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Outline

Objective: accelerate Ax = b in mixed precision by exploiting...

1. Low precisions (e.g., fp16, bfloat16)

fp16 bfloat16
sign exponent significant sign exponent significant

2. Specialized hardware (e.g., Tensor Cores)

X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X

fpl6 or fp32 fp16 fp16 fpl16 or fp32

3. Sparsity (both structural and data sparsity)
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Today's floating-point landscape

Bits
Signif. (f/ Exp. Range u=2""
bfloatl6 B 8 8 10138 4x 1073
fpl6 H 11 5  10*° 5x 1074

fpl28 Q 113 15 10!I!l! 1 x IO_II

Low precision increasingly supported by hardware:

e Fp16 used by NVIDIA GPUs, AMD Radeon Instinct MI25 GPU,
ARM NEON, Fujitsu A64FX ARM

e Bfloat16 used by Google TPU, NVIDIA GPUs, Arm, Intel
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Today's floating-point landscape

Bits
Signif. (f/ Exp. Range u=2""
bfloatl6 B 8 8 10138 4x 1073
fpl6 H 11 5  10*° 5x 1074

fpl28 Q 113 15 10!I!l! 1 x IO_II

Great benefits:

e Reduced storage, data movement, and communications

e |Increased speed on emerging hardware (16 x on AT100 from
fp32 to fp16/bfloat16)

e Reduced energy consumption (5x with fp16, 9x with bfloat16)
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Solving Ax = b

Standard method to solve Ax = b:
1. Factorize A = LU, where L and U are lower and upper triangular
2. Solve Ly=b and Ux =y

Precision u = computed X satisfies ||x — x|| < f(n)x(A)ul|x||
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Solving Ax = b

Standard method to solve Ax = b:
1. Factorize A = LU, where L and U are lower and upper triangular
2. Solve Ly=b and Ux =y

Precision u = computed X satisfies ||x — x|| < f(n)x(A)ul|x||

An algorithm to refine the solution: iterative refinement (IR)

Solve Ax; = b via x; = UYL~ 1b)
while Not converged do
ri = b — AX,‘
Solve Ad; = r;via d; = U~ 1(L™ 1)
Xit1 = X; +d;
end while

Many variants over the years, depending on choice of precisions
and solver for Ad; = r;
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Error analysis of general IR

[3 Carson and Higham (2018) analyze the most general version of IR:
For a target accuracy u, and assuming k(A)u < 1:
Solve Axy = b by LU factorization at precision us
while Not converged do
ri = b — Ax; at precision u,
Solve Adj = r; such that ||d; — di|| < ¢i||d]|
Xi+1 = X; + d; at precision u
end while

Theorem (simplified from Carson and Higham, 2018)

Under the condition ¢; < 1, the forward error converges to
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Error analysis of general IR

[3 Carson and Higham (2018) analyze the most general version of IR:
For a target accuracy u, and assuming k(A)u < 1:

Solve Axy = b by LU factorization at precision us
while Not converged do
ri = b — Ax; at precision u,
Solve Adj = r; such that ||d; — di|| < ¢i||d]|
Xi+1 = X; + d; at precision u
end while

Theorem (simplified from Carson and Higham, 2018)

Under the condition ¢; < 1, the forward error converges to

e Limiting accuracy: depends on u and u, only, can be made
independent of x(A) by taking u, = u?
./-o® Convergence condition: depends on the choice of solver


https://epubs.siam.org/doi/abs/10.1137/17M1140819

(0O years of LU-IR

LU-IR: reuse LU faAc’rors to solve for d:
di=U"L"1r= IIdi — dil| < f(n)k(A)ug||di]| = ¢ = O(k(A)us)

Solve Ax; = b by LU factorization in precision ug
for i=1: nsteps do

ri=hb— Ax; in precision u,

Solve Ad; = r;via d; = U~} (L 1)

Xiy1 = X;i + d; in precision u
end for

ur u u,  max k(A) Forward error

/29



(0O years of LU-IR

LU-IR: reuse LU faAc’rors to solve for d:
di=U"L"1r= IIdi — dil| < f(n)k(A)ug||di]| = ¢ = O(k(A)us)

Solve Ax; = b by LU factorization us = double
for i=1: nsteps do

r=>b—Ax; u, = quadruple

Solve Ad; = r;via d; = U~} (L 1)

Xiy1 = X;i + d; u = double
end for

ur u u,  max k(A) Forward error

Fixed D D D 1016 k(A) - 10716

Fixed-precision
7/29 [3) Jankowski and Wozniakowski (1977) [3) Skeel (1980)
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(0O years of LU-IR

LU-IR: reuse LU faAc’rors to solve for d:
di=U"L"1r= IIdi — dil| < f(n)k(A)ug||di]| = ¢ = O(k(A)us)

Solve Ax; = b by LU factorization us = double
for i=1: nsteps do
ri=b — Ax; u, = double
Solve Ad; = r;via d; = U~} (L 1)
Xiy1 = X;i + d; u = double
end for
ur u u,  max k(A) Forward error
Fixed D D D 1016 k(A) - 10716
Traditional D D Q 1016 1016
Traditional

7729 (2 Wilkinson (1948)  [8 Moler (1967)
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(0O years of LU-IR

LU-IR: reuse LU faAc’rors to solve for d:
di=U"L"1r= IIdi — dil| < f(n)k(A)ug||di]| = ¢ = O(k(A)us)

Solve Ax; = b by LU factorization us = single
for i=1: nsteps do
r=>b—Ax; u, = double
Solve Ad; = r;via d; = U~} (L 1)
Xiy1 = X;i + d; u = double
end for
ur u u,  max k(A) Forward error
Fixed D D D 1016 k(A) - 10716
Traditional D D Q 106 10-16
LP factorization S D D 108 k(A) - 10716

Low precision factorization
7/29 [3) Langou et al (2006)
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(0O years of LU-IR

LU-IR: reuse LU faAc’rors to solve for d:
di=U"L"1r= IIdi — dil| < f(n)k(A)ug||di]| = ¢ = O(k(A)us)

Solve Ax; = b by LU factorization us = single
for i=1: nsteps do
r=>b—Ax; u, = quadruple
Solve Ad; = r;via d; = U~} (L 1)
Xiy1 = X;i + d; u = double
end for
ur u u,  max k(A) Forward error
Fixed D D D 1016 k(A) - 10716
Traditional D D Q 106 10-16
LP factorization S D D 108 k(A) - 10716
3 precisions S D Q 108 10716

Three precisions
7/29 [3) Carson and Higham (2018)
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(0O years of LU-IR

LU-IR: reuse LU faAc’rors to solve for d:
di=U"L"1r= IIdi — dil| < f(n)k(A)ug||di]| = ¢ = O(k(A)us)

Solve Ax; = b by LU factorization us = half
for i=1: nsteps do
r=>b—Ax; u, = quadruple
Solve Ad; = r;via d; = U~} (L 1)
Xiy1 = X;i + d; u = double
end for
ur u u,  max k(A) Forward error
Fixed D D D 1016 k(A) - 10716
Traditional D D Q 106 10-16
LP factorization H D D 103 k(A) - 10716
3 precisions H D Q 103 10716

Only well-conditioned problems can be solved
7/29 with a half precision factorization!



GMRES-IR

GMRES-based IR: [3) Carson and Higham (2017)

* Replace LU by GMRES solver: solve Zd, =T, with GMRES,
where A = U™'L~1A is preconditioned by LU factors

e Rationale:

o k(A) often smaller than r(A)
© GMRES can be asked fo converge fo accuracy u < ug
= Ad =T, is solved with accuracy ¢; = /-i(A)u
o Convergence condition improved from x(A)us < 1to k(A)u < 1
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GMRES-IR

GMRES-based IR: [3) Carson and Higham (2017)

* Replace LU by GMRES solver: solve de =7; with GMRES

where A = U™'L~1A is preconditioned by LU factors
e Rationale:

o k(A) often smaller than r(A)

© GMRES can be asked fo converge fo accuracy u < ug
= Ad =T, is solved with accuracy ¢; = R(A)u

o Convergence condition improved from x(A)us < 1to k(A)u < 1
e The catch: the matrix—vector products are with A=U"1"1A

infroduce an extra K(A) unless performed in higher precision
Solve Ax; =

b by LU factorization at precision us
while Not converged do

ri = b — Ax; at precision u,
Solve U™'L"1Ad; = UL~ 1r; by GMRES at precision u with
products with UT'L™1A at precision u?

Xi+1 = X; + d; at precision u
524 end while



https://epubs.siam.org/doi/abs/10.1137/17M1122918

LU-IR vs GMRES-IR

Using k(A) < (1 + k(A)uf)? we determine the convergence
condition on k(A)

ur u ur  max k(A) Forward error
LU-IR S D Q 108 1016
GMRES-IR S D Q 1016 1016
LU-IR H D Q 103 1016
GMRES-IR H D Q 101! 10~16

GMRES-IR can handle much more ill-conditioned matrices.
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LU-IR vs GMRES-IR

Using k(A) < (1 + k(A)uf)? we determine the convergence
condition on k(A)

ur u u,  max k(A) Forward error
LU-IR S D Q 108 1016
GMRES-IR S D Q 1016 1016
LU-IR H D Q 103 1016
GMRES-IR H D Q 101! 10~16

GMRES-IR can handle much more ill-conditioned matrices.
However:

e LU solves are performed at precision u? instead of ug
= practical limitation
o Increases cost per iteration
o If uis D, requires use of quad precision
o Practical implementations have relaxed this requirement by
9/29 replacing u? with u, with no theoretical guarantee



Rethinking GMRES-IR

e Goal: solve Ad; = r; with GMRES and bound ¢; = ||d; — di[| /|| d||

o In what precision do we really need to run GMRES?
o How much extra precision is really needed in the matvec products?

Solve Ax; = b by LU factorization at precision us
for i =1: nsteps do
ri = b — Ax; at precision u,
Solve Ad; = r; with preconditioned GMRES at
precision u except matvecs at precision u?
Xiy+1 = X; + d; at precision u
end for

10/29



Rethinking GMRES-IR

e Goal: solve Ad; = r; with GMRES and bound ¢; = ||d; — di[| /|| d||

o In what precision do we really need to run GMRES?
o How much extra precision is really needed in the matvec products?

Solve Ax; = b by LU factorization at precision us
for i =1: nsteps do
ri = b — Ax; at precision u,
Solve Ad; = r; with preconditioned GMRES at
.. . 2
precision U except matvecs at precision U
Xiy+1 = X; + d; at precision u
end for

10/29



Rethinking GMRES-IR

e Goal: solve Ad; = r; with GMRES and bound ¢; = ||d; — di[| /|| d||

o In what precision do we really need to run GMRES?
o How much extra precision is really needed in the matvec products?

Solve Ax; = b by LU factorization at precision us
for i =1: nsteps do

ri = b — Ax; at precision u,

Solve Ad; = r; with preconditioned GMRES at

precision except matvecs at precision Uy
Xiy+1 = X; + d; at precision u
end for

Relax the requirements on the GMRES precisions: run at
precision ug < u with matvecs at precision up < u?

= FIVE precisions in total!

What can we say about the convergence of this GMRES-IR57
10/29



Two precision GMRES

e Unpreconditioned GMRES in precision u for Ax = b:

o Backward error of order u [3 Paige, Rozloznik, Strakos (2006)
o Forward error of order k(A)u

e Two precision preconditioned GMRES for Ax = b:
o Backward error of order k(A)up + ug

e The matrix-vector products are performed with A=ULA:
y=UTLT A= [T =yl S w(A)up | Al|Ix]]
e The rest is at precision ug

o Forward error of order K(Z)(H(A)up + ug)
o K(A) < (1+ K(A)ug)® = ¢ ~ K(A)%ue (K(A)up + ug)

Side-result: generalization of the backward stability of GMRES to
a preconditioned two-precision GMRES
[2) Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2021)
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Five precision GMRES-IR

Solve Ax; = b by LU factorization at precision us
for i =1: nsteps do
ri = b — Ax; at precision u,
Solve Ad; = r; with preconditioned GMRES at
precision except matvecs at precision up
Xiy+1 = X; + d; at precision u
end for

Theorem (convergence of GMRES-IR5)

Under the condition (- + &(A)up)k(A)2us? < 1, the forward error
converges to its limiting accuracy

[ = x|
[l
[8) Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2021)
12/29
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Meaningful combinations

With five arithmetics (fp16, bfloat16, fp32, fpb4, fp128) there are
over 3000 different combinations of GMRES-IR5!

They are not all relevant !

Meaningful combinations: those where none of the precisions can
be lowered without worsening either the limiting accuracy or the
convergence condition.

Filtering rules

e u?2<u <u<us ® up, <u,up, =u, up > uall possible
® u, < ug ® ug>u
® up < ug ® ug < Uf, Uug = ug, Ug > us all possible
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Theoretical results

Meaningful combinations of GMRES-IR5 for us = H and u = D.

Convergence Condition

Yo e max(k(A))
LU-IR 2 x 103
B 3 x 10%
H S 4 % 10*
H D 9 x 10%
S D 8 x 106
D D 3 x 107
D Q 2 x 101!

Five combinations between LU-IR and Carson & Higham's
GMRES-IR = More flexible precisions choice to fit at best the
hardware constraints and the problem difficulty.
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Experimental results

Take 100 random matrices with specified k(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

uy =H ug =D

o
T U

100 102 10% 106 108 1
K
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Experimental results

Take 100 random matrices with specified k(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5

converges to a small forward error
uy =H ug =D

‘ o660 0 00O 0O O 0 0 O
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Experimental results

Take 100 random matrices with specified k(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5

converges to a small forward error
up=H ug =S
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Experimental results

Take 100 random matrices with specified k(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5

converges to a small forward error
uy =H ug = H

‘ s ISR Ny
100 102 10% 106 108 1010 1012 1014 1016

Similar picture on many types of matrices
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NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs V100 carry out a
4 x 4 matrix multiplication in 1 clock cycle:

D = A B + C

xocxox | I N

fp32 fol6 fol6 fp32

e Performance boost: peaks at 125 TFLOPS (8 x speedup vs
fp32, 16x on A100)
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NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs V100 carry out a
4 x 4 matrix multiplication in 1 clock cycle:

D = A B + C

fp32 fol6 fol6 fp32

+

e Performance boost: peaks at 125 TFLOPS (8 x speedup vs

fp32, 16x on A100)
e Accuracy boost: let C = AB, with A € R™*", B € R"*P, the

computed C satisfies

IC—Cl S clAllBl, cn=

16/29 [B Blanchard, Higham, Lopez, M., Pranesh (2020)
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NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs V100 carry out a
4 x 4 matrix multiplication in 1 clock cycle:

D = A B + C

fp32 fol6 fol6 fp32

+

e Performance boost: peaks at 125 TFLOPS (8 x speedup vs

fp32, 16x on A100)
e Accuracy boost: let C = AB, with A € R™*", B € R"*P, the

computed C satisfies
Nuyg (fp16)

IC—ClScolAlBl, cn=
NU39 (fp32)

16/29 [B Blanchard, Higham, Lopez, M., Pranesh (2020)
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NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs V100 carry out a
4 x 4 matrix multiplication in 1 clock cycle:

D = A B + C

+

fp32 fol6 fol6 fp32

e Performance boost: peaks at 125 TFLOPS (8 x speedup vs

fp32, 16x on A100)
e Accuracy boost: let C = AB, with A € R™*", B € R"*P, the

computed C satisfies

Nuyg (fp16)
|C —C| ScnlAllBl, cn =4 2ujs+nusy, (tensor cores)
NU39 (fp32)

16/29 [B Blanchard, Higham, Lopez, M., Pranesh (2020)
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Block LU factorization

e Block version to use matrix—-matrix operations

fork=1:n/b do
Factorize LcUkk = A (with unblocked alg.)
fori=k+1:n/bdo
Solve L,'kukk = Aik and kaUk,- = Ak,' for L,-k and Uk;
end for
fori=k+1:n/bdo
forj=k+1:n/bdo

A,‘j < A,‘j — L,‘kUkj
end for
end for
end for

17/29



Block LU factorization

e Block version to use matrix—-matrix operations

e O(n3) part of the flops done with tensor cores

fork=1:n/b do
Factorize LcUkk = A (with unblocked alg.)
fori=k+1:n/bdo
Solve L,'kukk = Aik and kaUk,- = Ak,' for L,-k and Uk;
end for
fori=k+1:n/bdo
forj=k+1:n/bdo _
Lix + ﬂlG(LL’S) End Ui + ﬂlG(Uki)
Ajj < Aj — LUy using tensor cores
end for
end for
end for
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LU factorization with tensor cores

Error analysis for LU follows from matrix multiplication analysis
and gives same bounds to first order [3) Blanchard et al. (2020)

Standard fpl6 Tensor cores Standard fp32

Nuyg 2uj6 + nusy Nuzy

107% |  ——1fpl6
% 1 —e— tensor cores
I ¥ —e— fp32

107° 2 E

« ]
-6 | .
} k‘\‘\‘\\—\_“‘\o

10-7 W

| | | |
10,000 20,000 30,000 40,000

Matrix size: n

Backward error
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Impact on iterative refinement

Results from [2) Haidar et al. (2018)

20— : T T T T -
FP16-TC->64 dhgesv
18 -|=@=FP16->64 dhgesv
FP32-564 dsgesv E
16 |-|=)¢=FP64 dgesv D
1 ]
o 12+
S1of 3
[l 8L
6l ]
4 b 330
2 L
0

2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size

e TC accuracy boost can be critical!

e TC performance suboptimal here
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Impact on iterative refinement

Results from [2) Haidar et al. (2018)
20 . . . . . ; . . . . I1d
18 zFH 6-TC->64 dhgesv

FP16->64 dhgesv

FP32-564 dsgesv
16 |-|=)¢=FP64 dgesv D
145

12

Tflop/s
o

oSN H» O
T

330

2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size
e TC accuracy boost can be critical!

e TC performance suboptimal here = why?
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e | U factorization is traditionally a compute-bound operation...

e With Tensor Cores, flops are 8x faster

e Matrix is stored in fp32 = data movement is unchanged !

= LU with tensor cores becomes memory-bound !

Performance (TFLOPS)

20/29
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e | U factorization is traditionally a compute-bound operation...

e With Tensor Cores, flops are 8x faster

e Matrix is stored in fp32 = data movement is unchanged !

= LU with tensor cores becomes memory-bound !

Performance (TFLOPS)

20/29

50 F 9

40 -

30 |-

——fpl6
—e— tensor cores (A in fp32) |
—+— tensor cores (A in fpl6)

10

! ! ! ! !
10,000 20,000 30,000 40,000 50,000

Matrix size: n

Idea: store matrix in fp16

Backward error

b | —e— tensor cores (A in fp32)

——fpl6

—+— tensor cores (A in fpl6)

10,000 20,000 30,000 40,000 50,000

Matrix size: n

Problem: huge accuracy loss, tensor cores accuracy boost

completely negated



Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:
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Matrix after 2 steps:
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1. Mixed fp16/fp32 representation

Matrix after 2 steps:

read
write
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Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:
1. Mixed fp16/fp32 representation
2. Right-looking — left-looking factorization

Matrix after 2 steps:

[ ]fe16
B 032
read
write

O(n?) fp32 + O(n?) fp16 — O(n?) fp32 + O(n3) fp16
21/29



Experimental results

50 T T T T T T T
/ o g E
— 40 //'_—’\‘—:/;
Z s ]
o = 1071 =
= 2 g E
E %0 5 5 1
8 — — ] ET 4
2 ER ]
s ——p16 . r ——1pl6 1

= _ -—it i

& 10 —e— tensor cores (A in fp32) 107° E —e— tensor cores (A in fp32) E
—+— tensor cores (A in fp16) 5 —+— tensor cores (A in fpl6) ]
09 left-looking tensor cor 3 —=— left-looking tensor cores |

-7 ! ! | | |

10 600 20. 600 30 600 40 600 50. 600 10 10,000 20,000 30,000 40,000 50,000

P Matrix size: n
Matrix size: n

Nearly 50 TFLOPS without significantly impacting accuracy
B Lopez and M. (2020)
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Sparsity and data sparsity

e Sparse matrices: exploit exact zeros

e Data sparse matrices: exploit numerical zeros

T
™
| |
| |
| |
! :
777777 large rank
o B
low rank

e A block B represents the interaction between two subdomains
= low numerical rank for far away subdomains

—/
B —>|:|
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Block low rank (BLR) matrices use a flat 2D block partitioning
() Amestoy et al. (2015) [£) Amestoy et al. (2019)

e Diagonal blocks are full rank

e Off-diagonal blocks A are
approximated by low-rank blocks Tj
satisfying [|A; — Ty < ¢[|Al|

e ¢ controls the backward error of BLR
LU [A Higham and M. (2021)

Example of a BLR matrix (Schur

complement of a 64 Poisson
problem with block size 128)

24/29


https://epubs.siam.org/doi/abs/10.1137/120903476
https://dl.acm.org/doi/10.1145/3242094
https://doi.org/10.1093/imanum/drab020

Complexity of LU factorization

e Crucial to exploit sparsity to tackle large scale problems

Flops Storage
Dense o(n?)  O(n?)
Sparse (3D domain)  O(n?)  O(n*3)
BLR (constant ranks) O(n?)  O(n%/?)
Sparse+BLR O(n*3)  O(nlogn)
[&) Amestoy, Buttari, L'Excellent, M. (2017)
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Complexity of LU factorization

e Crucial to exploit sparsity to tackle large scale problems

Flops Storage
Dense o(n?)  O(n?)
Sparse (3D domain)  O(n?) O(n*/3)
BLR (constant ranks) O(n?)  O(n%/?)
Sparse+BLR O(n*3)  O(nlogn)
[&) Amestoy, Buttari, L'Excellent, M. (2017)

* In mixed precision, is sparsity a challenge or an opportunity?
= A little bit of both
Challenge: ratio LU factorization cost / LU solve cost

Dense — Sparse — Sparse+BLR
o(n) — 0O(*3) = oO(n'/3)

= less room to amortize iterations
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IR with sparse LU

fp32 LU (MUMPS) + IR on large sparse ill-conditioned matrices
Time (%) w.rt. fp64 MUMPS solver
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e Often more than 25% acceleration, up o 2x

o GMRES-IR slower than LU-IR but more robust
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Mixed precision low rank compression

U

)y
18]

e Low-rank compress based on, e.g., SVD: = ||B — UZV| < ¢,
everything stored in double precision
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 Low-rank compress based on, e.g,, SVD: = ||B — UXVT| < ¢,
everything stored in double precision

e Mixed precision compression: partition the SVD into several
groups of different precision

e Converting U; and V; to precision u; introduces error
proportional u;||%]|
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Mixed precision low rank compression

vi
Vi
e/us Vg
93
E/uh

 Low-rank compress based on, e.g,, SVD: = ||B — UXVT| < ¢,
everything stored in double precision

e Mixed precision compression: partition the SVD into several
groups of different precision

e Converting U; and V; to precision u; introduces error
proportional u;||%]|

= Need to partition ¥ such that ||%]| < ¢/u;
27/29



Mixed precision BLR matrices

(Poisson, € = 10712)

]
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H 0.5
N 0.4
03
I 1 0.2
T
0.1
| 0
Double
100%
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Mixed precision BLR matrices

(Poisson, € = 10712)

| 1
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Mixed precision BLR matrices

(Poisson, € = 10712)

u “RE"EE 1

0.9

0.8
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0.2
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0.1

HHH i
Double Single Half
26% 44%  30%

Most entries can be stored in precision much lower than ¢!
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Conclusions

29/29

Emerging low precisions provide new opportunities for high
performance NLA

Mixed precision algorithms have proven highly successful at
Ax = b, even for ill-conditioned A

Specialized hardware helps, both for speed and accuracy

Sparsity can make things more challenging... but data sparsity
creates new mixed precision opportunities!

Slides available at https://bit.1ly/la21imix
(references on next slides)


https://bit.ly/la21mix
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