Bridging the gap between flat and
hierarchical low-rank matrix formats

P. Amestoy! A. Buttari® J.-Y. LUExcellent® T. Mary?

LINP-IRIT  2CNRS-IRIT  3INRIA-LIP  %University of Manchester
Structured Matrix Days, Lyon, 14-15 May 2018




Context

Linear system Ax =b

Often a keystone in scientific computing applications
(discretization of PDEs, step of an optimization method, ...

Direct methods
Factorize A = LU and solve LUx = b

®© Numerically reliable

® Computational cost
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Context

Linear system Ax =b

Often a keystone in scientific computing applications
(discretization of PDEs, step of an optimization method, ...

Direct methods
Factorize A = LU and solve LUx = b

®© Numerically reliable

® Computational cost

Objective:
reduce the cost of direct methods ...
..while maintaining their numerical reliability
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Context

Large scale applications

e Target size is n ~ 10? for sparse = m ~ 106 for dense

e O(m?) storage complexity and O(m?) flop complexity
m ~ 10% = TeraBytes of storage and ExaFlops of computation!

= Need to reduce the asymptotic complexity

Large scale systems

e |ncreasingly large numbers of cores available

= Need to design parallel algorithms
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Context

Large scale applications

e Target size is n ~ 10? for sparse = m ~ 106 for dense

e O(m?) storage complexity and O(m?) flop complexity
m ~ 10% = TeraBytes of storage and ExaFlops of computation!

= Need to reduce the asymptotic complexity

Large scale systems

e |ncreasingly large numbers of cores available

= Need to design parallel algorithms

These two objectives are not always compatible
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Outline

1. Introduction

o The H format: very good complexity
o The BLR format: very good parallelism

2. Motivation
o Why we need a new format to bridge the gap

3. The MBLR format
o Complexity analysis
o Numerical results

4. Conclusion

P. Amestoy, A. Buttari, J.-Y. LExcellent, and T. Mary, Bridging the gap between flat and
hierarchical low-rank matrix formats: the multilevel BLR format, submitted (2018).
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Introduction




Low-rank matrices

Take a dense matrix B of size b x b and compute its SVD B = XSY:
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Low-rank matrices

Take a dense matrix B of size b x b and compute its SVD B = XSY:

S Yy

So Y,

k = min {k < n;ox41 < e} is the numerical rank at accuracy ¢
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Low-rank matrices

Take a dense matrix B of size b x b and compute its SVD B = XSY:

k = min {k < n;ox41 < e} is the numerical rank at accuracy ¢

B = X1S1Y; is a low-rank approximation to B: IIB — B||2 <e
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Low-rank matrices

Take a dense matrix B of size b x b and compute its SVD B = XSY:

k = min{k < n;oks1 < e} is the numerical rank at accuracy &
B = X1S1Y; is a low-rank approximation to B: IIB — BHQ <e

Storage savings: b%/2bk = b/2k
Similar flops savings when used in most linear algebra kernels
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Low-rank blocks

Most matrices are not low-rank in general but in some
applications they exhibit low-rank blocks

complete domain

A block B represents the interaction
between two subdomains o and 7.
Small diameter and far away = low numerical rank.
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Low-rank blocks

Most matrices are not low-rank in general but in some
applications they exhibit low-rank blocks

complete domain

A block B represents the interaction
between two subdomains o and 7.
Small diameter and far away = low numerical rank.

How to choose a good block partitioning of the matrix?
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H and BLR matrices

H-matrix

e Nearly linear complexity

e Complex, hierarchical structure
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H and BLR matrices

H-matrix BLR matrix
e Nearly linear complexity e Superlinear complexity
e Complex, hierarchical structure e Simple, flat structure
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H and BLR matrices

H-matrix BLR matrix
e Nearly linear complexity

e Superlinear complexity
e Complex, hierarchical structure

e Simple, flat structure
BLR is a comprise between complexity and performance:

o Small blocks = can fit on single shared-memory node

o No global order between blocks = flexible data distribution
o Easy to handle numerical pivoting
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H and BLR matrices

H-matrix BLR matrix
e Nearly linear complexity

e Superlinear complexity
e Complex, hierarchical structure

e Simple, flat structure
BLR is a comprise between complexity and performance:

o Small blocks = can fit on single shared-memory node

o No global order between blocks = flexible data distribution
o Easy to handle numerical pivoting

Can we find an even better comprise?
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Motivation




Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

r Storage = costi g * nby g + costrr * Nbrr
= O(br) + O((1)3) + 06"+ O(7)

= O(m2r/b + mb)
I- = 0(m>3¢/2) for b = (mr)/?
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Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

r Storage = cost p * nb g + costrr * Nbrr
getrt = O(br) * O((*2)?) + O(b%) x (D)
I- r trsm b b
gemm = O(m?r/b + mb)
I- = 0(m3/23¢2) for b = (mr)/?
FlopLU = costgesr * Nbgetrr + COStirem * NDirsm + * NDgernm
3 m 2 mya mys
=0(b*) xO(T) + 0%+ O((T)) + w0l

= O(mb? + m?r + m*r?/b?)
= O(m?r) for b = (mr)l/2
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Computing the BLR complexity

Assume all off-diagonal blocks are low-rank. Then:

r Storage = cost p * nb g + costrr * Nbrr
I— r getrf = O(br) * O((%)Q) + O(bQ) * O(%)

trsm
gemm = O(m?r/b + mb)
I- = 0(m3/23¢2) for b = (mr)/?
FlopLU = costgesr * Nbgetrr + COStirem * NDirsm + * NDgernm
= O(b%) * O(T) + O(6%r) x O((T)?) + = o % O(()")

= O(mb? + m?r + m*r?/b?)
= O(m?r) for b = (mr)l/2

Result holds if a constant number of off-diag. blocks is full-rank.

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary, On the Complexity of the Block
Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput. (2017).
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From dense to sparse: nested dissection

0.00.0..0.0.. Dl

Do

Dy

[N
o0, _00000._00
0000000000000
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From dense to sparse: nested dissection

..".....".. Dl

Do

Dy

Factorizing a sparse matrix
// \ amounts to factorizing a
sequence of dense matrices
=

sparse complexity is directly

Proceed recursively to derived from dense one
compute separator free
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Nested dissection complexity formulas

logN
J N

2D: Csparse = Z 4ZCdense( 2[ )
=0
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Nested dissection complexity formulas

logN

N
2D: Csparse - Z 4zcdense(?)
£=0
logN N2
3D: Csparse - g 8chlense(F)
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Nested dissection complexity formulas

logN

N _
2D: Coparse = Z 4£Cdense(?) — common ratio 2277
(=0
logN N2
3D: Coparse = g 8ECdense(ﬂ) — common ratio 23728

Assume Cyense = O(m?). Then:

2D 3D

Csparse(n) CSPafSe(n)
B>2 O(n?) B>15 O(n?/3)
=2 O(nlogn) | =15 0O(nlogn)
B<2 O(n) B<15 O(n)

= Key motivation: Cgense < O(m?) (2D) or O(m3/2) (3D)
is enough to get optimal sparse complexity!
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Bridging the gap between flat and hierarchical formats

Storage Flop LU
Cdense Csparse Cdense Csparse
2D 3D 2b 3D
FR | O(m?) O(nlogn) O(n*/?) O(m?®) O(n*/?) O(n?)
BLR | O(m®?) O(n) O(nlogn) | O(m?) O(nlogn) O(n*/?)
H O(mlogm) O(n) O(n) O(mlog®m) O(n) O(n)

Motivation:

e 2D flop and 3D storage complexity: can we find a simple way
to improve just a little Cyense?

e 3D flop complexity: still a large gap between BLR and H

We propose a multilevel BLR format to bridge the gap
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The MBLR format




Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:

Storage = cost g * nb.r + costg p * nbgLr
= O(br) x O((T)2) + 06"/ O( L)
= O(m?r/b + m(br)'/?)

= O(m4/3r2/3) for b = (mzr)l/3
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Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:
Storage = cost g * nb.r + costg p * nbgLr

= O(br) * o((%)z) + O(b3/2r1/2) * O(%)

= O(m?r/b + m(br)'/?)

= O(m4/3r2/3) for b = (m2r)1/3

Similarly, we can prove:
FlopLU = O(m®/3¢*/3) for b = (m?r)/3

Result holds if a constant number of off-diag. blocks is BLR.
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Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:
Storage = cost g * nb.r + costg p * nbgLr

= O(br) * O((%)z) + O(bzs/er/Q) * O(%)

= O(m?r/b + m(br)'/?)

= O(m4/3r2/3) for b = (m2r)1/3

Similarly, we can prove:
FlopLU = O(m®/3¢*/3) for b = (m?r)/3

Result holds if a constant number of off-diag. blocks is BLR.

FR BLR 2-BLR w H
storage dense O(m?)  O(m'H) O(m!33) O(mlogm)
9 sparse  O(n'33)  O(nlogn) O(n) .. O(n)
flop LU dense o(m?)  O(m?) O(m'%%) .. O(mlog®m)
P sparse  O(n?) O(nt33) o(n*tYy .. 0O(n)

14/20 Theo Mary (contact: theo.mary@manchester.ac.uk)



Multilevel BLR complexity

Main result

For b = m%/WHD /(1) the ¢—level complexities are:

Storage = O(m(é+2)/(€+1) ré/(Z-H) )

FlopLU = o(m(€+3)/(€+1),ze/(tz+1))

Proof: by induction. [

e Simple way to finely control the desired complexity

e Block size b oc O(m*/(+1)) < O(m)
= may be efficiently processed in shared-memory

e Number of blocks per row/column o< O(m'/ 1) > O(1)
= flexibility to distribute data in parallel
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Influence of the number of levels ¢

Storage Flop LU
18 26
—6-r=0(m'?) —6—r=0(m""?)
17 =7 =0(m'") 24 == =0(m'"*)
—Lr = O(m') Ly = O(m'/Y)
16 ——r=0(1) 22 ——r=0(1)

2 4 6 8 10 2 4 6 8 10
Number of levels ¢ Number of levels £

e If r=0(1), can achieve O(n) storage complexity with only two
levels and O(nlogn) flop complexity with three levels
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Influence of the number of levels ¢

Storage Flop LU

i

2 4 6 8 10
Number of levels ¢ Number of levels £

e If r=0(1), can achieve O(n) storage complexity with only two
levels and O(nlogn) flop complexity with three levels

e For higher ranks, optimal sparse complexity is not attainable
with constant £ but improvement rate is rapidly decreasing:

the first few levels achieve most of the asymptotic gain
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Numerical experiments (Poisson)

Storage Flop LU
10® 101
o¢=1 ofl=1
—fit: 12m!47 —fit: 95m!%
) vl=2 bl v =2
?;..'P —fit: 17m136 é —fit: 229m 168
3 Atl=3 = n | A =3
n ——fit: 18m!?? = 101 ——fit: 253m %
ol=4 o/l{=4
. —fit: 28m!?7 —fit: 686m!°!
107 |

1287 160% 1922 2242256

1282 160% 1922 2242562
m

m
e Experimental complexity in relatively good agreement with
theoretical one
e Asymptotic gain decreases with levels
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Conclusion




Conclusions and perspectives

A new multilevel format to...

e Finely control desired complexity between BLR's and H's
e Strike a balance between BLR's simplicity and H's complexity

e Trade off H's nearly linear dense complexity and still achieve
Csparse = O(n)

Future work: high-performance implementation

e Implementation of the MBLR format in a parallel, algebraic,
general purpose sparse solver (e.g. MUMPS)
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Thank you for
your afttention

Slides and paper available here:
personalpages.manchester.ac.uk/staff/theo.mary/
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