
SIAG/LA Early Career Prize
SIAM LA, May 18, 2021

Exploiting Mixed Precision Arithmetic
in the Solution of Linear Systems

Theo Mary
Sorbonne Université, CNRS, LIP6

https://www-pequan.lip6.fr/~tmary/
Slides available at https://bit.ly/la21mix

1/29

https://www-pequan.lip6.fr/~tmary/
https://bit.ly/la21mix

Patrick Amestoy Pierre Blanchard Olivier Boiteau Alfredo Buttari

Matthieu Gerest Nicholas Higham Fabienne Jézéquel

Jean-Yves L’Excellent Florent Lopez Srikara Pranesh Bastien Vieublé

2/29

Outline
Objective: accelerate Ax = b in mixed precision by exploiting…
1. Low precisions (e.g., fp16, bfloat16)

fp16

sign exponent significant

bfloat16

sign exponent significant

2. Specialized hardware (e.g., Tensor Cores)
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸
fp16 or fp32

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16

+


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸
fp16 or fp32

3. Sparsity (both structural and data sparsity)

3/29

Low precisions
Specialized hardware
Sparsity

Low precisions
Specialized hardware
Sparsity

Today’s floating-point landscape

Bits
Signif. (t) Exp. Range u = 2−t

bfloat16 B 8 8 10±38 4× 10−3

fp16 H 11 5 10±5 5× 10−4

fp32 S 24 8 10±38 6× 10−8

fp64 D 53 11 10±308 1× 10−16

fp128 Q 113 15 10±4932 1× 10−34

Low precision increasingly supported by hardware:
• Fp16 used by NVIDIA GPUs, AMD Radeon Instinct MI25 GPU,
ARM NEON, Fujitsu A64FX ARM

• Bfloat16 used by Google TPU, NVIDIA GPUs, Arm, Intel

4/29

Today’s floating-point landscape

Bits
Signif. (t) Exp. Range u = 2−t

bfloat16 B 8 8 10±38 4× 10−3

fp16 H 11 5 10±5 5× 10−4

fp32 S 24 8 10±38 6× 10−8

fp64 D 53 11 10±308 1× 10−16

fp128 Q 113 15 10±4932 1× 10−34

Great benefits:
• Reduced storage, data movement, and communications
• Increased speed on emerging hardware (16× on A100 from
fp32 to fp16/bfloat16)

• Reduced energy consumption (5× with fp16, 9× with bfloat16)

4/29

Solving Ax = b

Standard method to solve Ax = b:

1. Factorize A = LU, where L and U are lower and upper triangular

2. Solve Ly = b and Ux = y

Precision u⇒ computed x̂ satisfies ∥x̂− x∥ ≤ f(n)κ(A)u∥x∥

An algorithm to refine the solution: iterative refinement (IR)

Solve Ax1 = b via x1 = U−1(L−1b)
while Not converged do

ri = b− Axi
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di

end while

Many variants over the years, depending on choice of precisions
and solver for Adi = ri

5/29

Solving Ax = b

Standard method to solve Ax = b:

1. Factorize A = LU, where L and U are lower and upper triangular

2. Solve Ly = b and Ux = y

Precision u⇒ computed x̂ satisfies ∥x̂− x∥ ≤ f(n)κ(A)u∥x∥

An algorithm to refine the solution: iterative refinement (IR)

Solve Ax1 = b via x1 = U−1(L−1b)
while Not converged do

ri = b− Axi
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di

end while

Many variants over the years, depending on choice of precisions
and solver for Adi = ri

5/29

Error analysis of general IR

 Carson and Higham (2018) analyze the most general version of IR:
For a target accuracy u, and assuming κ(A)u < 1:

Solve Ax1 = b by LU factorization at precision uf
while Not converged do

ri = b− Axi at precision ur
Solve Adi = ri such that ∥d̂i − di∥ ≤ ϕi∥di∥
xi+1 = xi + di at precision u

end while

Theorem (simplified from Carson and Higham, 2018)

Under the condition ϕi < 1, the forward error converges to

∥x̂− x∥
∥x∥

≤ u+ urκ(A)

• Limiting accuracy: depends on u and ur only, can be made
independent of κ(A) by taking ur = u2

• Convergence condition: depends on the choice of solver

6/29

https://epubs.siam.org/doi/abs/10.1137/17M1140819

Error analysis of general IR

 Carson and Higham (2018) analyze the most general version of IR:
For a target accuracy u, and assuming κ(A)u < 1:

Solve Ax1 = b by LU factorization at precision uf
while Not converged do

ri = b− Axi at precision ur
Solve Adi = ri such that ∥d̂i − di∥ ≤ ϕi∥di∥
xi+1 = xi + di at precision u

end while

Theorem (simplified from Carson and Higham, 2018)

Under the condition ϕi < 1, the forward error converges to

∥x̂− x∥
∥x∥

≤ u+ urκ(A)

• Limiting accuracy: depends on u and ur only, can be made
independent of κ(A) by taking ur = u2

• Convergence condition: depends on the choice of solver6/29

https://epubs.siam.org/doi/abs/10.1137/17M1140819

70 years of LU-IR

LU-IR: reuse LU factors to solve for di:
di = U−1L−1ri ⇒ ∥d̂i − di∥ ≤ f(n)κ(A)uf∥di∥ ⇒ ϕi = O(κ(A)uf)

Solve Ax1 = b by LU factorization in precision uf
for i = 1: nsteps do

ri = b− Axi in precision ur
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di in precision u

end for

uf u ur max κ(A) Forward error

Fixed D D D 1016 κ(A) · 10−16

Traditional D D Q 1016 10−16

LP factorization S D D 108 κ(A) · 10−16

3 precisions S D Q 108 10−16

MMM
7/29

70 years of LU-IR

LU-IR: reuse LU factors to solve for di:
di = U−1L−1ri ⇒ ∥d̂i − di∥ ≤ f(n)κ(A)uf∥di∥ ⇒ ϕi = O(κ(A)uf)

Solve Ax1 = b by LU factorization uf = double
for i = 1: nsteps do

ri = b− Axi ur = quadruple
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di u = double

end for

uf u ur max κ(A) Forward error

Fixed D D D 1016 κ(A) · 10−16

Traditional D D Q 1016 10−16

LP factorization S D D 108 κ(A) · 10−16

3 precisions S D Q 108 10−16

Fixed-precision
 Jankowski and Wozniakowski (1977)  Skeel (1980)7/29

https://link.springer.com/article/10.1007%2FBF01932150
https://www.ams.org/journals/mcom/1980-35-151/S0025-5718-1980-0572859-4/

70 years of LU-IR

LU-IR: reuse LU factors to solve for di:
di = U−1L−1ri ⇒ ∥d̂i − di∥ ≤ f(n)κ(A)uf∥di∥ ⇒ ϕi = O(κ(A)uf)

Solve Ax1 = b by LU factorization uf = double
for i = 1: nsteps do

ri = b− Axi ur = double
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di u = double

end for

uf u ur max κ(A) Forward error

Fixed D D D 1016 κ(A) · 10−16

Traditional D D Q 1016 10−16

LP factorization S D D 108 κ(A) · 10−16

3 precisions S D Q 108 10−16

Traditional
 Wilkinson (1948)  Moler (1967)7/29

https://dl.acm.org/doi/abs/10.1145/321386.321394

70 years of LU-IR

LU-IR: reuse LU factors to solve for di:
di = U−1L−1ri ⇒ ∥d̂i − di∥ ≤ f(n)κ(A)uf∥di∥ ⇒ ϕi = O(κ(A)uf)

Solve Ax1 = b by LU factorization uf = single
for i = 1: nsteps do

ri = b− Axi ur = double
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di u = double

end for

uf u ur max κ(A) Forward error

Fixed D D D 1016 κ(A) · 10−16

Traditional D D Q 1016 10−16

LP factorization S D D 108 κ(A) · 10−16

3 precisions S D Q 108 10−16

Low precision factorization
 Langou et al (2006)7/29

https://ieeexplore.ieee.org/abstract/document/4090224

70 years of LU-IR

LU-IR: reuse LU factors to solve for di:
di = U−1L−1ri ⇒ ∥d̂i − di∥ ≤ f(n)κ(A)uf∥di∥ ⇒ ϕi = O(κ(A)uf)

Solve Ax1 = b by LU factorization uf = single
for i = 1: nsteps do

ri = b− Axi ur = quadruple
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di u = double

end for

uf u ur max κ(A) Forward error

Fixed D D D 1016 κ(A) · 10−16

Traditional D D Q 1016 10−16

LP factorization S D D 108 κ(A) · 10−16

3 precisions S D Q 108 10−16

Three precisions
 Carson and Higham (2018)7/29

https://epubs.siam.org/doi/abs/10.1137/17M1140819

70 years of LU-IR

LU-IR: reuse LU factors to solve for di:
di = U−1L−1ri ⇒ ∥d̂i − di∥ ≤ f(n)κ(A)uf∥di∥ ⇒ ϕi = O(κ(A)uf)

Solve Ax1 = b by LU factorization uf = half
for i = 1: nsteps do

ri = b− Axi ur = quadruple
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di u = double

end for

uf u ur max κ(A) Forward error

Fixed D D D 1016 κ(A) · 10−16

Traditional D D Q 1016 10−16

LP factorization H D D 103 κ(A) · 10−16

3 precisions H D Q 103 10−16

Only well-conditioned problems can be solved
with a half precision factorization!7/29

GMRES-IR

GMRES-based IR:  Carson and Higham (2017)

• Replace LU by GMRES solver: solve Ãdi = r̃i with GMRES,
where Ã = U−1L−1A is preconditioned by LU factors

• Rationale:
◦ κ(Ã) often smaller than κ(A)
◦ GMRES can be asked to converge to accuracy u≪ uf
⇒ Ãdi = r̃i is solved with accuracy ϕi = κ(Ã)u
◦ Convergence condition improved from κ(A)uf < 1 to κ(Ã)u < 1

• The catch: the matrix–vector products are with Ã = U−1L−1A,
introduce an extra κ(A) unless performed in higher precision

Solve Ax1 = b by LU factorization at precision uf
while Not converged do

ri = b− Axi at precision ur
Solve U−1L−1Adi = U−1L−1ri by GMRES at precision u with

 products with U−1L−1A at precision u2

xi+1 = xi + di at precision u
end while

8/29

https://epubs.siam.org/doi/abs/10.1137/17M1122918

GMRES-IR

GMRES-based IR:  Carson and Higham (2017)

• Replace LU by GMRES solver: solve Ãdi = r̃i with GMRES,
where Ã = U−1L−1A is preconditioned by LU factors

• Rationale:
◦ κ(Ã) often smaller than κ(A)
◦ GMRES can be asked to converge to accuracy u≪ uf
⇒ Ãdi = r̃i is solved with accuracy ϕi = κ(Ã)u
◦ Convergence condition improved from κ(A)uf < 1 to κ(Ã)u < 1

• The catch: the matrix–vector products are with Ã = U−1L−1A,
introduce an extra κ(A) unless performed in higher precision

Solve Ax1 = b by LU factorization at precision uf
while Not converged do

ri = b− Axi at precision ur
Solve U−1L−1Adi = U−1L−1ri by GMRES at precision u with

 products with U−1L−1A at precision u2

xi+1 = xi + di at precision u
end while8/29

https://epubs.siam.org/doi/abs/10.1137/17M1122918

LU-IR vs GMRES-IR

Using κ(Ã) ≤ (1 + κ(A)uf)
2 we determine the convergence

condition on κ(A)

uf u ur max κ(A) Forward error

LU-IR S D Q 108 10−16

GMRES-IR S D Q 1016 10−16

LU-IR H D Q 103 10−16

GMRES-IR H D Q 1011 10−16

GMRES-IR can handle much more ill-conditioned matrices.

However:
• LU solves are performed at precision u2 instead of uf
⇒ practical limitation
◦ Increases cost per iteration
◦ If u is D, requires use of quad precision
◦ Practical implementations have relaxed this requirement by

replacing u2 with u, with no theoretical guarantee

9/29

LU-IR vs GMRES-IR

Using κ(Ã) ≤ (1 + κ(A)uf)
2 we determine the convergence

condition on κ(A)

uf u ur max κ(A) Forward error

LU-IR S D Q 108 10−16

GMRES-IR S D Q 1016 10−16

LU-IR H D Q 103 10−16

GMRES-IR H D Q 1011 10−16

GMRES-IR can handle much more ill-conditioned matrices.
However:
• LU solves are performed at precision u2 instead of uf
⇒ practical limitation
◦ Increases cost per iteration
◦ If u is D, requires use of quad precision
◦ Practical implementations have relaxed this requirement by

replacing u2 with u, with no theoretical guarantee9/29

Rethinking GMRES-IR

• Goal: solve Adi = ri with GMRES and bound ϕi = ∥d̂i−di∥/∥di∥
◦ In what precision do we really need to run GMRES?
◦ How much extra precision is really needed in the matvec products?

Solve Ax1 = b by LU factorization at precision uf
for i = 1: nsteps do

ri = b− Axi at precision ur
Solve Adi = ri with preconditioned GMRES at
precision u except matvecs at precision u2

xi+1 = xi + di at precision u
end for

Relax the requirements on the GMRES precisions: run at
precision ug ≤ u with matvecs at precision up ≤ u2

⇒ FIVE precisions in total!

What can we say about the convergence of this GMRES-IR5?

10/29

Rethinking GMRES-IR

• Goal: solve Adi = ri with GMRES and bound ϕi = ∥d̂i−di∥/∥di∥
◦ In what precision do we really need to run GMRES?
◦ How much extra precision is really needed in the matvec products?

Solve Ax1 = b by LU factorization at precision uf
for i = 1: nsteps do

ri = b− Axi at precision ur
Solve Adi = ri with preconditioned GMRES at
precision u except matvecs at precision u2

xi+1 = xi + di at precision u
end for

Relax the requirements on the GMRES precisions: run at
precision ug ≤ u with matvecs at precision up ≤ u2

⇒ FIVE precisions in total!

What can we say about the convergence of this GMRES-IR5?

10/29

Rethinking GMRES-IR

• Goal: solve Adi = ri with GMRES and bound ϕi = ∥d̂i−di∥/∥di∥
◦ In what precision do we really need to run GMRES?
◦ How much extra precision is really needed in the matvec products?

Solve Ax1 = b by LU factorization at precision uf
for i = 1: nsteps do

ri = b− Axi at precision ur
Solve Adi = ri with preconditioned GMRES at
precision ug except matvecs at precision up

xi+1 = xi + di at precision u
end for

Relax the requirements on the GMRES precisions: run at
precision ug ≤ u with matvecs at precision up ≤ u2

⇒ FIVE precisions in total!

What can we say about the convergence of this GMRES-IR5?
10/29

Two precision GMRES

• Unpreconditioned GMRES in precision u for Ax = b:
◦ Backward error of order u  Paige, Rozloznik, Strakos (2006)
◦ Forward error of order κ(A)u

• Two precision preconditioned GMRES for Ãx = b:
◦ Backward error of order κ(A)up + ug

• The matrix–vector products are performed with Ã = U−1L−1A:
y = U−1L−1Ax⇒ ∥ŷ− y∥ ≲ κ(A)up∥Ã∥∥x∥

• The rest is at precision ug

◦ Forward error of order κ(Ã)
(
κ(A)up + ug

)
◦ κ(Ã) ≤ (1 + κ(A)uf)

2 ⇒ ϕi ∼ κ(A)2uf
2
(
κ(A)up + ug

)
Side-result: generalization of the backward stability of GMRES to
a preconditioned two-precision GMRES
 Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2021)

11/29

https://epubs.siam.org/doi/10.1137/050630416
https://hal.archives-ouvertes.fr/hal-03190686

Five precision GMRES-IR

Solve Ax1 = b by LU factorization at precision uf
for i = 1: nsteps do

ri = b− Axi at precision ur
Solve Adi = ri with preconditioned GMRES at
precision ug except matvecs at precision up

xi+1 = xi + di at precision u
end for

Theorem (convergence of GMRES-IR5)

Under the condition (ug + κ(A)up)κ(A)2uf
2 < 1, the forward error

converges to its limiting accuracy

∥x̂− x∥
∥x∥

≤ urκ(A) + u

 Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2021)

12/29

https://hal.archives-ouvertes.fr/hal-03190686

Meaningful combinations

With five arithmetics (fp16, bfloat16, fp32, fp64, fp128) there are
over 3000 different combinations of GMRES-IR5!

They are not all relevant !

Meaningful combinations: those where none of the precisions can
be lowered without worsening either the limiting accuracy or the
convergence condition.

Filtering rules

• u2 ≤ ur ≤ u ≤ uf

• up ≤ ug

• up < uf

• up < u, up = u, up > u all possible
• ug ≥ u
• ug < uf, ug = uf, ug > uf all possible

13/29

Theoretical results

Meaningful combinations of GMRES-IR5 for uf = H and u = D.

ug up
Convergence Condition

max(κ(A))

LU-IR 2× 103

B S 3× 104

H S 4× 104

H D 9× 104

S D 8× 106

D D 3× 107

D Q 2× 1011

Five combinations between LU-IR and Carson & Higham’s
GMRES-IR⇒ More flexible precisions choice to fit at best the
hardware constraints and the problem difficulty.

14/29

Experimental results

Take 100 random matrices with specified κ(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

100 102 104 106 108 1010 1012 1014 1016

0.2

0.4

0.6

0.8

1.0

κ(A)

uf = H ug = D

LU-IR

Similar picture on many types of matrices

15/29

Experimental results

Take 100 random matrices with specified κ(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

100 102 104 106 108 1010 1012 1014 1016

0.2

0.4

0.6

0.8

1.0

κ(A)

uf = H ug = D

LU-IR

up = Q

Similar picture on many types of matrices

15/29

Experimental results

Take 100 random matrices with specified κ(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

100 102 104 106 108 1010 1012 1014 1016

0.2

0.4

0.6

0.8

1.0

κ(A)

uf = H ug = D

LU-IR

up = D

up = Q

Similar picture on many types of matrices

15/29

Experimental results

Take 100 random matrices with specified κ(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

100 102 104 106 108 1010 1012 1014 1016

0.2

0.4

0.6

0.8

1.0

κ(A)

uf = H ug = D

LU-IR
up = S

up = D

up = Q

Similar picture on many types of matrices

15/29

Experimental results

Take 100 random matrices with specified κ(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

100 102 104 106 108 1010 1012 1014 1016

0.2

0.4

0.6

0.8

1.0

κ(A)

uf = H ug = S

LU-IR
up = S

up = D

up = Q

Similar picture on many types of matrices

15/29

Experimental results

Take 100 random matrices with specified κ(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

100 102 104 106 108 1010 1012 1014 1016

0.2

0.4

0.6

0.8

1.0

κ(A)

uf = H ug = H

LU-IR
up = S

up = D

up = Q

Similar picture on many types of matrices

15/29

Low precisions
Specialized hardware
Sparsity

Low precisions
Specialized hardware
Sparsity

NVIDIA GPU tensor cores
Tensor cores units available on NVIDIA GPUs V100 carry out a
4× 4 matrix multiplication in 1 clock cycle:

D = A B + C
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp32

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16

+


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp32

• Performance boost: peaks at 125 TFLOPS (8× speedup vs
fp32, 16× on A100)

• Accuracy boost: let C = AB, with A ∈ Rm×n, B ∈ Rn×p, the
computed Ĉ satisfies

|Ĉ− C| ≲ cn|A||B|, cn =



nu16 (fp16)
2u16 + nu32 (tensor cores)
nu32 (fp32)

 Blanchard, Higham, Lopez, M., Pranesh (2020)

16/29

https://epubs.siam.org/doi/10.1137/19M1289546

NVIDIA GPU tensor cores
Tensor cores units available on NVIDIA GPUs V100 carry out a
4× 4 matrix multiplication in 1 clock cycle:

D = A B + C
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp32

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16

+


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp32

• Performance boost: peaks at 125 TFLOPS (8× speedup vs
fp32, 16× on A100)

• Accuracy boost: let C = AB, with A ∈ Rm×n, B ∈ Rn×p, the
computed Ĉ satisfies

|Ĉ− C| ≲ cn|A||B|, cn =



nu16 (fp16)
2u16 + nu32 (tensor cores)
nu32 (fp32)

 Blanchard, Higham, Lopez, M., Pranesh (2020)16/29

https://epubs.siam.org/doi/10.1137/19M1289546

NVIDIA GPU tensor cores
Tensor cores units available on NVIDIA GPUs V100 carry out a
4× 4 matrix multiplication in 1 clock cycle:

D = A B + C
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp32

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16

+


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp32

• Performance boost: peaks at 125 TFLOPS (8× speedup vs
fp32, 16× on A100)

• Accuracy boost: let C = AB, with A ∈ Rm×n, B ∈ Rn×p, the
computed Ĉ satisfies

|Ĉ− C| ≲ cn|A||B|, cn =


nu16 (fp16)

2u16 + nu32 (tensor cores)

nu32 (fp32)

 Blanchard, Higham, Lopez, M., Pranesh (2020)16/29

https://epubs.siam.org/doi/10.1137/19M1289546

NVIDIA GPU tensor cores
Tensor cores units available on NVIDIA GPUs V100 carry out a
4× 4 matrix multiplication in 1 clock cycle:

D = A B + C
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp32

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16

+


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp32

• Performance boost: peaks at 125 TFLOPS (8× speedup vs
fp32, 16× on A100)

• Accuracy boost: let C = AB, with A ∈ Rm×n, B ∈ Rn×p, the
computed Ĉ satisfies

|Ĉ− C| ≲ cn|A||B|, cn =


nu16 (fp16)
2u16 + nu32 (tensor cores)
nu32 (fp32)

 Blanchard, Higham, Lopez, M., Pranesh (2020)16/29

https://epubs.siam.org/doi/10.1137/19M1289546

Block LU factorization

with tensor cores

• Block version to use matrix–matrix operations

• O(n3) part of the flops done with tensor cores

for k = 1: n/b do
Factorize LkkUkk = Akk (with unblocked alg.)
for i = k+ 1: n/b do

Solve LikUkk = Aik and LkkUki = Aki for Lik and Uki
end for
for i = k+ 1: n/b do

for j = k+ 1: n/b do

L̃ik ← fl16(Lik) and Ũki ← fl16(Uki)

Aij ← Aij − L̃ikŨkj

using tensor cores

end for
end for

end for

17/29

Block LU factorization with tensor cores

• Block version to use matrix–matrix operations
• O(n3) part of the flops done with tensor cores

for k = 1: n/b do
Factorize LkkUkk = Akk (with unblocked alg.)
for i = k+ 1: n/b do

Solve LikUkk = Aik and LkkUki = Aki for Lik and Uki
end for
for i = k+ 1: n/b do

for j = k+ 1: n/b do
L̃ik ← fl16(Lik) and Ũki ← fl16(Uki)
Aij ← Aij − L̃ikŨkj using tensor cores

end for
end for

end for

17/29

LU factorization with tensor cores

Error analysis for LU follows from matrix multiplication analysis
and gives same bounds to first order  Blanchard et al. (2020)

Standard fp16 Tensor cores Standard fp32

nu16 2u16 + nu32 nu32

10,000 20,000 30,000 40,000

10−7

10−6

10−5

10−4

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

fp16
tensor cores

fp32

18/29

https://epubs.siam.org/doi/10.1137/19M1289546

Impact on iterative refinement

Results from  Haidar et al. (2018)

• TC accuracy boost can be critical!
• TC performance suboptimal here

⇒ why?

19/29

https://ieeexplore.ieee.org/abstract/document/8665777

Impact on iterative refinement

Results from  Haidar et al. (2018)

• TC accuracy boost can be critical!
• TC performance suboptimal here⇒ why?

19/29

https://ieeexplore.ieee.org/abstract/document/8665777

• LU factorization is traditionally a compute-bound operation…
• With Tensor Cores, flops are 8× faster
• Matrix is stored in fp32⇒ data movement is unchanged !
⇒ LU with tensor cores becomes memory-bound !

10,000 20,000 30,000 40,000 50,000

0

10

20

30

40

50

Matrix size: n

P
er
fo
rm

a
n
ce

(T
F
L
O
P
S
)

fp16

tensor cores (A in fp32)

10,000 20,000 30,000 40,000 50,000
10−7

10−6

10−5

10−4

10−3

Matrix size: n
B
a
ck
w
a
rd

er
ro
r

fp16

tensor cores (A in fp32)

• Idea: store matrix in fp16
• Problem: huge accuracy loss, tensor cores accuracy boost
completely negated

20/29

• LU factorization is traditionally a compute-bound operation…
• With Tensor Cores, flops are 8× faster
• Matrix is stored in fp32⇒ data movement is unchanged !
⇒ LU with tensor cores becomes memory-bound !

10,000 20,000 30,000 40,000 50,000

0

10

20

30

40

50

Matrix size: n

P
er
fo
rm

a
n
ce

(T
F
L
O
P
S
)

fp16

tensor cores (A in fp32)

tensor cores (A in fp16)

10,000 20,000 30,000 40,000 50,000
10−7

10−6

10−5

10−4

10−3

Matrix size: n
B
a
ck
w
a
rd

er
ro
r

fp16

tensor cores (A in fp32)

tensor cores (A in fp16)

• Idea: store matrix in fp16
• Problem: huge accuracy loss, tensor cores accuracy boost
completely negated

20/29

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation

2. Right-looking→ left-looking factorization

Matrix after 2 steps:

fp16

fp32

O(n3) fp32 + O(n2) fp16→ O(n2) fp32 + O(n3) fp16

21/29

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation

2. Right-looking→ left-looking factorization

Matrix after 2 steps:

fp16

fp32

O(n3) fp32 + O(n2) fp16→ O(n2) fp32 + O(n3) fp16

21/29

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation

2. Right-looking→ left-looking factorization

Matrix after 2 steps:

fp16

fp32

read

write

O(n3) fp32 + O(n2) fp16→ O(n2) fp32 + O(n3) fp16

21/29

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation

2. Right-looking → left-looking factorization

Matrix after 2 steps:

fp16

fp32

read

write

O(n3) fp32 + O(n2) fp16→ O(n2) fp32 + O(n3) fp16
21/29

Experimental results

10,000 20,000 30,000 40,000 50,000

0

10

20

30

40

50

Matrix size: n

P
er
fo
rm

a
n
ce

(T
F
L
O
P
S
)

fp16

tensor cores (A in fp32)

tensor cores (A in fp16)

left-looking tensor cores

10,000 20,000 30,000 40,000 50,000
10−7

10−6

10−5

10−4

10−3

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

fp16

tensor cores (A in fp32)

tensor cores (A in fp16)

left-looking tensor cores

Nearly 50 TFLOPS without significantly impacting accuracy
 Lopez and M. (2020)

22/29

http://eprints.maths.manchester.ac.uk/2782/

Low precisions
Specialized hardware
Sparsity

Low precisions
Specialized hardware
Sparsity

Sparsity and data sparsity

• Sparse matrices: exploit exact zeros
• Data sparse matrices: exploit numerical zeros

σ

τ

B
ρ σ

τ

low rank

large rank

• A block B represents the interaction between two subdomains
⇒ low numerical rank for far away subdomains

→B

23/29

BLR matrices

Block low rank (BLR) matrices use a flat 2D block partitioning
 Amestoy et al. (2015)  Amestoy et al. (2019)

Example of a BLR matrix (Schur

complement of a 643 Poisson

problem with block size 128)

• Diagonal blocks are full rank
• Off-diagonal blocks Aij are
approximated by low-rank blocks Tij
satisfying ∥Aij − Tij∥ ≤ ε∥A∥

• ε controls the backward error of BLR
LU  Higham and M. (2021)

24/29

https://epubs.siam.org/doi/abs/10.1137/120903476
https://dl.acm.org/doi/10.1145/3242094
https://doi.org/10.1093/imanum/drab020

Complexity of LU factorization

• Crucial to exploit sparsity to tackle large scale problems

Flops Storage

Dense O(n3) O(n2)
Sparse (3D domain) O(n2) O(n4/3)
BLR (constant ranks) O(n2) O(n3/2)
Sparse+BLR O(n4/3) O(n logn)

 Amestoy, Buttari, L’Excellent, M. (2017)

• In mixed precision, is sparsity a challenge or an opportunity?
⇒ A little bit of both

Challenge: ratio LU factorization cost / LU solve cost

Dense → Sparse → Sparse+BLR
O(n) → O(n2/3) → O(n1/3)

⇒ less room to amortize iterations

25/29

https://epubs.siam.org/doi/10.1137/16M1077192

Complexity of LU factorization

• Crucial to exploit sparsity to tackle large scale problems

Flops Storage

Dense O(n3) O(n2)
Sparse (3D domain) O(n2) O(n4/3)
BLR (constant ranks) O(n2) O(n3/2)
Sparse+BLR O(n4/3) O(n logn)

 Amestoy, Buttari, L’Excellent, M. (2017)

• In mixed precision, is sparsity a challenge or an opportunity?
⇒ A little bit of both

Challenge: ratio LU factorization cost / LU solve cost

Dense → Sparse → Sparse+BLR
O(n) → O(n2/3) → O(n1/3)

⇒ less room to amortize iterations
25/29

https://epubs.siam.org/doi/10.1137/16M1077192

IR with sparse LU

fp32 LU (MUMPS) + IR on large sparse ill-conditioned matrices
Time (%) w.r.t. fp64 MUMPS solver

ss

n
lp

k
k

t8
0

S
er

en
a

G
eo

_
14

38

C
h

ev
ro

n
4

M
L

_
G

ee
r

T
ra

n
sp

or
t

B
u

m
p

_
29

11

va
s_

st
ok

es
_

1M

H
o

ok
_

14
89

Q
u

ee
n

_
41

47

d
ie

lF
il

te
rV

2r
ea

l

F
la

n
_

15
65

P
fl

ow
_

74
2

C
u

b
e_

C
ou

p
_

d
t0

fe
m

_
h

if
re

q
_

ci
rc

u
it

L
on

g_
C

ou
p

_
d

t0

0%

25%

50%

75%

100%

n
o

co
n

ve
rg

en
ce

n
o

co
n

ve
rg

en
ce

LU-IR time GMRES-IR time

• Often more than 25% acceleration, up to 2×
• GMRES-IR slower than LU-IR but more robust

26/29

Mixed precision low rank compression
U

VT

U1 U2 U3

VT1
VT2

VT3

Σ∥B∥

ε

ε/us

ε/uh

• Low-rank compress based on, e.g., SVD:⇒ ∥B−UΣVT∥ ≤ ε,
everything stored in double precision

• Mixed precision compression: partition the SVD into several
groups of different precision

• Converting Ui and Vi to precision ui introduces error
proportional ui∥Σi∥

⇒ Need to partition Σ such that ∥Σi∥ ≤ ε/ui

27/29

Mixed precision low rank compression

U

VT

U1 U2 U3

VT1
VT2

VT3

Σ∥B∥

ε

ε/us

ε/uh

• Low-rank compress based on, e.g., SVD:⇒ ∥B−UΣVT∥ ≤ ε,
everything stored in double precision

• Mixed precision compression: partition the SVD into several
groups of different precision

• Converting Ui and Vi to precision ui introduces error
proportional ui∥Σi∥

⇒ Need to partition Σ such that ∥Σi∥ ≤ ε/ui

27/29

Mixed precision low rank compression

U

VT

U1 U2 U3

VT1
VT2

VT3

Σ∥B∥

ε

ε/us

ε/uh

• Low-rank compress based on, e.g., SVD:⇒ ∥B−UΣVT∥ ≤ ε,
everything stored in double precision

• Mixed precision compression: partition the SVD into several
groups of different precision

• Converting Ui and Vi to precision ui introduces error
proportional ui∥Σi∥

⇒ Need to partition Σ such that ∥Σi∥ ≤ ε/ui
27/29

Mixed precision BLR matrices

(Poisson, ε = 10−12)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Double

Single Half

100%

44% 30%
Most entries can be stored in precision much lower than ε !
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2021)

28/29

https://www-pequan.lip6.fr/~tmary/doc/CSE21.pdf

Mixed precision BLR matrices

(Poisson, ε = 10−12)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Double Single

Half

26% 74%

30%
Most entries can be stored in precision much lower than ε !
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2021)

28/29

https://www-pequan.lip6.fr/~tmary/doc/CSE21.pdf

Mixed precision BLR matrices

(Poisson, ε = 10−12)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Double Single Half
26% 44% 30%

Most entries can be stored in precision much lower than ε !
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2021)28/29

https://www-pequan.lip6.fr/~tmary/doc/CSE21.pdf

Conclusions

• Emerging low precisions provide new opportunities for high
performance NLA

• Mixed precision algorithms have proven highly successful at
Ax = b, even for ill-conditioned A

• Specialized hardware helps, both for speed and accuracy
• Sparsity can make things more challenging… but data sparsity
creates new mixed precision opportunities!

Slides available at https://bit.ly/la21mix
(references on next slides)

29/29

https://bit.ly/la21mix

References (mixed precision algorithms)

• E. Carson and N. J. Higham. Accelerating the Solution of Linear Systems by
Iterative Refinement in Three Precisions. SIAM J. Sci. Comput., 40(2),
A817–A847 (2018)

• E. Carson and N. J. Higham. A New Analysis of Iterative Refinement and Its
Application to Accurate Solution of Ill-Conditioned Sparse Linear Systems.
SIAM J. Sci. Comput., 39(6), A2834–A2856 (2017).

• P. R. Amestoy, A. Buttari, N. J. Higham, J.-Y. L’Excellent, T. Mary, and B.
Vieublé. Five-precision GMRES-based Iterative Refinement. MIMPS EPrint
2021.5.

• A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham. Harnessing GPU Tensor
Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative
Refinement Solvers. SC’18.

• P. Blanchard, N. J. Higham, F. Lopez, T. Mary, and S. Pranesh. Mixed
Precision Block Fused Multiply-Add: Error Analysis and Application to GPU
Tensor Cores. SIAM J. Sci. Comput. 42(3), C124–C141 (2020).

• F. Lopez and T. Mary. Mixed Precision LU Factorization on GPU Tensor Cores:
Reducing Data Movement and Memory Footprint. MIMS EPrint 2020.20.

30/29

https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
https://epubs.siam.org/doi/abs/10.1137/17M1122918
https://epubs.siam.org/doi/abs/10.1137/17M1122918
https://hal.archives-ouvertes.fr/hal-03190686
https://ieeexplore.ieee.org/abstract/document/8665777
https://ieeexplore.ieee.org/abstract/document/8665777
https://ieeexplore.ieee.org/abstract/document/8665777
https://doi.org/10.1137/19M1289546
https://doi.org/10.1137/19M1289546
https://doi.org/10.1137/19M1289546
http://eprints.maths.manchester.ac.uk/2782/
http://eprints.maths.manchester.ac.uk/2782/

References (BLR matrices)

• P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and C.
Weisbecker. Improving Multifrontal Methods by Means of Block Low-Rank
Representations SIAM J. Sci. Comput., 37(3), A1451–A1474 (2015).

• P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. On the Complexity of
the Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput., 39(4),
A1710–A1740 (2017).

• P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. Performance and
Scalability of the Block Low-Rank Multifrontal Factorization on Multicore
Architectures. ACM Trans. Math. Softw., 45(1), 2:1–2:26 (2019).

• N. J. Higham and T. Mary. Solving Block Low-Rank Linear Systems by LU
Factorization is Numerically Stable. IMA J. Numer. Anal., drab020 (2021).

• P. R. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L’Excellent,
and T. Mary. Mixed Precision Low Rank Approximations and their Application
to Block Low Rank Matrix Factorization. In preparation.

31/29

https://doi.org/10.1137/120903476
https://doi.org/10.1137/120903476
https://doi.org/10.1137/16M1077192
https://doi.org/10.1137/16M1077192
https://doi.org/10.1145/3242094
https://doi.org/10.1145/3242094
https://doi.org/10.1145/3242094
https://doi.org/10.1093/imanum/drab020
https://doi.org/10.1093/imanum/drab020

	Low precisions Specialized hardwareSparsity
	Low precisions Specialized hardwareSparsity
	Low precisions Specialized hardwareSparsity
	Low precisions Specialized hardwareSparsity
	Low precisions Specialized hardwareSparsity
	Low precisions Specialized hardwareSparsity

