
SIAM Annual Meeting 2021
23 July 2021

Data-Aware Mixed Precision Algorithms
Theo Mary

Sorbonne Université, CNRS, LIP6
https://www-pequan.lip6.fr/~tmary/

Slides available at https://bit.ly/AN21data

1/15

https://www-pequan.lip6.fr/~tmary/
https://bit.ly/AN21data

Today’s floating-point landscape

Bits
Signif. (t) Exp. Range u = 2−t

bfloat16 B 8 8 10±38 4× 10−3

fp16 H 11 5 10±5 5× 10−4

fp32 S 24 8 10±38 6× 10−8

fp64 D 53 11 10±308 1× 10−16

fp128 Q 113 15 10±4932 1× 10−34

• Low precision increasingly supported by hardware
• Great benefits: reduced storage, faster computations
• Some risks too: low precision, narrow range

⇒ Mixed precision algorithms: mix several precisions to
◦ Get the performance benefits of low precisions
◦ While preserving the accuracy and stability of the high precision

• This talk: “new” class of mixed precision algorithms that exploit
structure of the data

2/15

Today’s floating-point landscape

Bits
Signif. (t) Exp. Range u = 2−t

bfloat16 B 8 8 10±38 4× 10−3

fp16 H 11 5 10±5 5× 10−4

fp32 S 24 8 10±38 6× 10−8

fp64 D 53 11 10±308 1× 10−16

fp128 Q 113 15 10±4932 1× 10−34

• Low precision increasingly supported by hardware
• Great benefits: reduced storage, faster computations
• Some risks too: low precision, narrow range

⇒ Mixed precision algorithms: mix several precisions to
◦ Get the performance benefits of low precisions
◦ While preserving the accuracy and stability of the high precision

• This talk: “new” class of mixed precision algorithms that exploit
structure of the data

2/15

Today’s floating-point landscape

Bits
Signif. (t) Exp. Range u = 2−t

bfloat16 B 8 8 10±38 4× 10−3

fp16 H 11 5 10±5 5× 10−4

fp32 S 24 8 10±38 6× 10−8

fp64 D 53 11 10±308 1× 10−16

fp128 Q 113 15 10±4932 1× 10−34

• Low precision increasingly supported by hardware
• Great benefits: reduced storage, faster computations
• Some risks too: low precision, narrow range

⇒ Mixed precision algorithms: mix several precisions to
◦ Get the performance benefits of low precisions
◦ While preserving the accuracy and stability of the high precision

• This talk: “new” class of mixed precision algorithms that exploit
structure of the data

2/15

Role of the data in finite precision computations

• Traditional error analysis of numerical algorithms is mostly
oblivious to the input data

• Example: let s = xTy =
∑n

i=1 xiyi be computed in precision u.
The standard error bound is

|̂s− s| ≤ nu|x|T|y| ⇒ |̂s− s|
|s|

≤ nuκ

• The bound only depends on the input x and y via the condition
number κ = |x|T|y|

|xTy| . In particular, for nonnegative vectors, κ = 1
and so the bound is independent of the data.

• Yet, the actual error does depend on the data, and strongly so!
Examples with fp32, with xi = rand(0, 1) and X = 108 (n = 106).
◦ x1 + x2 + . . .+ xn−1 + xn ⇒ error ≈ 2× 10−5

◦ X + x2 + . . .+ xn−1 + xn ⇒ error ≈ 4× 10−3

◦ x1 + x2 + . . .+ xn−1 + X ⇒ error ≈ 1× 10−7

3/15

Role of the data in finite precision computations

• Traditional error analysis of numerical algorithms is mostly
oblivious to the input data

• Example: let s = xTy =
∑n

i=1 xiyi be computed in precision u.
The standard error bound is

|̂s− s| ≤ nu|x|T|y| ⇒ |̂s− s|
|s|

≤ nuκ

• The bound only depends on the input x and y via the condition
number κ = |x|T|y|

|xTy| . In particular, for nonnegative vectors, κ = 1
and so the bound is independent of the data.

• Yet, the actual error does depend on the data, and strongly so!
Examples with fp32, with xi = rand(0, 1) and X = 108 (n = 106).
◦ x1 + x2 + . . .+ xn−1 + xn ⇒ error ≈ 2× 10−5

◦ X + x2 + . . .+ xn−1 + xn ⇒ error ≈ 4× 10−3

◦ x1 + x2 + . . .+ xn−1 + X ⇒ error ≈ 1× 10−7

3/15

Data-aware mixed precision computing

• Rounding errors are commensurate with the magnitude of the
data involved in the computation

| fl(a op b)− a op b| ≤ u|a op b|

• Small elements produce small errors ⇒ opportunity for mixed
precision !

• Different approaches exploit this fundamental observation at
different levels of the computation.
◦ Matrix level: multiword arithmetic
◦ Block level: data sparse solvers such as BLR, block Jacobi
◦ Column/row level: SVD, RRQR
◦ Element level: SpMV, Krylov methods

4/15

Data-aware mixed precision computing

• Rounding errors are commensurate with the magnitude of the
data involved in the computation

| fl(a op b)− a op b| ≤ u|a op b|

• Small elements produce small errors ⇒ opportunity for mixed
precision !

• Different approaches exploit this fundamental observation at
different levels of the computation.
◦ Matrix level: multiword arithmetic
◦ Block level: data sparse solvers such as BLR, block Jacobi
◦ Column/row level: SVD, RRQR
◦ Element level: SpMV, Krylov methods

4/15

Multiword arithmetic

• Double–double arithmetic most famous, but also recently:

x︸︷︷︸
fp32

≈ x1︸︷︷︸
fp16

+ x2︸︷︷︸
fp16

or x1︸︷︷︸
bfloat16

+ x2︸︷︷︸
bfloat16

+ x3︸︷︷︸
bfloat16

 Markidis et al. (2018)  Henry et al. (2019)

• Applying this elementwise to A = A1 + . . .+ Ap and
B = B1 + . . .+ Bp to compute C = AB as

C =

p∑
i=1

p∑
j=1

AiBj

• The p2 terms AiBj are not all needed because |AiBj| ≤ ui+j−2
16

• For the same reason, using a more accurate matrix mult.
algorithm on A1B1 is helpful

5/15

https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1109/ARITH.2019.00019

Double–fp16 arithmetic with tensor cores

104 105 106

10

15

20

Matrix size: n

P
er
fo
rm

a
n
ce

(T
F
L
O
P
S
)

Standard

104 105 106

10−5

10−4

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

Standard

• Compute C = AB as A1B1 + A2B1 + A1B2 on V100 GPUs
• Three variants:

◦ Standard: use standard matrix mult. algorithm for each term

◦ FABsum: use FABsum (more accurate) algorithm for each term
◦ FABsum (only A1B1): use FABsum on A1B1 and standard alg. on
A1B2 and A2B1

 Fasi, Higham, Lopez, M., Mikaitis, Pranesh (2021)6/15

https://meetings.siam.org/sess/dsp_talk.cfm?p=110964

Double–fp16 arithmetic with tensor cores

104 105 106

10

15

20

Matrix size: n

P
er
fo
rm

a
n
ce

(T
F
L
O
P
S
)

Standard

FABsum

104 105 106

10−5

10−4

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

Standard

FABsum

• Compute C = AB as A1B1 + A2B1 + A1B2 on V100 GPUs
• Three variants:

◦ Standard: use standard matrix mult. algorithm for each term
◦ FABsum: use FABsum (more accurate) algorithm for each term

◦ FABsum (only A1B1): use FABsum on A1B1 and standard alg. on
A1B2 and A2B1

 Fasi, Higham, Lopez, M., Mikaitis, Pranesh (2021)6/15

https://meetings.siam.org/sess/dsp_talk.cfm?p=110964

Double–fp16 arithmetic with tensor cores

104 105 106

10

15

20

Matrix size: n

P
er
fo
rm

a
n
ce

(T
F
L
O
P
S
)

Standard

FABsum

FABsum (only A1B1)

104 105 106

10−5

10−4

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

Standard

FABsum

FABsum (only A1B1)

• Compute C = AB as A1B1 + A2B1 + A1B2 on V100 GPUs
• Three variants:

◦ Standard: use standard matrix mult. algorithm for each term
◦ FABsum: use FABsum (more accurate) algorithm for each term
◦ FABsum (only A1B1): use FABsum on A1B1 and standard alg. on
A1B2 and A2B1

 Fasi, Higham, Lopez, M., Mikaitis, Pranesh (2021)6/15

https://meetings.siam.org/sess/dsp_talk.cfm?p=110964

BLR matrices

Target: solve Ax = b.
Can we exploit the data structure of matrix A?

• Block low rank (BLR) matrices use a
flat 2D block partitioning
 Amestoy et al. (2015, 2017, 2019)

• Diagonal blocks are full rank
• Off-diagonal blocks Aij are
approximated by low-rank blocks Tij
satisfying ∥Aij − Tij∥ ≤ ε∥A∥

Behavior of low-rank methods in uniform finite precision now well
understood  Higham and M. (2021)

• Since typically u≪ ε, effect of rounding errors usually
insignificant ⇒ ε controls the backward error of BLR LU

• Using low precision (u ≥ ε) uniformly not desirable (loss of
low-rankness)

7/15

https://dl.acm.org/doi/10.1145/3242094
https://doi.org/10.1093/imanum/drab020

BLR matrices

Target: solve Ax = b.
Can we exploit the data structure of matrix A?

• Block low rank (BLR) matrices use a
flat 2D block partitioning
 Amestoy et al. (2015, 2017, 2019)

• Diagonal blocks are full rank
• Off-diagonal blocks Aij are
approximated by low-rank blocks Tij
satisfying ∥Aij − Tij∥ ≤ ε∥A∥

Behavior of low-rank methods in uniform finite precision now well
understood  Higham and M. (2021)

• Since typically u≪ ε, effect of rounding errors usually
insignificant ⇒ ε controls the backward error of BLR LU

• Using low precision (u ≥ ε) uniformly not desirable (loss of
low-rankness)

7/15

https://dl.acm.org/doi/10.1145/3242094
https://doi.org/10.1093/imanum/drab020

BLR matrices

Target: solve Ax = b.
Can we exploit the data structure of matrix A?

• Block low rank (BLR) matrices use a
flat 2D block partitioning
 Amestoy et al. (2015, 2017, 2019)

• Diagonal blocks are full rank
• Off-diagonal blocks Aij are
approximated by low-rank blocks Tij
satisfying ∥Aij − Tij∥ ≤ ε∥A∥

Behavior of low-rank methods in uniform finite precision now well
understood  Higham and M. (2021)

• Since typically u≪ ε, effect of rounding errors usually
insignificant ⇒ ε controls the backward error of BLR LU

• Using low precision (u ≥ ε) uniformly not desirable (loss of
low-rankness)

7/15

https://dl.acm.org/doi/10.1145/3242094
https://doi.org/10.1093/imanum/drab020

Data-driven mixed precision BLR matrices

Idea: store blocks far away from the diagonal in lower precisions
 Abdulah et al. (2019)  Doucet et al. (2019)  Abdulah et al. (2021)

(Poisson, ε = 10−10)

• double
• single
• half

Data-aware analysis:
• Converting Aij to precision ulow introduces an error ulow∥Aij∥

⇒ If ∥Aij∥ ≤ ε∥A∥/ulow, block can be safely stored in precision ulow

8/15

https://ieeexplore.ieee.org/abstract/document/8990439
https://ieeexplore.ieee.org/abstract/document/8945098
https://ieeexplore.ieee.org/abstract/document/9442267

Data-driven mixed precision BLR matrices

Idea: store blocks far away from the diagonal in lower precisions
 Abdulah et al. (2019)  Doucet et al. (2019)  Abdulah et al. (2021)

(Poisson, ε = 10−10)

• double
• single
• half

Data-aware analysis:
• Converting Aij to precision ulow introduces an error ulow∥Aij∥

⇒ If ∥Aij∥ ≤ ε∥A∥/ulow, block can be safely stored in precision ulow

8/15

https://ieeexplore.ieee.org/abstract/document/8990439
https://ieeexplore.ieee.org/abstract/document/8945098
https://ieeexplore.ieee.org/abstract/document/9442267

Data-driven mixed precision BLR matrices

Idea: store blocks far away from the diagonal in lower precisions
 Abdulah et al. (2019)  Doucet et al. (2019)  Abdulah et al. (2021)

(Poisson, ε = 10−10)

• double
• single
• half

Data-aware analysis:
• Converting Aij to precision ulow introduces an error ulow∥Aij∥

⇒ If ∥Aij∥ ≤ ε∥A∥/ulow, block can be safely stored in precision ulow

8/15

https://ieeexplore.ieee.org/abstract/document/8990439
https://ieeexplore.ieee.org/abstract/document/8945098
https://ieeexplore.ieee.org/abstract/document/9442267

Data-driven mixed precision low rank compression

U

VT

U1U2 U3

VT1
VT2

VT3

Σ∥B∥

ε

ε/us

ε/uh

• Low-rank compress based on, e.g., SVD: ⇒ ∥B−UΣVT∥ ≤ ε,
everything stored in double precision

• Mixed precision compression: partition the SVD into several
groups of different precision
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2021)

• Why does it work ? Data-aware analysis:
• Converting Ui and Vi to precision ui introduces error
proportional ui∥Σi∥ ⇒ Need to partition Σ such that ∥Σi∥ ≤ ε/ui

9/15

https://hal.archives-ouvertes.fr/hal-03251738

Data-driven mixed precision low rank compression

U

VT

U1U2 U3

VT1
VT2

VT3

Σ∥B∥

ε

ε/us

ε/uh

• Low-rank compress based on, e.g., SVD: ⇒ ∥B−UΣVT∥ ≤ ε,
everything stored in double precision

• Mixed precision compression: partition the SVD into several
groups of different precision
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2021)

• Why does it work ? Data-aware analysis:
• Converting Ui and Vi to precision ui introduces error
proportional ui∥Σi∥ ⇒ Need to partition Σ such that ∥Σi∥ ≤ ε/ui

9/15

https://hal.archives-ouvertes.fr/hal-03251738

Data-driven mixed precision low rank compression

U

VT

U1U2 U3

VT1
VT2

VT3

Σ∥B∥

ε

ε/us

ε/uh

• Low-rank compress based on, e.g., SVD: ⇒ ∥B−UΣVT∥ ≤ ε,
everything stored in double precision

• Mixed precision compression: partition the SVD into several
groups of different precision
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2021)

• Why does it work ? Data-aware analysis:
• Converting Ui and Vi to precision ui introduces error
proportional ui∥Σi∥ ⇒ Need to partition Σ such that ∥Σi∥ ≤ ε/ui

9/15

https://hal.archives-ouvertes.fr/hal-03251738

Back to mixed precision BLR matrices

(Poisson, ε = 10−10)

• double

⇒

{
double
double/single/half

• single

⇒ single/half

• half

Up to 3.3× BLR LU flops reduction with almost no error increase
 Amestoy et al. (2021)

10/15

https://hal.archives-ouvertes.fr/hal-03251738

Back to mixed precision BLR matrices

(Poisson, ε = 10−10)

• double ⇒

{
double
double/single/half

• single ⇒ single/half
• half

Up to 3.3× BLR LU flops reduction with almost no error increase
 Amestoy et al. (2021)

10/15

https://hal.archives-ouvertes.fr/hal-03251738

Mixed precision at the element level ?

Given a matrix A, can we benefit from storing each of its elements
in different precisions?
• Is it worth it ?
Need to have elements of widely different magnitudes, and yet
not structured in any obvious way (by blocks or columns, etc.)

• Is it practical ?
Probably not for compute-bound applications, but could it work
for memory-bound ones?

• Natural candidate: SpMV

11/15

Mixed precision at the element level ?

Given a matrix A, can we benefit from storing each of its elements
in different precisions?
• Is it worth it ?
Need to have elements of widely different magnitudes, and yet
not structured in any obvious way (by blocks or columns, etc.)

• Is it practical ?
Probably not for compute-bound applications, but could it work
for memory-bound ones?

• Natural candidate: SpMV

11/15

Data-aware analysis of SpMV

• Split row i of A into p buckets Bik and sum elements of Bik in
precision uk

yi =
p∑
i=1

y(k)i , y(k)i =
∑

aijxj∈Bik

aijxj

|̂y(k)i − y(k)i | ≤ n(k)i uk
∑

aijxj∈Bik

|aijxj|

• Can guarantee a backward error of order ε by ensuring that the
quantities

∑
aijxj∈Bik |aijxj| do not exceed ε

⇒ Explicit rule for building the buckets Bik: put small elements in
low precision bucket first, move to higher precision buckets
when “full”

12/15

Mixed precision SpMV: experiments

Matrix: bcsstk04

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

Results for x = (1, . . . , 1)T

13/15

Mixed precision SpMV: experiments

Matrix: mesh1e1

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

Results for x = (1, . . . , 1)T

13/15

Mixed precision SpMV: experiments

Matrix: arc130

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

Results for x = (1, . . . , 1)T

13/15

Mixed precision SpMV: experiments

Matrix: lund_a

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

Results for x = (1, . . . , 1)T

13/15

Mixed precision SpMV: experiments

Matrix: plat362

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

Results for x = (1, . . . , 1)T

13/15

Mixed precision SpMV: experiments

Matrix: steam3

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

Results for x = (1, . . . , 1)T

13/15

Mixed precision SpMV: role of vector x

• Critical issue: accuracy of SpMV depends on x, but not
practical to change precision of A based on x

• Can still use it and cross fingers …
• More promising avenue: use it in a setting where x is
guaranteed to be “nice”

⇒ Krylov solvers! In GMRES, x is orthonormal.

Matrix Iterations SpMV mixed cost
Uniform Mixed (% of unif.)

arc_130 5 5 16%
bcsstk04 79 79 59%
steam3 45 45 26%
lund_a 121 121 71%
mesh1e1 14 14 89%

Results with unpreconditioned unrestarted GMRES (tol = 10−6)
 Graillat, Jézéquel, M., Molina (2021)

14/15

Mixed precision SpMV: role of vector x

• Critical issue: accuracy of SpMV depends on x, but not
practical to change precision of A based on x

• Can still use it and cross fingers …
• More promising avenue: use it in a setting where x is
guaranteed to be “nice”

⇒ Krylov solvers! In GMRES, x is orthonormal.

Matrix Iterations SpMV mixed cost
Uniform Mixed (% of unif.)

arc_130 5 5 16%
bcsstk04 79 79 59%
steam3 45 45 26%
lund_a 121 121 71%
mesh1e1 14 14 89%

Results with unpreconditioned unrestarted GMRES (tol = 10−6)
 Graillat, Jézéquel, M., Molina (2021)

14/15

Mixed precision SpMV: role of vector x

• Critical issue: accuracy of SpMV depends on x, but not
practical to change precision of A based on x

• Can still use it and cross fingers …
• More promising avenue: use it in a setting where x is
guaranteed to be “nice”

⇒ Krylov solvers! In GMRES, x is orthonormal.

Matrix Iterations SpMV mixed cost
Uniform Mixed (% of unif.)

arc_130 5 5 16%
bcsstk04 79 79 59%
steam3 45 45 26%
lund_a 121 121 71%
mesh1e1 14 14 89%

Results with unpreconditioned unrestarted GMRES (tol = 10−6)
 Graillat, Jézéquel, M., Molina (2021)14/15

Conclusions

• Rounding errors are commensurate with the data involved in
the computation ⇒ rounding errors not all equally important

• Creates opportunities for mixed precision: adapt the precision
to the magnitude of the data!

• Several (seemingly unconnected) mixed precision algorithms
rely on this idea!

• Multiword arithmetic does it at the matrix level
• Mixed precision BLR solvers do it at the block level
• Mixed precision SVD does it at the column level
• Can even go to the element level in some applications: SpMV
seems a promising candidate, especially within GMRES

Thank you! Questions?
Slides available at https://bit.ly/AN21data

15/15

https://bit.ly/AN21data

Conclusions

• Rounding errors are commensurate with the data involved in
the computation ⇒ rounding errors not all equally important

• Creates opportunities for mixed precision: adapt the precision
to the magnitude of the data!

• Several (seemingly unconnected) mixed precision algorithms
rely on this idea!

• Multiword arithmetic does it at the matrix level
• Mixed precision BLR solvers do it at the block level
• Mixed precision SVD does it at the column level
• Can even go to the element level in some applications: SpMV
seems a promising candidate, especially within GMRES

Thank you! Questions?
Slides available at https://bit.ly/AN21data

15/15

https://bit.ly/AN21data

