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Today's floating-point landscape

Bits
Signif. (f/ Exp. Range u=2""
bfloatl6 B 8 8 10%3%  4x1073
fpl6 H 11 5  10%° 5x 1074

fpl28 Q 113 15 10!4932 1x 1073

e | ow precision increasingly supported by hardware

e Great benefits: reduced storage, faster computations

e Some risks too: low precision, narrow range
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Low precision increasingly supported by hardware

Great benefits: reduced storage, faster computations

Some risks too: low precision, narrow range
= Mixed precision algorithms: mix several precisions to

o Get the performance benefits of low precisions
o While preserving the accuracy and stability of the high precision
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Bits
Signif. (f/ Exp. Range u=2""
bfloatl6 B 8 8 10138  4x1073
fpl6 H 11 5  10%° 5x 1074

fpl28 Q 113 15 10!4932 1x 1073

e | ow precision increasingly supported by hardware

e Great benefits: reduced storage, faster computations
e Some risks too: low precision, narrow range
= Mixed precision algorithms: mix several precisions to
o Get the performance benefits of low precisions
o While preserving the accuracy and stability of the high precision

e This talk: "new"” class of mixed precision algorithms that exploit

structure of the data
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Role of the data in finite precision computations

e Traditional error analysis of numerical algorithms is mostly
oblivious to the input data

e Example: let s = xTy = > xiyi be computed in precision u.
The standard error bound is

s — 5|
sl
e The bound only depends on the input x and y via the condition

4
X . .
number Kk = % In particular, for nonnegative vectors, k =1

and so the bound is independent of the data.

s —s| <nulx|"ly] = < nuk
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Role of the data in finite precision computations

e Traditional error analysis of numerical algorithms is mostly
oblivious to the input data

e Example: let s = xTy = > xiyi be computed in precision u.
The standard error bound is

~ T s —s|
s—s|<nulx|'ly] = 5 < nuk
s
e The bound only depends on the input x and y via the condition

4
X . .
number Kk = % In particular, for nonnegative vectors, k =1

and so the bound is independent of the data.

e Yet, the actual error does depend on the data, and strongly so!
Examples with fp32, with x; = rand(0, 1) and X = 10% (n = 105).
o Xxi+Xa4 ...+ Xp_1+x, = errorx2x107°
o X +x94...4+%x_1+x, = erorx~4x1073
o xp+xa4...+xp_1+X = ermorx1x1077
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Data-aware mixed precision computing

e Rounding errors are commensurate with the magnitude of the
data involved in the computation

| fl(a op b) — a op b| < ula op b
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Data-aware mixed precision computing

e Rounding errors are commensurate with the magnitude of the
data involved in the computation

| fl(a op b) — a op b| < ula op b

e Small elements produce small errors = opportunity for mixed

precision !
1.0101101 x 20
+ 1.10(10110)x2¢
=1.0110000

e Different approaches exploit this fundamental observation at
different levels of the computation.
o Matrix level: multiword arithmetic
Block level: data sparse solvers such as BLR, block Jacobi
Column/row level: SVD, RRQR
Element level: SpMV, Krylov methods

O O O
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Multiword arithmetic

e Double-double arithmetic most famous, but also recently:

X ~ X1 + Xo or X1 + X9 4+ X3
~~~ ~— =~
fp32 fp16 fp16 bfloatlé  bfloatls  bfloat1é

B Markidis et al. (2018)  [3 Henry et al. (2019)

* Applying this elementwise fo A = Ay + ... + A, and
B=Bi+...+ B, tocompute C = AB as

)
ST
i=1 j=1
e The p? terms A;B; are not all needed because |A;B;| < uilzj_Q

e For the same reason, using a more accurate matrix mult.
algorithm on A1Bj is helpful
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Double-fp16 arithmetic with tensor cores
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Matrix size: n Matrix size: n

e Compute C=AB as A1B1 + AsB1 + A1Bs on V100 GPUs
e Three variants:
o Standard: use standard matrix mult. algorithm for each term

6/15 [3) Fasi, Higham, Lopez, M., Mikaitis, Pranesh (2021)
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Double-fp16 arithmetic with tensor cores
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Backward error

Performance (TFLOPS)

o e —
Matrix size: n Matrix size: n
e Compute C = AB as A1B; + A3B1 + A1By on V100 GPUs
e Three variants:

o Standard: use standard matrix mult. algorithm for each term
o FABsum: use FABsum (more accurate) algorithm for each term
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Double-fp16 arithmetic with tensor cores
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e Compute C = AB as A1B1 + AsB1 + A1B2 on V100 GPUs
e Three variants:

o Standard: use standard matrix mult. algorithm for each term

o FABsum: use FABsum (more accurate) algorithm for each term

o FABsum (only A1B1): use FABsum on A1B; and standard alg. on
AlBg and AgBl

6/15 [3) Fasi, Higham, Lopez, M., Mikaitis, Pranesh (2021)
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Target: solve Ax = b.
Can we exploit the data structure of matrix A?

715
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Target: solve Ax = b.
Can we exploit the data structure of matrix A?

e Block low rank (BLR) matrices use a
flat 2D block partitioning
[2 Amestoy et al. (2015, 2017, 2019)

e Diagonal blocks are full rank

a

e Off-diagonal blocks A are
approximated by low-rank blocks Tj
! SES satisfying [|A; — Tyl < ¢[|Al|
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Target: solve Ax = b.
Can we exploit the data structure of matrix A?

e Block low rank (BLR) matrices use a
== =8 flat 2D block partitioning
B Amestoy et al. (2015, 2017, 2019)

e Diagonal blocks are full rank

#i

e Off-diagonal blocks A are
approximated by low-rank blocks Tj
! SES satisfying [|A; — Tyl < ¢[|Al|

Behavior of low-rank methods in uniform finite precision now well

understood [3 Higham and M. (2021)

e Since typically u < ¢, effect of rounding errors usually
insignificant = € controls the backward error of BLR LU

e Using low precision (u > ¢€) uniformly not desirable (loss of

low-rankness)
7115
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Data-driven mixed precision BLR matrices

Idea: store blocks far away from the diagonal in lower precisions
[3) Abdulah et al. (2019)  [2) Doucet et al. (2019)  [2 Abdulah et al. (2021)

e double

® single
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Data-driven mixed precision BLR matrices

Idea: store blocks far away from the diagonal in lower precisions
[3) Abdulah et al. (2019)  [2) Doucet et al. (2019)  [2 Abdulah et al. (2021)

e double

® single

Data-aware analysis:
e Converting Aj to precision ujew infroduces an error ujowl|Aj|

= If ||Aj]| < €]|All/uiow, block can be safely stored in precision ujow
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Data-driven mixed precision BLR matrices

Idea: store blocks far away from the diagonal in lower precisions
[3) Abdulah et al. (2019)  [2) Doucet et al. (2019)  [2 Abdulah et al. (2021)

(Poisson, ¢ = 10719)

e double
® single

Data-aware analysis:
e Converting Aj to precision ujew infroduces an error ujowl|Aj|

= If ||Aj]| < €]|All/uiow, block can be safely stored in precision ujow
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Data-driven mixed precision low rank compression

U g =

e Low-rank compress based on, e.g,, SVD: = ||B — UXVT| < ¢,
everything stored in double precision
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Data-driven mixed precision low rank compression
UrUs Us 18| by
Vi

vi

e Low-rank compress based on, e.g,, SVD: = ||B — UXVT| < ¢,
everything stored in double precision

e Mixed precision compression: partition the SVD into several
groups of different precision
[2) Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2021)
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Data-driven mixed precision low rank compression

a2 Us g > .
Vl
£/us VI
3
e/uh

Low-rank compress based on, e.g.,, SVD: = [|B — USV'|| <,
everything stored in double precision

Mixed precision compression: partition the SVD into several
groups of different precision
[2) Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2021)

Why does it work ? Data-aware analysis:

Converting U; and V; to precision u; introduces error

. proportional u;||%;|| = Need to partition ¥ such that [|3]| < e/u;


https://hal.archives-ouvertes.fr/hal-03251738

Back to mixed precision BLR matrices

(Poisson, ¢ = 10719)

e double

e single
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Back to mixed precision BLR matrices

(Poisson, ¢ = 10719)

double
double/single/half
e single = single/half

e double = {

Up to 3.3x BLR LU flops reduction with almost no error increase
[2) Amestoy et al. (2021)
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Mixed precision at the element level 7

Given a matrix A, can we benefit from storing each of its elements
in different precisions?
e Is it worth it ?
Need to have elements of widely different magnitudes, and yet
not structured in any obvious way (by blocks or columns, etc.)
e |s it practical ?
Probably not for compute-bound applications, but could it work
for memory-bound ones?

n/1s



Mixed precision at the element level 7

Given a matrix A, can we benefit from storing each of its elements
in different precisions?
e Is it worth it ?
Need to have elements of widely different magnitudes, and yet
not structured in any obvious way (by blocks or columns, etc.)
e |s it practical ?
Probably not for compute-bound applications, but could it work
for memory-bound ones?

e Natural candidate: SpMV

n/1s



Data-aware analysis of SpMV

e Split row i of A info p buckets Bj and sum elements of Bj in
precision ug

P
YI:Z)/{(k)v y,(k)z Z ajjXj
i=1

a,'ijEB,-k

~(k k k
7 —y®1 < nuc Y- Jax)
a,]XjEB,-k
e Can guarantee a backward error of order € by ensuring that the

quantities |ajxj| do not exceed ¢

= Explicit rule for building the buckets Bj: put small elements in
low precision bucket first, move to higher precision buckets
when “full”

a,jXJEB,‘k
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Mixed precision SpMV: experiments

Matrix: besstkO4

100 100

S
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B2 10° =
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S 40 40 &
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z =
B
% 20
3 —x— Cost (%)

. —#— Error 110718

0 L L L
1071 10710 1078 100

Prescribed error

Results for x = (1,...,1)7
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Mixed precision SpMV: experiments

Matrix: meshlel
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Mixed precision SpMV: experiments

Matrix: arc130
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Mixed precision SpMV: experiments

Matrix: lund_a
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Mixed precision SpMV: experiments

Matrix: plat362
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Mixed precision SpMV: experiments

Matrix: steam3
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Mixed precision SpMV: role of vector x

e Critical issue: accuracy of SpMV depends on x, but not
practical fo change precision of A based on x

e Can still use it and cross fingers ...

e More promising avenue: use it in a setting where x is
guaranteed to be "nice”
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Mixed precision SpMV: role of vector x

e Critical issue: accuracy of SpMV depends on x, but not
practical fo change precision of A based on x

e Can still use it and cross fingers ...

e More promising avenue: use it in a setting where x is
guaranteed to be "nice”

= Krylov solvers! In GMRES, x is orthonormal.

Matrix Iterations SpMV mixed cost
Uniform  Mixed (% of unif.)
arc_130 5 5 16%
bcsstkOL4 79 79 59%
steam3 45 45 26%
lund_a 121 121 71%
meshlel 14 14 89%

Results with unpreconditioned unrestarted GMRES (tol = 1076)
14/15 [ Graillat, Jézéquel, M., Molina (2021)



Conclusions

e Rounding errors are commensurate with the data involved in
the computation = rounding errors not all equally important

e Creates opportunities for mixed precision: adapt the precision
to the magnitude of the data!
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Conclusions
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Rounding errors are commensurate with the data involved in
the computation = rounding errors not all equally important

Creates opportunities for mixed precision: adapt the precision
to the magnitude of the data!

Several (seemingly unconnected) mixed precision algorithms
rely on this idea!

Multiword arithmetic does it at the matrix level
Mixed precision BLR solvers do it at the block level
Mixed precision SVD does it at the column level

Can even go to the in some applications:
seems a promising candidate, especially within

Thank you! Questions?
Slides available at https://bit.1ly/AN21data
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