
SIAM LA 2021
May 20, 2021

Multiple Word Arithmetic with GPU Tensor Cores:
Theory and Practice

Theo Mary
Sorbonne Université, CNRS, LIP6

https://www-pequan.lip6.fr/~tmary/
Slides available at https://bit.ly/la21multiword

Joint work with Massimiliano Fasi (Örebro Univ.), Nicholas J.
Higham, Mantas Mikaitis, Srikara Pranesh (Univ. Manchester),

Florent Lopez (LSTC, Ansys).

1/16

https://www-pequan.lip6.fr/~tmary/
https://bit.ly/la21multiword

GPU tensor cores

Tensor cores compute D = C+ AB:

× × × ×
× × × ×
× × × ×
× × × ×︸ ︷︷ ︸

fp32

=

× × × ×
× × × ×
× × × ×
× × × ×︸ ︷︷ ︸
fp16/bf16

×

× × × ×
× × × ×
× × × ×
× × × ×︸ ︷︷ ︸
fp16/bf16

+

× × × ×
× × × ×
× × × ×
× × × ×︸ ︷︷ ︸

fp32

fp32 → fp16/bf16 speedup evolution:
P100: 2× V100: 8× A100: 16×

2/16

Matrix multiplication with tensor cores

Let A ∈ Rm×n and B ∈ Rn×p and compute C = AB.
The computed Ĉ satisfies

|Ĉ− C| ≤ nu16|A||B| in standard fp16/bf16 arithmetic

|Ĉ− C| ≤ (2u16 + nu32)|A||B| with tensor cores

|Ĉ− C| ≤ nu32|A||B| in standard fp32 arithmetic

 Blanchard, Higham, Lopez, M., Pranesh (2020) .

• Tensor cores greatly reduce the impact of error accumulation
• But error still depends on u16 because of the conversion of A
and B

⇒ Can we get rid of it to achieve an accuracy equivalent to fp32 ?

3/16

https://doi.org/10.1137/19M1289546

Multiword arithmetic

• Represent high precision number as the unevaluated sum of
lower precision numbers

• Double–double arithmetic:

x = x1︸︷︷︸
fp64

+ x2︸︷︷︸
fp64

⇒ x has up to 2× 53 = 106 significand bits ≈ 10−32 precision
• Less than fp128 (113 significand bits), but much faster,
because computations rely on fp64 arithmetic

• Need for error-free transformations makes it much slower than
fp64 ⇒ double–single arithmetic not meaningful on most
processors

4/16

Double–half and triple–half arithmetics

Signif. bits Exp. bits Range Unit roundoff u

fp32 24 8 10±38 6× 10−8

fp16 11 5 10±5 5× 10−4

bfloat16 8 8 10±38 4× 10−3

Let x ∈ R and us = 2−24

x = x1︸︷︷︸
fp16

+ x2︸︷︷︸
fp16

+ ϵ |ϵ| ≤ 4us

x = x1︸︷︷︸
bfloat16

+ x2︸︷︷︸
bfloat16

+ x3︸︷︷︸
bfloat16

+ ϵ |ϵ| ≤ us

5/16

Double–half arithmetic with tensor cores

Apply this elementwise to A ∈ Rm×n and B ∈ Rn×p:

A = A1 + A2, B = B1 + B2

and compute C = AB as

C ≈
∑
i,j

AiBj using tensor cores

GPU tensor cores provide a new perspective:
• Intermediate computations are done in fp32 ⇒ no need for
error-free transformations!

• Double–fp16 ⇒ 4× more flops (can be reduced to 3×)
• Triple–bfloat16 ⇒ 9× more flops (can be reduced to 6×)
• Tensor cores 8×–16× faster than fp32

⇒ Multiword half arithmetic potentially faster at same accuracy!
6/16

Related work

Several recent papers around this idea:
• S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng and J. S. Vetter,
NVIDIA Tensor Core Programmability, Performance & Precision,
IPDPSW 2018. Double–fp16 arithmetic for GEMM with Tensor Cores.

• A. Sorna, X. Cheng, E. D’Azevedo, K. Won and S. Tomov, Optimizing
the Fast Fourier Transform Using Mixed Precision on Tensor Core
Hardware, HiPCW 2018. Double–fp16 arithmetic for FFT with Tensor
Cores.

• G. Henry, P. T. P. Tang and A. Heinecke, Leveraging the bfloat16
Artificial Intelligence Datatype For Higher-Precision Computations,
ARITH 2019. Triple–bfloat16 arithmetic.

• D. Mukunoki, K. Ozaki, T. Ogita, T. Imamura, DGEMM Using Tensor
Cores, and Its Accurate and Reproducible Versions, ISC 2020.
Double–fp16 arithmetic with Tensor and with fp64 target.

• Several others

7/16

https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1109/HiPCW.2018.8634417
https://doi.org/10.1109/HiPCW.2018.8634417
https://doi.org/10.1109/HiPCW.2018.8634417
https://doi.org/10.1109/ARITH.2019.00019
https://doi.org/10.1109/ARITH.2019.00019
https://doi.org/10.1007/978-3-030-50743-5_12
https://doi.org/10.1007/978-3-030-50743-5_12

Block FMA framework

We use the Block FMA framework from  Blanchard et al. (2020)

• A ∈ Rb1×b, B ∈ Rb×b2 , and C ∈ Rb1×b2 ,

D︸︷︷︸
uhigh

= C︸︷︷︸
uhigh

+ A︸︷︷︸
ulow

B︸︷︷︸
ulow

• Internal computation C+ AB is done in precision uhigh

b1 b b2 ulow uhigh

Google TPU v1 256 256 256 bfloat16 fp32
Google TPU v2 128 128 128 bfloat16 fp32
NVIDIA Volta 4 4 4 fp16 fp32
NVIDIA Ampere 8 8 4 fp16 fp32
NVIDIA Ampere 8 8 4 bfloat16 fp32
NVIDIA Ampere 4 8 4 tfloat32 fp32
Intel NNP-T 32 32 32 bfloat16 fp32
Armv8-A 2 4 2 bfloat16 fp32

8/16

https://epubs.siam.org/doi/10.1137/19M1289546

General error analysis

For any x ∈ R and p > 0, let

x1 = fllow(x)

x2 = fllow(x− x1)
...

xp = fllow
(
x−

p−1∑
i=1

xi
)

We obtain

x =
p∑
i=1

xi +∆x, |∆x| ≤ uplow|x|.

Using this representation elementwise on A and B:

A =

p∑
i=1

Ai +∆A, |∆A| ≤ uplow|A|,

B =

p∑
j=1

Bj +∆B, |∆B| ≤ uplow|B|.

9/16

Then the product C = AB is given by

C =

p∑
i=1

p∑
j=1

AiBj + A∆B+∆AB−∆A∆B.

Compute the p2 products AiBj by chaining calls to the block FMA:

Ĉ = C+∆C, |∆C| ≤ (n+ p2)uhigh|A||B|.

Overall

Ĉ = AB+ E, |E| ≤
(
2uplow + u2plow + (n+ p2)uhigh

)
|A||B|.

10/16

xk = fllow
(
x−

∑k−1
i=1 xi

)
is the approximation residual from the first

k− 1 words

|Ai| ≤ ui−1
low (1 + ulow)|A|

|Bj| ≤ uj−1
low (1 + ulow)|B|

|Ai||Bj| ≤ ui+j−2
low (1 + ulow)2|A||B|

⇒ Not all p2 products AiBj need be computed! Skipping any
product AiBj such that i+ j > p+ 1 yields Ĉ = AB+ E,

|E| ≤
(
2uplow+u

2p
low+(n+p2)uhigh+

p−1∑
i=1

(p−i)up+i−1
low (1+ulow)2

)
|A||B|.

• number of products: p2 → p(p+ 1)/2

• error to order uplow: constant 2 → p+ 1

11/16

Summary of theory

uhigh ulow Error bound

2−24 (fp32)

2−11 (fp16)
p = 1 2× 2−11 + n× 2−24

p ≥ 2 n× 2−24

2−8 (bfloat16)
p = 1 2× 2−8 + n× 2−24

p = 2 3× 2−16 + n× 2−24

p ≥ 3 n× 2−24

Encompasses existing approaches and some new ones

12/16

From theory to practice

103 104 105 106

0

20

40

60

Matrix size: n

P
er
fo
rm

a
n
ce

(T
F
L
O
P
S
)

fp16

double–fp16

fp32

• Double–fp16 up to 2× faster than fp32

• Similar backward error for matrices with random [−1, 1] uniform
entries (decreasing error is expected  Higham and M. (2020))

• [0, 1] uniform entries!!

13/16

https://epubs.siam.org/doi/abs/10.1137/20M1314355

From theory to practice

103 104 105 106
10−8

10−7

10−6

10−5

10−4

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

fp16

double–fp16

fp32

• Double–fp16 up to 2× faster than fp32
• Similar backward error for matrices with random [−1, 1] uniform
entries (decreasing error is expected  Higham and M. (2020))

• [0, 1] uniform entries!!

13/16

https://epubs.siam.org/doi/abs/10.1137/20M1314355

From theory to practice

103 104 105 106

10−6

10−5

10−4

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

fp16

double–fp16

fp32

• Double–fp16 up to 2× faster than fp32
• Similar backward error for matrices with random [−1, 1] uniform
entries (decreasing error is expected  Higham and M. (2020))

• [0, 1] uniform entries!!
13/16

https://epubs.siam.org/doi/abs/10.1137/20M1314355

The issue

Our explanation: the culprit is round to zero (RZ)

• fp32 uses the standard RTN, but tensor cores only support RZ
 Fasi, Higham, Mikaitis, Pranesh (2020)

• With data of nonzero mean and RZ, most rounding errors
happen in the same direction

⇒ Worst-case bound nu32 is attained with RZ, whereas with RTN
we can usually replace it by

√
nu32  Higham and M. (2019)

• Same error bound ̸= same error !

14/16

https://peerj.com/articles/cs-330/
https://doi.org/10.1137/18M1226312

A proposed cure

• The worst-case accumulation bound nu32 is attained ⇒ need
to reduce the bound

• FABsum  Blanchard, Higham, M. (2020)
◦ Sum blocks of size b in precision u32
◦ Combine n/b blocks in precision u64

⇒ Reduced error bound bu32 + nu64/b

• Parameter b controls tradeoff between accuracy and
performance

• FABsum with Tensor Cores: based on CUTLASS library, which
implements uniform precision blocked summation (“splitK”)

15/16

https://epubs.siam.org/doi/abs/10.1137/19M1257780

A proposed cure (results)

103 104 105 106
0

5

10

15

20

Matrix size: n

P
er
fo
rm

a
n
ce

(T
F
L
O
P
S
)

double–fp16

FABsum b = 512

FABsum b = 256

FABsum b = 128

fp32

103 104 105 106

10−6

10−5

10−4

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

• As fast as cuBLAS but an order of magnitude more accurate
• Almost as accurate as fp32 and slightly faster
• And anything in between: flexible tradeoff

Thank you! Questions?

16/16

A proposed cure (results)

103 104 105 106
0

5

10

15

20

Matrix size: n

P
er
fo
rm

a
n
ce

(T
F
L
O
P
S
)

double–fp16

FABsum b = 512

FABsum b = 256

FABsum b = 128

fp32

103 104 105 106

10−6

10−5

10−4

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

• As fast as cuBLAS but an order of magnitude more accurate
• Almost as accurate as fp32 and slightly faster
• And anything in between: flexible tradeoff

Thank you! Questions?
16/16

