1.5e+ 06 4.4e+ 07
23 StocF-1465 1.5e+ 06 1.1e+ 07
24 nv2 1.5e+ 06 5.3e+ 07
25 power9 1.6e+ 05 2.5e+ 06
26 test1 3.9e+ 05 1.3e+ 07
27 imagesensor 1.2e+ 05 1.9e+ 06
28 mosfet2 4.7e+ 04 1.5e+ 06
29 dgreen 1.2e+ 06 3.8e+ 07
30 radiation 2.2e+ 05 7.6e+ 06
31 nv1 7.5e+ 04 2.4e+ 06

to Theorem 3.1, should remain of order ϵ. We check this both for the normwise and componentwise
backward errors by plotting, in Figure 4.1a, the normwise backward error for the algorithm with
the normwise bucket criteria (3.16)–(3.17), and, in Figure 4.1b, the componentwise backward
error for the algorithm with the componentwise bucket criteria (3.9)–(3.10). We use three different
target accuracies, that is, two values of ϵ, 2−53 and 2−24, which correspond to the unit roundoffs
of fp64 and fp32 respectively and an additional intermediate accuracy ϵ = 2−37, and compare
its backward error to the one obtained by the uniform precision algorithm in the corresponding
precision (ϵ = 2−24, ϵ = 2−37, ϵ = 2−53). Moreover, we also investigate how the backward error
is affected if, instead of using all 7 precision formats, we only use 2 (fp64 and fp32) or 3 (fp64,
fp32, and bfloat16). As expected, the measured errors remain close to the target accuracy, for all
targets ϵ, and for any configuration of precision formats. Using more precision formats slightly
increases the error, which is explained by the analysis, since the constant c in (3.12) increases
with q.

Next, we evaluate the performance gains achieved by the adaptive precision algorithm. We
first measure the storage gains, that is, the number of bytes necessary to store the matrix in
adaptive precision. The storage cost is a relevant metric because it drives the data movement

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Matrices

10−20

10−17

10−14

10−11

10−8

10−5

B
ac

kw
ar

d
er

ro
r

Unif.

Adapt. 2 prec.

Adapt. 3 prec.

Adapt. 7 prec.

ε = 2−24

ε = 2−37

ε = 2−53

(a) Normwise backward error (2.4) (the adaptive precision algorithm uses the normwise bucket criteria (3.16)–(3.17)).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Matrices

10−15

10−13

10−11

10−9

10−7

10−5

B
ac

kw
ar

d
er

ro
r

Unif.

Adapt. 2 prec.

Adapt. 3 prec.

Adapt. 7 prec.

ε = 2−24

ε = 2−37

ε = 2−53

(b) Componentwise backward error (2.3) (the adaptive precision algorithm uses the componentwise bucket criteria (3.9)–(3.10)).

Fig. 4.1: Backward error for the adaptive precision Algorithm 3.1 with different target accuracies
ϵ and different number of precisions used, compared with the uniform precision Algorithm 2.1 in
the corresponding precision (ϵ = 2−24, ϵ = 2−37, ϵ = 2−53).

costs of the SpMV, which is a memory-bound algorithm.
Figure 4.2 plots the storage cost of the adaptive precision algorithm as a percentage of

the uniform precision fp64 algorithm. As for Figure 4.1, several configurations of the adaptive
precision algorithm are tested, depending on the accuracy target (ϵ = 2−24, ϵ = 2−37, ϵ = 2−53),
the number of precisions used (2, 3, or 7, with dropping being used in all cases), and on whether
the buckets are built with the componentwise criteria (3.9)–(3.10) or the normwise one (3.16)–
(3.17). Clearly, the more precision formats are used, the larger are the gains, since we can better
adapt the choice of precisions to each element. In some cases, the use of more than two precisions
appears to be critical: for example, the storage cost for matrices 14 or 20 with an fp32 accuracy
target (Figure 4.2c) is nearly divided by two when adding bfloat16 (3 precisions instead of 2).
Moreover, as expected, the storage gains are always larger with the normwise criteria (blue bars),
which offers more room to the use of lower precisions than the componentwise one (green bars).
Finally, it is also worth noting that the relative storage gains also become larger as the accuracy
target is lowered, even when compared with the uniform precision algorithm in the corresponding
precision. That is, while lowering the accuracy target from fp64 (Figure 4.2a) to fp32 (Figure 4.2c)
reduces the storage cost of the uniform precision algorithm by a factor two, it can reduce the
cost of the adaptive precision algorithm by a much larger factor. This is for example the case for
matrix 16, for which the adaptive precision algorithm (with 7 precisions and a normwise criteria)
achieves a cost of about 60% of the uniform fp64 cost for an fp64 target, to be compared with

10

only about 5% of the uniform fp64 cost (and hence 10% of the uniform fp32 cost) for an fp32
target.

In any case, the storage gains are overall significant in all configurations and for several
matrices, with reductions of up to a factor 36× in the best case.

Finally, we measure the execution time of the algorithms. Since SpMV is memory bound,
in principle we can hope the time gains to roughly follow the storage gains, even though the
execution time depends on several other factors such as the overhead cost of the cast operations
and the latency costs. In our experiments, we have found the time cost of the adaptive precision
SpMV to roughly match its storage cost in the case where we only use precision formats that are
natively supported in our environment, that is, the fp64 and fp32 formats (which corresponds to
the two-precision version plus dropping). Unfortunately, as mentioned in section 4.1, our cast
implementation is not optimized and is only designed to validate the numerical behavior of the
adaptive precision algorithm. As a result, we have found the use of other custom precision formats
to lead to slowdowns due to a heavy performance penalty associated with our cast implementation,
and restrict our time performance analysis to the two-precision version plus dropping.

Figure 4.3 reports the execution time of the adaptive precision SpMV for ϵ = 2−24 and
ϵ = 2−53 target accuracies, as a percentage of the execution time of the uniform precision SpMV
in the corresponding precision (fp64 or fp32). The time cost of the algorithm follows a trend
similar to the storage cost, with the gains being in general smaller but still significant, with
speedups of up to 7× in the best case.

Interestingly, for some matrices, the time reduction is larger than the storage one, and this
effect is not explained by measurement noise and can be consistently reproduced across several
runs. A possible explanation is that the smaller storage cost of the matrix reduces the number
of cache misses and hence benefits from the doubled effect of a lower volume of data movement
and higher bandwidth.

Finally, we also report the execution time in the case of an ϵ = 2−37 accuracy target in
Figure 4.4. The figure also plots the time for the ϵ = 2−24 and ϵ = 2−53 targets (already
presented in Figure 4.3) as a point of comparison. Figure 4.4 illustrates a valuable feature of
our adaptive precision algorithm: it is able to achieve a flexible level of accuracy that does
not necessarily correspond to any natively supported precision format, while only using such
supported formats (here fp64 and fp32). This is because the accuracy of the adaptive precision
algorithm is determined by ϵ, rather than directly by the unit roundoffs of the precision formats
that are used.

4.4. Effect of dropping. The performance gains achieved by the adaptive precision SpMV
are obtained thanks to the use of lower precisions but also the use of dropping. As noted in
Remark 3.2, our error analysis fully accounts for the use of dropping, which effectively behaves
as a precision format with unit roundoff uq = 1. Nevertheless, the effect of dropping on the
performance of the SpMV is quite different from the effect of lower precisions. This is because
dropping increases the sparsity of the matrix and therefore allows for reducing the storage for
indices too. For example, for 4-byte indices, using the two precision formats fp64 and fp32 but
not dropping, the adaptive precision storage can be no less than 66% of the uniform precision
one, since we must still store about 8nnz bytes (4nnz for the indices, and 4nnz for the values,
in the best case where all can be switched to fp32). In contrast, dropping the elements allows
for dropping the associated indices, and therefore much larger gains can be obtained. The goal
of this section is to analyze this effect more precisely by evaluating the impact of both dropping
and low precisions separately.

We plot in Figures 4.5a, 4.5b and 4.5c the accuracy, storage, and time, respectively, of four
SpMV variants: uniform fp64 (“Unif. fp64”), adaptive with two precisions (fp64 and fp32) but
no dropping (“Adapt. dropless”), adaptive with only one precision (fp64) and dropping (“Adapt.
drop only”), and adaptive with two precisions and dropping at the same time (“Adapt.”). All
three adaptive variants use an accuracy target ϵ = 2−53.

Figure 4.5a shows that both approximation tools used by the adaptive method (dropping and
precision reduction) each slightly increase the error, but all variants remain of the order of the
requested accuracy ϵ. As expected, Figures 4.5b and 4.5c show that the adaptive SpMV benefits

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
0

20

40

60

80

100

S
to

ra
ge

co
st

w
rt

un
if

or
m

fp
64

(%
) Unif. fp64

Adapt. NW 2 prec.

Adapt. NW 3 prec.

Adapt. NW 7 prec.

Adapt. CW 2 prec.

Adapt. CW 3 prec.

Adapt. CW 7 prec.

(a) accuracy target ϵ = 2−53

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
0

20

40

60

80

100

S
to

ra
ge

co
st

w
rt

un
if

or
m

fp
64

(%
) Unif. fp64

Unif. fp32

Adapt. NW 2 prec.

Adapt. NW 3 prec.

Adapt. NW 7 prec.

Adapt. CW 2 prec.

Adapt. CW 3 prec.

Adapt. CW 7 prec.

(b) accuracy target ϵ = 2−37

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
0

10

20

30

40

50

60

70

S
to

ra
ge

co
st

w
rt

un
if

or
m

fp
64

(%
) Unif. fp32

Adapt. NW 2 prec.

Adapt. NW 3 prec.

Adapt. NW 7 prec.

Adapt. CW 2 prec.

Adapt. CW 3 prec.

Adapt. CW 7 prec.

(c) accuracy target ϵ = 2−24

Fig. 4.2: Storage cost of the adaptive precision SpMV, as a percentage of the storage cost of the
uniform precision fp64 SpMV, for three different accuracy targets. For each plot, we report the
storage gains depending on which of the componentwise (“CW”) or normwise (“NW”) criteria is
considered and on how many precision formats are used.

both from the use of multiple precisions and of dropping, separately or combined. In some cases,
dropping has a massive impact and is the main contributor to the performance gains, but in other
cases, dropping has almost no effect and it is the use of multiple precisions that is responsible

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
0

20

40

60

80

100

T
im

e
w

rt
un

if
.

fp
64

(%
) Unif. fp64

Adapt. NW 2 prec.

Adapt. CW 2 prec.

(a) accuracy target ϵ = 2−53

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
0

20

40

60

80

100

T
im

e
w

rt
un

if
.

fp
32

(%
) Unif. fp32

Adapt. NW 2 prec.

Adapt. CW 2 prec.

(b) accuracy target ϵ = 2−24

Fig. 4.3: Execution time of the adaptive precision SpMV for ϵ = 2−24 and ϵ = 2−53 target accu-
racies, as a percentage of the execution time of the uniform precision SpMV in the corresponding
precision. Both the normwise (“NW”) and componentwise (“CW”) criteria are reported.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
0

20

40

60

80

100

T
im

e
w

rt
un

if
.

fp
64

(%
) Unif. fp64

Unif. fp32

Adapt. NW 2 prec.

Adapt. CW 2 prec.

Fig. 4.4: Execution time of the adaptive precision SpMV for an ϵ = 2−37 target accuracy, as a
percentage of the execution time of the uniform precision fp64 SpMV. Both the normwise (“NW”)
or componentwise (“CW”) criteria are reported.

13

for most of the gains. All in all, this confirms the relevance of using an adaptive SpMV that
combines both techniques.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices

10−21

10−20

10−19

10−18

10−17

10−16

10−15
B

ac
kw

ar
d

er
ro

r
Unif.

Adapt. dropless

Adapt. drop only

Adapt.

(a) Backward error.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
0

20

40

60

80

100

S
to

ra
ge

co
st

w
rt

un
if

.
fp

64
(%

) Unif. fp64

Adapt. dropless

Adapt. drop only

Adapt.

(b) Storage cost.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
0

20
40
60
80

100
120
140
160

T
im

e
w

rt
un

if
.

fp
64

(%
) Unif. fp64

Adapt. dropless

Adapt. drop only

Adapt.

(c) Time cost.

Fig. 4.5: Backward error, storage cost, and time cost of four SpMV variants: fp64 uniform preci-
sion (“Unif. fp64”), adaptive precision with two precisions but no dropping (“Adapt. dropless”),
adaptive precision with only one precision and dropping (“Adapt. drop only”), and adaptive
precision with both two precisions and dropping (“Adapt.”). All three adaptive variants use
ϵ = 2−53 as target accuracy.

14

4.5. Parallel scaling analysis. We conclude by analyzing the scalability of our SpMV
implementation. For this analysis we use matrix Cube Coup dt0, which is one of the largest in
our set; we have observed similar trends on other matrices. Figure 4.6a compares the uniform
and adaptive precision methods with a number of threads increasing from 1 to 36 (the total
number of cores on the shared-memory node). The figure shows that both methods scale well
up to 18 threads, and suffer a slowdown going from 18 to 19 threads. This is due to the NUMA
architecture of the node, which consists of two 18-core sockets. This is particularly visible on
Figure 4.6b, which plots the parallel efficiency of the methods and shows a major loss of efficiency
between 18 and 19 threads. These observations have led us to choose a number of threads equal
to 18 for all experiments, in order to maximize the data locality and performance of the methods.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Number of threads

10−2

10−1

T
im

e

Unif. fp64

Unif. fp32

Adapt. NW ε = 2−53

Adapt. NW ε = 2−24

(a) Scaling on 1 to 36 threads

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Number of threads

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
ffi

ci
en

cy

Unif. fp64

Unif. fp32

Adapt. NW ε = 2−53

Adapt. NW ε = 2−24

(b) Parallel efficiency on 1 to 36 threads

Fig. 4.6: Parallel scaling experiments on Cube Coup dt0.

5. Application to Krylov solvers. We now apply our adaptive precision SpMV (Algo-
rithm 3.1) to the solution of linear systems Ax = b by Krylov methods. Iterative solvers are
indeed a natural application for our algorithm: since the matrix A remains fixed throughout the
computation, we can partition it into adaptive precision form only once before using it through-
out the iterations in potentially many matrix–vector products, as long as we rely on either the
normwise bucket criteria (3.16)–(3.17) or the relaxed componentwise one (3.19)–(3.20).

5.1. Adaptive precision Krylov solvers. We will focus our discussion and experiments
on three choices of Krylov solvers [28]: GMRES, CG, and BiCGStab, respectively outlined in
Algorithms 5.1, 5.2, and 5.3. CG is specifically designed for symmetric positive-definite matrices.
BiCGStab is designed to handle general matrices by building two Krylov subspaces (thus requir-

15

ing two SpMVs per iteration); it incorporates a stabilization step compared with the original
BiCG algorithm. Finally, GMRES is the most robust Krylov method; it relies on the construc-
tion of an orthonormal basis for the Krylov subspace, whose size grows at each iteration. This
requires computationally expensive orthogonalization operations, whose cost can be limited by
restarting the method. In the case of CG and BiCGStab, the SpMV is usually the computational
bottleneck; for the GMRES algorithm, the orthogonalization of the Krylov basis is also expen-
sive, but nevertheless the SpMV still represents a significant fraction of the total. Therefore by
accelerating the SpMV in these Krylov methods we can expect significant speedups on the whole
solution, provided that the convergence is preserved.

Algorithm 5.1 GMRES.

Input: a matrix A ∈ Rn×n, a right-hand side b ∈ Rn, and an initial solution x0 ∈ Rn.
Output: a solution xk ∈ Rn.

1: r = b−Ax0

2: β = ∥r∥2
3: q1 = r/β
4: for k = 1, 2, . . . do
5: y = Aqk
6: for j = 1: k do
7: hjk = qTj y
8: y = y − hjkqj
9: end for

10: hk+1,k = ∥y∥2
11: qk+1 = y/hk+1,k

12: Solve the least squares problem minck ∥Hck − βe1∥2.
13: xk = x0 +Qkck
14: end for

Algorithm 5.2 CG.

Input: a matrix A ∈ Rn×n, a right-hand side b ∈ Rn, and an initial solution x0 ∈ Rn.
Output: a solution xk ∈ Rn.

1: r = b−Ax0

2: z = M−1r
3: p = z
4: k = 0
5: for k = 1, 2, . . . do

6: αk = rk
T zk

pk
TApk

7: xk+1 = xk + αkpk
8: rk+1 = rk − αkApk
9: zk+1 = M−1rk+1

10: βk = rk+1
T (zk+1−zk)
rkT zk

11: pk+1 = zk+1 + βkpk
12: end for

First, from a theoretical point of view, we can state that using an adaptive precision SpMV
within a normwise backward stable GMRES solver, such as MGS-GMRES [25], will not endanger
the normwise backward stability of the solution. Intuitively, this is not surprising since the
adaptive precision SpMV is also backward stable, as we have shown in section 3. More formally,
we can prove this by relying on the recent analysis of Amestoy et al. [3]. Indeed, [3, Thm. 3.1]
proves, under mild assumptions, that if the products y = Aq within MGS-GMRES are performed
such that the computed ŷ satisfies

ŷ = Aq + f, ∥f∥ ≤ ϵ∥A∥∥q∥, (5.1)

16

Algorithm 5.3 BiCGStab.

Input: a matrix A ∈ Rn×n, a right-hand side b ∈ Rn, and an initial solution x0 ∈ Rn.
Output: a solution xk ∈ Rn.

1: r = b−Ax0

2: rho0 = α = ω0 = 1
3: v0 = p0 = 0
4: for k = 1, 2, . . . do
5: ρi = r̂0

T ri−1

6: β = (ρi/ρi−1)(α/ωi−1)
7: pi = ri−1 + β(pi−1 − ωi−1vi−1)
8: vi = Api
9: α = ρi/(r̂0

T vi)
10: h = xi−1 + αpi
11: s = ri−1 − αvi
12: t = As
13: ωi = (tT s)/(tT t)
14: xi = h+ ωis
15: ri = s− ωit
16: end for

then the computed solution x̂ to Ax = b satisfies a backward error in O(ϵ). We can therefore
conclude from our Theorem 3.1 that setting the SpMV accuracy target to ϵ will also provide
a backward error in O(ϵ) for the solution of Ax = b. Note that this theoretical discussion is
limited to normwise stability, since GMRES is not known to be componentwise backward stable.
Moreover neither CG nor BiCGStab are backward stable. Nevertheless, we will test GMRES
with both the normwise and componentwise criteria for SpMV, because we have experimentally
observed that using a componentwise stable SpMV can in some cases improve the convergence
behavior of GMRES compared with using an only normwise stable SpMV. We will experiment
with both criteria for the CG and BICGStab algorithms too.

5.1.1. Iterative refinement. In section 4, we have shown that the speedups achieved by
the adaptive precision SpMV tend to be larger for lower accuracy targets. We now explain why,
as a result of this property, the adaptive precision SpMV is particularly attractive in the context
of iterative refinement based on Krylov solvers, such as GMRES-IR [18, sect. 8], [8, 9, 3, 21, 22].
Iterative refinement, described in Algorithm 5.4, takes the form of an inner–outer scheme, in which
the solution xi is iteratively refined (the outer loop) by solving a correction system Adi = ri
using a Krylov method (Algorithms 5.1, 5.2, or 5.3, the inner loop). Note that for GMRES,
Algorithm 5.4 is equivalent to restarted GMRES when the inner GMRES on line 3 is initialized
with d0 = 0.

Algorithm 5.4 Krylov-based iterative refinement.

Input: a matrix A ∈ Rn×n, a right-hand side b ∈ Rn, and an initial solution x0 ∈ Rn.
Output: a solution xi ∈ Rn.

1: for i = 1, 2, . . . do
2: ri = b−Axi−1

3: Solve Ãdi = ri by a Krylov method (Algorithms 5.1, 5.2, or 5.3) using SpMVs with a lower

precision matrix Ã.
4: xi = xi−1 + di
5: end for

Importantly, it is known that Algorithm 5.4 can converge to a high accuracy even when the
inner Krylov method is performed entirely in low precision [18, sect. 8], [3, 9]. In our adaptive
precision context, we can therefore leave the outer loop SpMV (line 2 of Algorithm 5.4) in high

17

(uniform) precision, and perform the inner loop SpMV of Algorithms 5.1, 5.2, and 5.3 with an

approximate matrix Ã that exploits adaptive precision with a low accuracy target ϵ. Since the
inner loop SpMV is called many more times than the outer loop one, we can expect the cost of
the overall iterative refinement solution to be determined by the cost of the low accuracy inner
loop SpMV.

In the following, we will assess experimentally the impact of using an adaptive precision
SpMV in the inner loop on the convergence and performance of the solution. We incorporate a
row scaling by solving D−1Ax = D−1b, with D a diagonal matrix whose coefficients are defined
as dii = maxj |aij |. This scaling also serves as a very simple Jacobi preconditioner; we leave the
use of more complex preconditioners for future work.

Finally, we note that using adaptive precision for the SpMV is not the only possible strategy
to exploit mixed precision in Krylov solvers; many other approaches have been proposed in
the literature. In addition to approaches belong to the iterative refinement class mentioned
above [8, 9, 3, 4], other possible e the use of low precision for the Krylov basis [2], or adaptively
decreasing the precision as the iterations go based on inexact Krylov theory [29]. We emphasize
that our adaptive precision SpMV algorithm is complementary to these strategies, and could be
combined with them.

5.2. Adaptive GMRES-IR convergence analysis. We begin by analyzing how the use
of adaptive precision SpMV affects the convergence of GMRES-IR. The goal of this section
is to compare the use of uniform and adaptive precision SpMV and to analyze the effect of
different parameters, mainly the accuracy target ϵ and the choice between componentwise (“CW”
hereinafter) or normwise (“NW”) criteria. We illustrate different aspects of the behavior of
adaptive precision GMRES-IR by using three examples, matrices ML Laplace, CoupCons3D,
and Geo 1438.

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

10−13

10−11

10−9

10−7

10−5

10−3

10−1

B
ac

kw
ar

d
E

rr
or

Unif. fp32

Unif. bfloat16 (50%)

Adapt. CW ε = 2−24 (77%)

Adapt. CW ε = 2−20 (60%)

Adapt. CW ε = 2−18 (52%)

Adapt. CW ε = 2−16 (46%)

Fig. 5.1: Convergence of GMRES-IR for matrix ML Laplace: illustration of the effect of the ϵ
parameter.

Figure 5.1 plots the convergence of GMRES-IR for matrix ML Laplace using either uniform
or adaptive precision SpMV. Our reference is the fp32 uniform precision variant, which converges
to nearly fp64 accuracy after 4000 iterations. We also test a bfloat16 uniform precision variant,
whose convergence is much slower, achieving only a residual of about 10−6 after the same number
of iterations. Finally, we test the adaptive precision SpMV variant with several values of ϵ and
with CW criteria; for this matrix, the use of NW criteria significantly degrades the convergence
(not shown). In the legend, we indicate the adaptive precision SpMV cost as a percentage of the
fp32 uniform precision one. The figure shows that ϵ has an effect on both the SpMV cost (and
therefore, the cost per iteration of GMRES-IR) and the convergence speed (and therefore, the
total number of iterations). For example, with ϵ = 2−24, we expect the adaptive precision SpMV
to be about as accurate as the fp32 uniform precision one, and indeed, the adaptive precision
GMRES-IR converges at roughly the same speed with only 77% of the SpMV cost. For ϵ = 2−16,
the SpMV cost is only 46% of the fp32 uniform precision one, but GMRES-IR converges much

18

slower. The optimal choice of ϵ lies in between these two values; for this matrix, ϵ = 2−20 for
example is a good choice.

0 200 400 600 800 1000
Iteration

10−15
10−13
10−11
10−9
10−7
10−5
10−3
10−1

B
ac

kw
ar

d
E

rr
or

Unif. fp32

Unif. bf16

Adapt. NW ε = 2−16 (1%)

Adapt. CW ε = 2−16 (46%)

Adapt. NW ε = 2−20 (17%)

Adapt. CW ε = 2−20 (56%)

Adapt. NW ε = 2−24 (36%)

Adapt. CW ε = 2−24 (68%)

Fig. 5.2: Convergence of GMRES-IR for matrix CoupCons3D: illustration of the difference be-
tween CW and NW criteria.

Figure 5.2 plots the convergence of GMRES-IR for matrix CoupCons3D. Here, the adaptive
precision variants can converge both for CW and NW criteria, and the figure illustrates the
different tradeoffs that each option offers: for a fixed value of ϵ, NW variants achieve a lower cost
but a slower convergence than CW ones. Therefore, the best choice of ϵ can be different for the
NW and CW variants. In this example, ϵ = 2−24 leads to the best NW variant, which converges
in 1040 iterations with an SpMV cost of 36% of the fp32 uniform one, whereas ϵ = 2−20 leads
to the best CW variant, which converges in 320 iterations with a corresponding SpMV cost of
56%. Here, the CW variant therefore outperforms the NW one, but the figure illustrates that
both options should be considered.

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

10−13

10−11

10−9

10−7

10−5

10−3

10−1

B
ac

kw
ar

d
E

rr
or

Unif. fp32

Unif. bfloat16 (50%)

Adapt. NW ε = 2−24 (61%)

Adapt. CW ε = 2−24 (89%)

Fig. 5.3: Convergence of GMRES-IR for matrix Geo 1438: illustration of a surprising behavior
of NW variants.

Finally, Figure 5.3 plots the convergence of GMRES-IR for matrix Geo 1438, which we use
to illustrate a surprising behavior. As the figure shows, the NW adaptive precision variant can
converge much faster than all the other variants, including the fp32 uniform precision one. Thus,
the NW variant is much more efficient for this matrix since it requires both less iterations and
a lower cost per iteration. This behavior can be consistently reproduced and occurs for several
other matrices in our set. We do not have a completely satisfactory explanation; one possibility
is that by aggressively dropping small coefficients from the matrix, the NW variant leads to a
“nicer” matrix for which GMRES can converge quickly.

19

5.3. Performance comparison for different Krylov solvers. To conclude these ex-
periments, we present execution time results in Tables 5.1 and 5.2. We compare four different
Krylov solvers: CG, BiCGstab, and GMRES with two different restart sizes (40 or 80). Table 5.1
presents results on the matrices for which GMRES and BiCGStab both converge; for some of
these matrices, CG converges too. Table 5.2 presents results on the matrices for which only
GMRES converges. For each solver, the tables report the time and the backward error after
convergence for different matrices and different SpMV variants: uniform or adaptive precision,
with either the CW or NW criteria; we have tested three accuracy targets ϵ = 2−24, 2−20, and
2−16, and report the best for each variant and matrix. We report the total time, as well as the
time spent in the SpMV calls between parentheses.

We first note that the total time of BiCGStab (which requires two SpMVs per iteration),
and to a lesser extent that of CG (which requires only one), is dominated by the SpMV time. In
contrast, the SpMV time represents a smaller, but still significant, fraction of the total time of
GMRES; unsurprisingly, this fraction is larger for a smaller restart size. It is also worth noting
that for a given matrix, the best solver is not always the same depending on the SpMV variant
that is used: in particular, the use of adaptive precision with NW criteria often prevents BiCGstab
from converging, whereas the more robust GMRES solver can converge, and can sometimes do
so faster than using the more expensive CW criteria.

Overall, this range of experiments shows that significant time reductions can be obtained
by using an adaptive precision SpMV. In some cases, the speedup with respect to the uniform
precision variant is huge because of the unexpected behavior observed in Figure 5.3, in which
the adaptive precision NW variant actually converges in much less iterations than the uniform
precision one (in addition to Geo 1438, this also happens, for example, for Emilia 923). Not
counting these special cases, we still obtain significant speedups for many of the other matrices,
especially those in Table 5.2.

Finally, we mention that the use of adaptive precision SpMV will lead to even larger speedups
when the SpMV cost relative to the total increases. This is the case when the cost of the or-
thonormalization is reduced. Various strategies have recently been proposed in this direction,
such as using low precision [2] or using faster orthonormalization algorithms, for example based
on randomized methods [7]. techniques, such as using low precision or faster orthonormalization
algorithms. Conversely, the relative cost of the SpMV may increase when part of a precondi-
tioner, for example in the case of polynomial preconditioners (which require multiple SpMVs per
iteration) or SPAI preconditioners (which require SpMVs with a matrix M that approximates
A−1).

Table 5.1: Results with GMRES-IR, BiCGStab-IR and CG-IR for various matrices and SpMV
variants.

GMRES(80) GMRES(40) BiCGstab CG

CoupCons3D

Time
Uniform 2.09 (0.71) 1.35 (0.62) 1.26 (0.88) 5.31 (2.84)
Adaptive CW 2.04 (0.71) 1.32 (0.62) 1.47 (1.04) 5.12 (2.75)
Adaptive NW 4.86 (1.74) 1.86 (0.89) 4.13 (2.96) 5.12 (2.75)

Error
Uniform 3e-15 4e-13 6e-13 1e-12
Adaptive CW 4e-15 3e-13 3e-14 1e-12
Adaptive NW 3e-13 4e-13 3e-13 2e-12

Geo 1438

Time
Uniform 38.76 (11.69) 29.11 (11.82) 38.52 (24.04) —
Adaptive CW 38.24 (11.49) 28.54 (11.68) 38.12 (23.71) —
Adaptive NW 5.02 (1.38) 1.97 (0.70) — —

Error
Uniform 4e-10 5e-08 9e-07 —
Adaptive CW 4e-10 3e-08 4e-05 —
Adaptive NW 7e-14 3e-13 — —

ML Laplace

Time
Uniform 11.97 (5.04) 9.36 (5.11) 13.66 (10.23) —

20

Adaptive CW 10.63 (3.69) 7.96 (3.75) 10.79 (7.39) —
Adaptive NW 10.51 (3.59) 7.90 (3.68) — —

Error
Uniform 6e-10 2e-08 7e-08 —
Adaptive CW 4e-09 3e-08 6e-03 —
Adaptive NW 9e-04 3e-02 — —

Serena

Time
Uniform 32.25 (10.72) 29.03 (12.94) 39.77 (26.23) 26.70 (13.34)
Adaptive CW 29.66 (9.80) 29.15 (12.91) 39.74 (25.97) 26.67 (13.29)
Adaptive NW 8.11 (2.56) 23.17 (10.84) — —

Error
Uniform 1e-13 5e-12 2e-12 2e-05
Adaptive CW 4e-13 7e-12 2e-12 8e-04
Adaptive NW 4e-14 9e-08 — —

ss1

Time
Uniform 0.04 (0.00) 0.03 (0.00) 0.24 (0.18) 0.10 (0.01)
Adaptive CW 0.03 (0.00) 0.03 (0.00) 0.22 (0.15) 0.16 (0.02)
Adaptive NW 0.03 (0.00) 0.03 (0.01) 0.23 (0.17) 0.17 (0.04)

Error
Uniform 6e-13 6e-13 3e-16 7e-09
Adaptive CW 6e-13 6e-13 3e-15 2e-12
Adaptive NW 2e-13 6e-13 3e-14 2e-11

Table 5.2: Results with GMRES-IR for various matrices and SpMV variants.

GMRES(80) GMRES(40) GMRES(80) GMRES(40)
Time (s) Backward error

Cube Coup dt0
Uniform 65.69 (23.43) 49.75 (23.59) 4e-10 5e-10
Adaptive CW 59.78 (17.64) 44.74 (18.15) 7e-09 8e-09
Adaptive NW 56.28 (14.03) 41.10 (14.15) 4e-09 4e-09

Emilia 923
Uniform 24.74 (7.53) 18.50 (7.68) 7e-07 8e-07
Adaptive CW 24.64 (7.69) 18.44 (7.79) 7e-07 8e-07
Adaptive NW 8.24 (1.90) 3.03 (0.99) 4e-13 5e-13

Fault 639
Uniform 17.38 (5.40) 12.85 (5.46) 3e-07 4e-07
Adaptive CW 17.25 (5.24) 12.55 (5.27) 5e-07 5e-07
Adaptive NW 13.99 (2.24) 9.65 (2.30) 2e-06 1e-06

Flan 1565
Uniform 52.34 (22.64) 41.74 (23.02) 5e-07 6e-07
Adaptive CW 47.91 (18.12) 37.25 (18.46) 7e-07 6e-07
Adaptive NW 48.02 (18.11) 37.07 (18.15) 6e-07 1e-06

Hook 1498
Uniform 40.38 (11.96) 29.98 (12.15) 1e-06 2e-06
Adaptive CW 39.96 (11.61) 29.84 (11.78) 2e-06 2e-06
Adaptive NW 40.40 (11.85) 29.84 (11.99) 2e-06 2e-06

Long Coup dt0
Uniform 44.21 (16.27) 33.62 (16.52) 5e-12 5e-12
Adaptive CW 39.27 (11.81) 29.50 (12.02) 2e-11 8e-12
Adaptive NW 29.66 (1.53) 19.39 (1.86) 8e-12 2e-11

Long Coup dt6
Uniform 44.06 (16.21) 34.07 (16.48) 8e-11 3e-10
Adaptive CW 40.15 (12.31) 30.45 (12.71) 2e-10 3e-09
Adaptive NW 29.82 (1.60) 22.91 (5.43) 4e-09 5e-12

ML Geer
Uniform 48.97 (20.11) 38.72 (20.46) 2e-07 9e-07
Adaptive CW 45.24 (16.75) 35.23 (17.05) 5e-07 1e-06
Adaptive NW 44.71 (15.99) 34.46 (16.20) 9e-04 1e-03

PFlow 742
Uniform 20.93 (7.20) 15.83 (7.43) 2e-10 2e-10

21

Adaptive CW 19.38 (5.64) 14.21 (5.76) 3e-10 2e-10
Adaptive NW 15.68 (1.75) 10.27 (1.85) 5e-05 7e-05

Queen 4147
Uniform 164.19 (63.27) 126.04 (64.33) 3e-07 8e-07
Adaptive CW 159.58 (62.23) 124.42 (63.28) 7e-07 8e-07
Adaptive NW 110.97 (11.46) 72.69 (12.24) 1e-05 1e-05

StocF-1465
Uniform 31.71 (4.74) 21.88 (4.82) 8e-09 8e-09
Adaptive CW 30.39 (3.50) 20.60 (3.57) 8e-09 9e-09
Adaptive NW 28.55 (0.72) 18.06 (0.83) 2e-08 5e-09

Transport
Uniform 35.49 (4.99) 23.92 (4.97) 2e-07 1e-05
Adaptive CW 33.12 (2.98) 22.03 (3.11) 1e-06 2e-06
Adaptive NW 33.64 (2.99) 22.06 (3.08) 2e-06 4e-06

dgreen
Uniform 1.78 (0.50) 0.74 (0.26) 3e-15 5e-15
Adaptive CW 1.47 (0.19) 0.59 (0.11) 5e-16 1e-15
Adaptive NW 1.42 (0.14) 0.56 (0.06) 1e-15 1e-15

imagesensor
Uniform 0.20 (0.05) 0.07 (0.03) 7e-16 5e-16
Adaptive CW 0.13 (0.01) 0.05 (0.01) 6e-16 2e-15
Adaptive NW 0.13 (0.00) 0.05 (0.00) 6e-16 7e-16

mosfet2
Uniform 0.10 (0.04) 0.04 (0.02) 8e-14 6e-14
Adaptive CW 0.05 (0.01) 0.02 (0.01) 4e-13 1e-13
Adaptive NW 0.05 (0.01) 0.02 (0.01) 1e-13 3e-14

nv1
Uniform 0.15 (0.06) 0.06 (0.03) 1e-18 4e-18
Adaptive CW 0.10 (0.01) 0.02 (0.01) 1e-18 2e-18
Adaptive NW 0.09 (0.01) 0.02 (0.00) 1e-18 1e-17

nv2
Uniform 2.74 (1.17) 1.20 (0.60) 5e-17 7e-17
Adaptive CW 1.81 (0.25) 0.73 (0.14) 4e-17 5e-17
Adaptive NW 1.70 (0.10) 0.68 (0.06) 6e-17 2e-17

power9
Uniform 0.21 (0.04) 0.07 (0.01) 5e-19 6e-19
Adaptive CW 0.17 (0.01) 0.06 (0.01) 3e-19 9e-20
Adaptive NW 0.17 (0.01) 0.06 (0.00) 9e-20 6e-19

radiation
Uniform 0.40 (0.15) 0.16 (0.08) 2e-13 2e-13
Adaptive CW 0.27 (0.03) 0.11 (0.02) 1e-13 6e-13
Adaptive NW 0.27 (0.02) 0.10 (0.02) 1e-13 2e-13

ss
Uniform 42.98 (11.52) 31.58 (11.65) 2e-10 2e-03
Adaptive CW 40.84 (9.44) 29.42 (9.62) 2e-10 2e-03
Adaptive NW 41.35 (9.33) 29.29 (9.39) 9e-11 2e-03

stokes
Uniform 569.80 (169.68) 435.12 (172.14) 2e-05 3e-05
Adaptive CW 536.18 (133.60) 399.76 (136.11) 3e-05 4e-05
Adaptive NW 527.09 (122.99) 390.46 (126.10) 3e-05 3e-05

test1
Uniform 0.58 (0.15) 0.23 (0.07) 1e-14 1e-14
Adaptive CW 0.47 (0.05) 0.18 (0.03) 3e-14 8e-14
Adaptive NW 0.47 (0.05) 0.18 (0.03) 9e-15 7e-14

vas stokes 1M
Uniform 36.02 (16.08) 29.03 (16.36) 5e-04 6e-04
Adaptive CW 33.86 (13.96) 26.74 (14.13) 5e-04 6e-04
Adaptive NW 33.34 (13.62) 26.32 (13.83) 6e-04 5e-04

vas stokes 2M
Uniform 70.88 (28.22) 55.27 (28.64) 1e-04 9e-05
Adaptive CW 63.33 (21.67) 48.64 (22.14) 1e-04 9e-05
Adaptive NW 61.75 (20.48) 46.93 (20.64) 9e-05 9e-05

22

vas stokes 4M
Uniform 159.89 (51.20) 118.03 (51.91) 9e-05 9e-05
Adaptive CW 152.22 (44.27) 111.38 (45.08) 9e-05 9e-05
Adaptive NW 151.02 (41.94) 108.61 (42.49) 8e-05 9e-05

Aghora DGO3
Uniform 6.64 (3.72) 5.56 (3.76) 2e-03 2e-03
Adaptive CW 6.43 (3.58) 5.34 (3.63) 3e-03 2e-03
Adaptive NW 5.81 (3.14) 4.76 (3.15) 2e-03 2e-03

Aghora DGO4
Uniform 15.39 (10.30) 13.40 (10.46) 1e-03 7e-04
Adaptive CW 14.13 (9.30) 12.33 (9.45) 1e-03 7e-04
Adaptive NW 12.95 (8.35) 11.26 (8.46) 1e-03 6e-04

Aghora DGO5
Uniform 30.61 (23.27) 28.12 (23.58) 3e-03 2e-03
Adaptive CW 27.46 (20.06) 24.89 (20.41) 3e-03 2e-03
Adaptive NW 18.29 (11.08) 22.09 (17.68) 1e-04 2e-03

6. Conclusions. We have presented a mixed precision algorithm to compute SpMVs and we
have used it to accelerate the solution of sparse linear systems by iterative methods. Our algorithm
is based on the idea of adapting the precision of each matrix element according to its magnitude:
the elements are split into buckets that are summed in progressively lower precisions as their
magnitudes decrease. We carried out a rounding error analysis of this algorithm, summarized
in Theorem 3.1, which provides us with an explicit rule to build the buckets and to control its
accuracy via a user-prescribed parameter ϵ.

Our experiments on a wide range of sparse matrices from real-life applications have demon-
strated the significant potential of the method. The adaptive precision algorithm achieves storage
reductions of up to a factor 36× compared with the uniform precision algorithm, and these reduc-
tions translate to large time speedups on a multicore computer, up to a factor 7×; these gains are
achieved while maintaining an accuracy comparable to that of the uniform precision algorithm.
We have then investigated the use of our adaptive precision SpMV within Krylov solvers for the
solution of sparse linear systems. We have shown that the convergence speed of the solvers is
essentially unaffected by the use of adaptive precision SpMV with conservative choices for the
value of ϵ, such as ϵ = 2−24, which yields an equivalent accuracy to using a uniform fp32 pre-
cision SpMV. Moreover, we have shown that using larger values of ϵ may often be beneficial by
reducing the SpMV cost at the expense of a possibly slower convergence. Since ϵ does not need to
correspond to the unit roundoff of a floating-point arithmetic, our adaptive precision solver is not
constrained by the available precisions on the hardware and can achieve a flexible compromise
between cost per iteration and total number of iterations.

While we have focused here on Krylov solvers with a simple diagonal preconditioner, our
adaptive precision framework is general and we expect it to be usable in other contexts. For
example, we expect it to behave similarly with other iterative methods such as flexible GMRES.
In future work we wish to extend the adaptive precision framework to cover other crucial steps
of the solver, such as the construction of the Krylov basis or the preconditioner.

Acknowledgements. We thank our industrial partners for providing some of the test ma-
trices used in this paper. This work was partially supported by the InterFLOP (ANR-20-CE46-
0009) project and the NuSCAP (ANR-20-CE48-0014) projects of the French National Agency for
Research (ANR) and the interdisciplinary CNRS project CASSIDI.

REFERENCES

[1] K. Ahmad, H. Sundar, and M. Hall, Data-driven mixed precision sparse matrix vector multiplication for
GPUs, ACM Trans. Archit. Code Optim., 16 (2019), https://doi.org/10.1145/3371275, https://doi.org/
10.1145/3371275.

[2] J. I. Aliaga, H. Anzt, T. Grützmacher, E. S. Quintana-Ort́ı, and A. E. Tomás, Compressed basis
gmres on high-performance graphics processing units, Int. J. High Perform. Comput. Appl., (2022),
p. 10943420221115140.

[3] P. Amestoy, A. Buttari, N. J. Higham, J.-Y. L’Excellent, T. Mary, and B. Vieublé, Five-precision
GMRES-based iterative refinement, MIMS EPrint 2021.5, Manchester Institute for Mathematical Sci-

23

https://doi.org/10.1145/3371275
https://doi.org/10.1145/3371275
https://doi.org/10.1145/3371275

ences, The University of Manchester, UK, Apr. 2021, http://eprints.maths.manchester.ac.uk/2852/. Re-
vised April 2022.

[4] P. Amestoy, A. Buttari, N. J. Higham, J.-Y. L’Excellent, T. Mary, and B. Vieublé, Combining sparse
approximate factorizations with mixed precision iterative refinement, MIMS EPrint 2022.2, Manchester
Institute for Mathematical Sciences, The University of Manchester, UK, Jan. 2022, http://eprints.maths.
manchester.ac.uk/2845/.

[5] P. R. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L’Excellent, and T. Mary,
Mixed precision low rank approximations and their application to block low rank lu factorization, IMA
J. Numer. Anal., (2022), https://doi.org/10.1093/imanum/drac037.

[6] H. Anzt, J. Dongarra, G. Flegar, N. J. Higham, and E. S. Quintana-Ort́ı, Adaptive precision in block-
Jacobi preconditioning for iterative sparse linear system solvers, Concurrency Computat. Pract. Exper.,
31 (2019), p. e4460, https://doi.org/10.1002/cpe.4460.

[7] O. Balabanov and L. Grigori, Randomized gram–schmidt process with application to gmres, SIAM J. Sci.
Comput., 44 (2022), pp. A1450–A1474.

[8] E. Carson and N. J. Higham, A new analysis of iterative refinement and its application to accurate
solution of ill-conditioned sparse linear systems, SIAM J. Sci. Comput., 39 (2017), pp. A2834–A2856,
https://doi.org/10.1137/17M1122918.

[9] E. Carson and N. J. Higham, Accelerating the solution of linear systems by iterative refinement in three
precisions, SIAM J. Sci. Comput., 40 (2018), pp. A817–A847, https://doi.org/10.1137/17M1140819.

[10] M. P. Connolly, N. J. Higham, and T. Mary, Stochastic rounding and its probabilistic backward error
analysis, SIAM J. Sci. Comput., 43 (2021), pp. A566–A585, https://doi.org/10.1137/20m1334796.

[11] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans. Math. Software,
38 (2011), pp. 1:1–1:25, https://doi.org/10.1145/2049662.2049663.

[12] J. Diffenderfer, D. Osei-Kuffuor, and H. Menon, QDOT: Quantized dot product kernel for approximate
high-performance computing, ArXiv:2105.00115, Apr. 2021, https://arxiv.org/abs/2105.00115.

[13] G. Flegar, H. Anzt, T. Cojean, and E. S. Quintana-Ort́ı, Adaptive precision block-Jacobi for high
performance preconditioning in the Ginkgo linear algebra software, ACM Trans. Math. Software, 47
(2021), pp. 1–28, https://doi.org/10.1145/3441850.

[14] T. Grützmacher, H. Anzt, and E. S. Quintana-Ort́ı, Using Ginkgo’s memory accessor for improving
the accuracy of memory-bound low precision blas, Software: Practice and Experience, (2021).

[15] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, USA, second ed., 2002, https://doi.org/10.1137/1.9780898718027.

[16] N. J. Higham and T. Mary, A new preconditioner that exploits low-rank approximations to factorization
error, SIAM J. Sci. Comput., 41 (2019), pp. A59–A82, https://doi.org/10.1137/18M1182802.

[17] N. J. Higham and T. Mary, Sharper probabilistic backward error analysis for basic linear algebra ker-
nels with random data, SIAM J. Sci. Comput., 42 (2020), pp. A3427–A3446, https://doi.org/10.1137/
20M1314355.

[18] N. J. Higham and T. Mary, Mixed precision algorithms in numerical linear algebra, Acta Numerica, 31
(2022), pp. 347–414, https://doi.org/10.1017/s0962492922000022.

[19] C.-P. Jeannerod and S. M. Rump, Improved error bounds for inner products in floating-point arithmetic,
SIAM J.Matrix Anal. Appl., 34 (2013), https://doi.org/34-2/89448, http://www.siam.org/journals/
simax/34-2/89448.html.

[20] M. Lange and S. M. Rump, Error estimates for the summation of real numbers with application to floating-
point summation, BIT Numerical Mathematics, 57 (2017), pp. 927–941.

[21] N. Lindquist, P. Luszczek, and J. Dongarra, Improving the performance of the GMRES method us-
ing mixed-precision techniques, in Communications in Computer and Information Science, J. Nichols,
B. Verastegui, A. B. Maccabe, O. Hernandez, S. Parete-Koon, and T. Ahearn, eds., Springer, Cham,
Switzerland, 2020, pp. 51–66, https://doi.org/10.1007/978-3-030-63393-6 4.

[22] J. A. Loe, C. A. Glusa, I. Yamazaki, E. G. Boman, and S. Rajamanickam, Experimental evaluation of
multiprecision strategies for GMRES on GPUs, ArXiv:2105.07544, May 2021, https://arxiv.org/abs/
2105.07544.

[23] D. Mukunoki and T. Imamura, Reduced-precision floating-point formats on GPUs for high performance and
energy efficient computation, in 2016 IEEE International Conference on Cluster Computing (CLUSTER),
IEEE, 2016, pp. 144–145.

[24] W. Oettli and W. Prager, Compatibility of approximate solution of linear equations with given error
bounds for coefficients and right-hand sides, Numer. Math., 6 (1964), pp. 405–409, https://doi.org/10.
1007/BF01386090.

[25] C. C. Paige, M. Rozložńık, and Z. Strakoš, Modified Gram-Schmidt (MGS), least squares, and backward
stability of MGS-GMRES, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 264–284, https://doi.org/10.
1137/050630416.

[26] F. Renac, M. de la Llave Plata, E. Martin, J. B. Chapelier, and V. Couaillier, Aghora: A High-Order
DG Solver for Turbulent Flow Simulations, Springer International Publishing, Cham, 2015, pp. 315–335.

[27] J. Rigal and J. Gaches, On the compatibility of a given solution with the data of a linear system, Journal
of the ACM, 14 (1967), pp. 526–543.

[28] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics,
second ed., 2003, https://doi.org/10.1137/1.9780898718003.

[29] V. Simoncini and D. B. Szyld, Theory of inexact krylov subspace methods and applications to scientific
computing, SIAM J. Sci. Comput., 25 (2003), pp. 454–477.

24

http://eprints.maths.manchester.ac.uk/2852/
http://eprints.maths.manchester.ac.uk/2845/
http://eprints.maths.manchester.ac.uk/2845/
https://doi.org/10.1093/imanum/drac037
https://doi.org/10.1002/cpe.4460
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/20m1334796
https://doi.org/10.1145/2049662.2049663
https://arxiv.org/abs/2105.00115
https://doi.org/10.1145/3441850
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/18M1182802
https://doi.org/10.1137/20M1314355
https://doi.org/10.1137/20M1314355
https://doi.org/10.1017/s0962492922000022
https://doi.org/34-2/89448
http://www.siam.org/journals/simax/34-2/89448.html
http://www.siam.org/journals/simax/34-2/89448.html
https://doi.org/10.1007/978-3-030-63393-6_4
https://arxiv.org/abs/2105.07544
https://arxiv.org/abs/2105.07544
https://doi.org/10.1007/BF01386090
https://doi.org/10.1007/BF01386090
https://doi.org/10.1137/050630416
https://doi.org/10.1137/050630416
https://doi.org/10.1137/1.9780898718003

	Introduction
	Uniform precision matrix–vector product
	Adaptive precision matrix–vector product: error analysis
	A more practical componentwise bucket criteria

	Adaptive precision SpMV: numerical experiments
	Implementation
	Experimental setting
	Main results
	Effect of dropping
	Parallel scaling analysis

	Application to Krylov solvers
	Adaptive precision Krylov solvers
	Iterative refinement

	Adaptive GMRES-IR convergence analysis
	Performance comparison for different Krylov solvers

	Conclusions
	References

