SIAM LA 2021
May 20, 2021

Multiple Word Arithmetic with GPU Tensor Cores:
Theory and Practice

Theo Mary
Sorbonne Université, CNRS, LIP6
https://www-pequan.lip6.fr/~tmary/
Slides available at https://bit.1ly/la2imultiword

Joint work with Massimiliano Fasi (Orebro Univ.), Nicholas J.
Higham, Mantas Mikaitis, Srikara Pranesh (Univ. Manchester),
Florent Lopez (LSTC, Ansys).

https://www-pequan.lip6.fr/~tmary/
https://bit.ly/la21multiword

GPU tensor cores

Tensor cores compute D = C + AB:

;
\
(
\
;
\

fo32 fo16/bf16 fp16/bf16 fp32

fp32 — fp16/bfl6 speedup evolution:
P100: 2x V100: 8x A100: 16 %

2/16

Matrix multiplication with tensor cores

Let A € R™*" and B € R"*P and compute C = AB.

The computed C satisfies
IC — C| < nuig|Al|B| in standard fp16/bf16 arithmetic
IC — C| < (2u16 + nuss)|A||B| with tensor cores
IC — C| < nus|Al|B| in standard fp32 arithmetic

[2 Blanchard, Higham, Lopez, M., Pranesh (2020) .

e Tensor cores greatly reduce the impact of error accumulation

e But error still depends on uyg because of the conversion of A
and B

= Can we get rid of it to achieve an accuracy equivalent to fp32 ?

3/16

https://doi.org/10.1137/19M1289546

Multiword arithmetic

4/16

Represent high precision number as the unevaluated sum of
lower precision numbers

Double-double arithmetic:

X= X1 + Xo
~—
fp64 fp64

x has up to 2 x 53 = 106 significand bits ~ 10732 precision
Less than fp128 (113 significand bits), but much faster,
because computations rely on fp64 arithmetic

Need for error-free transformations makes it much slower than
fp64 = double-single arithmetic not meaningful on most
processors

Double-half and triple—half arithmetics

Signif. bits Exp. bits Range Unit roundoff u

bfloatl6é 8 8 10!38 4x1073

Let x € R and us = 2724

X= X1 + x9 +e€ le| < 4us
~—
fpl6 fpl6

X= x1 + x2 + x3 +e€ le] < us
~— ~— ~—

bfloatl6 bfloatl6 bfloat16

5/16

Double-half arithmetic with tensor cores

Apply this elementwise to A € R™*" and B € R"*P:
A=A+ A, B=B1+ By
and compute C = AB as

Cx ZA,Bj using tensor cores
i
GPU tensor cores provide a new perspective:

e Infermediate computations are done in fp32 = no need for
error-free tfransformations!

e Double-fp16 = 4x more flops (can be reduced to 3x)
e Triple-bfloat16 = 9x more flops (can be reduced to 6x)
e Tensor cores 8x-16x faster than fp32
= Multiword half arithmetic potentially faster at same accuracy!
6/16

Related work

Several recent papers around this idea:

® S. Markidis, S. W. D. Chien, E. Laure, |. B. Peng and J. S. Vetter,
NVIDIA Tensor Core Programmability, Performance & Precision,
IPDPSW 2018. Double-fp16 arithmetic for GEMM with Tensor Cores.

e A. Sorna, X. Cheng, E. D'Azevedo, K. Won and S. Tomov, Optimizing
the Fast Fourier Transform Using Mixed Precision on Tensor Core
Hardware, HIPCW 2018. Double-fp16 arithmetic for FFT with Tensor
Cores.

e G. Henry, P. T. P. Tang and A. Heinecke, Leveraging the bfloat16
Artificial Intelligence Datatype For Higher-Precision Computations,
ARITH 2019. Triple-bfloat16 arithmetic.

e D. Mukunoki, K. Ozaki, T. Ogita, T. Imamura, DGEMM Using Tensor
Cores, and Its Accurate and Reproducible Versions, ISC 2020.
Double-fp16 arithmetic with Tensor and with fp64 target.

e Several others

716

https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1109/HiPCW.2018.8634417
https://doi.org/10.1109/HiPCW.2018.8634417
https://doi.org/10.1109/HiPCW.2018.8634417
https://doi.org/10.1109/ARITH.2019.00019
https://doi.org/10.1109/ARITH.2019.00019
https://doi.org/10.1007/978-3-030-50743-5_12
https://doi.org/10.1007/978-3-030-50743-5_12

Block FMA framework

We use the Block FMA framework from [2 Blanchard et al. (2020)
o A e RP1Xb B e RP*P2 gnd C e RP1*b2,

D = C+ A B
Ny NNy
Uhigh Uhigh Ulow Ulow

e Internal computation C + AB is done in precision Uhigh

b1 b ba Ulow Uhigh

Google TPU V1 256 256 256 bfloatlé fp32
Google TPUvz2 128 128 128 bfloatl6 fp32
NVIDIA Volta L L L fpl6 fp32
NVIDIA Ampere 8 8 4 fpl6 fp32
NVIDIA Ampere 8 8 L bfloatlé fp32
NVIDIA Ampere 4 8 4 tfloat32 fp32

32 32 32

2 L 2

Intel NNP-T bfloatlé fp32
Armv8-A bfloatl6 fp32

8/16

https://epubs.siam.org/doi/10.1137/19M1289546

General error analysis

Forany x € Rand p > 0, let

x1 = fliow(x)

xg = fliow(x — x1)

p—1

xp. = fliow (x — Zx,-)

=1
We obtain ’

P
X = Zx,- + Ax, |Ax| < uf x|
i=1
Using this representation elementwise on A and B:

P
A= "A+AA, AAl <R IA]
i=1

P
B=ZB,-+AB, |AB] < |B.

j=1
9/16

Then the product C = AB is given by

C= Zzp:A,-Bj+AAB+AABfAAAB.
i=1 j=1
Compute the p? products A;B; by chaining calls to the block FMA:
C=C+AC, |AC| < (n+ p?)unighlAllB].
Overall

C=AB+E, [|E< (242, +u® + (n+pungn)|AllBI.

X = fliow (x — Efz_ll x,-) is the approximation residual from the first
k — 1 words

Al < g (1 + tiow) A

1B < Ul (1+ Uiow)|B]
JANIB < Ut 2(1 + uiow) A8

low

= Not all p? products A;Bj need be computed! Skipping any
product A;B; such thati+j > p + 1yields C = AB + E,

p—1
E] < <2uﬁw+uiﬁv+(n+p2)uhigh+Z(pi)uf;*wf’l(1+u|ow)2> A8
i=1

e number of products: p? — p(p + 1)/2

e error to order u}, : constant 2 = p + 1

Summary of theory

Uhigh Ulow Error bound

p=1 2x27 1 4nx2=
p>2 nx27%

2~ 11 (fpl6)

—24
277 (fp32) p=1 2x284nx22

278 (bfloatle) p=2 3x2704nx22
p>3 nx2°%

Encompasses existing approaches and some new ones

1216

From theory to practice

TTTTT T T T T T T T T T T T T T T TTTT]
—o—fpl6
60 " _a— double fp16
n —— fp32
[a
Q
= 10
g
8
:
8 20 = g—a—
E
[a
|HH\ L] L] L]
10° 10* 10° 10°

Matrix size: n

e Double-fpl16 up to 2x faster than fp32

13/16

https://epubs.siam.org/doi/abs/10.1137/20M1314355

From theory to practice

10_4(‘”” — — ‘ HHH; 16
B 1 —= double-fp16
| | ——1p32

. 1075 | E

< -]

qs—j -]

= sl 1

< —6 L —

g 107" E E

4 I]

Q

S I 1

m | -

1077 K E
I 1
10_85\”\ L L T

10° 10* 10° 10°
Matrix size: n
e Double-fpl16 up to 2x faster than fp32
e Similar backward error for matrices with random [—1, 1] uniform
entries (decreasing error is expected [3 Higham and M. (2020))

13/16

https://epubs.siam.org/doi/abs/10.1137/20M1314355

From theory to practice

—e— fpl6
—— double—{pl6

1074
—— fp32

1075

Backward error

1076

Ll Ll Ll (|
10° 10* 10° 108

Matrix size: n

e Double-fp16 up to 2x faster than fp32

e Similar backward error for matrices with random [—1, 1] uniform
entries (decreasing error is expected [3 Higham and M. (2020))

. ol
316” [0, 1] uniform entries!!

https://epubs.siam.org/doi/abs/10.1137/20M1314355

Our explanation: the culprit is round to zero (RZ)
e fp32 uses the standard RTN, but tensor cores only support RZ
[3) Fasi, Higham, Mikaitis, Pranesh (2020)

e With data of nonzero mean and RZ, most rounding errors
happen in the same direction

= Worst-case bound nuse is attained with RZ, whereas with RTN
we can usually replace it by \/nuga [B Higham and M. (2019)

e Same error bound # same error !

14/16

https://peerj.com/articles/cs-330/
https://doi.org/10.1137/18M1226312

A proposed cure

e The worst-case accumulation bound nuss is attained = need
to reduce the bound

e FABsum [3) Blanchard, Higham, M. (2020)

o Sum blocks of size b in precision uzs
o Combine n/b blocks in precision ugq4
= Reduced error bound buss + nugs /b

e Parameter b controls tradeoff between accuracy and
performance

e FABsum with Tensor Cores: based on CUTLASS library, which
implements uniform precision blocked summation (“splitK")

15/16

https://epubs.siam.org/doi/abs/10.1137/19M1257780

A proposed cure (results)

1]
20 |- 107 F E
& g |
W > = E
S 15} 8 3 1
E g 58
Z 1 ~ 107°F * E
3 = " —o—9o o o o—0—0o—t
£ wf £ r oo oo 4
g —8— double—fp16 3 b
& —e— FABsum b = 512 B |
£ 5 —o— FABsum b = 256 | 1077]
—e— FABsum b = 128 k]
—— [p32 I i
O I L IR L | L PR il L] L] L
10° 10* 10° 10° 10° 10* 10° 10°
Matrix size: n Matrix size: n

e As fast as cuBLAS but an order of magnitude more accurate
e Almost as accurate as fp32 and slightly faster

e And anything in between: flexible tradeoff

16/16

A proposed cure (results)

Performance (TFLOPS)

16/16

20

15

10

—8— double—fp16
—o— FABsum b = 512
—e— FABsum b = 256

—e— FABsum b = 128
—— {p32

I L | L | L TR
10° 10* 10°

Matrix size: n

10°

Backward error

il L] L] L IR
10° 10* 10° 10°

Matrix size: n

As fast as cuBLAS but an order of magnitude more accurate

Almost as accurate as fp32 and slightly faster

And anything in between: flexible tradeoff

Thank you! Questions?

