SIAM Annual Meeting 2021 23 July 2021

Data-Aware Mixed Precision Algorithms

Theo Mary

Sorbonne Université, CNRS, LIP6 https://www-pequan.lip6.fr/~tmary/ Slides available at https://bit.ly/AN21data

Today's floating-point landscape

	Bits				
		Signif. (†)	Exp.	Range	$u = 2^{-t}$
bfloat16	В	8	8	$10^{\pm 38}$	4×10^{-3}
fp16	Н	11	5	$10^{\pm 5}$	5×10^{-4}
fp32	S	24	8	$10^{\pm 38}$	6×10^{-8}
fp64	D	53	11	$10^{\pm 308}$	1×10^{-16}
fp128	Q	113	$\overline{15}$	$10^{\pm 4932}$	1×10^{-34}

- Low precision increasingly supported by hardware
- Great benefits: reduced storage, faster computations
- Some risks too: low precision, narrow range

Today's floating-point landscape

	Bits				
		Signif. (†)	Exp.	Range	$u = 2^{-t}$
bfloat16	В	8	8	$10^{\pm 38}$	4×10^{-3}
fp16	Н	11	5	$10^{\pm 5}$	5×10^{-4}
fp32	S	24	8	$10^{\pm 38}$	6×10^{-8}
fp64	D	53	11	$10^{\pm 308}$	1×10^{-16}
fp128	Q	113	15	$10^{\pm 4932}$	1×10^{-34}

- Low precision increasingly supported by hardware
- Great benefits: reduced storage, faster computations
- Some risks too: low precision, narrow range
- \Rightarrow Mixed precision algorithms: mix several precisions to
 - Get the performance benefits of low precisions
 - While preserving the accuracy and stability of the high precision

Today's floating-point landscape

	Bits				
		Signif. (†)	Exp.	Range	$u = 2^{-t}$
bfloat16	В	8	8	$10^{\pm 38}$	4×10^{-3}
fp16	Н	11	5	$10^{\pm 5}$	5×10^{-4}
fp32	S	24	8	$10^{\pm 38}$	6×10^{-8}
fp64	D	53	11	$10^{\pm 308}$	1×10^{-16}
fp128	Q	113	15	$10^{\pm 4932}$	1×10^{-34}

- Low precision increasingly supported by hardware
- Great benefits: reduced storage, faster computations
- Some risks too: low precision, narrow range
- \Rightarrow Mixed precision algorithms: mix several precisions to
 - Get the performance benefits of low precisions
 - While preserving the accuracy and stability of the high precision
 - This talk: "new" class of mixed precision algorithms that exploit structure of the data

Role of the data in finite precision computations

- Traditional error analysis of numerical algorithms is mostly oblivious to the input data
- Example: let $s = x^T y = \sum_{i=1}^n x_i y_i$ be computed in precision *u*. The standard error bound is

$$|\widehat{\mathbf{s}} - \mathbf{s}| \le nu|\mathbf{x}|^{\mathsf{T}}|\mathbf{y}| \implies \frac{|\widehat{\mathbf{s}} - \mathbf{s}|}{|\mathbf{s}|} \le nu\kappa$$

• The bound only depends on the input x and y via the condition number $\kappa = \frac{|x|^T|y|}{|x^Ty|}$. In particular, for nonnegative vectors, $\kappa = 1$ and so the bound is independent of the data.

Role of the data in finite precision computations

- Traditional error analysis of numerical algorithms is mostly oblivious to the input data
- Example: let $s = x^T y = \sum_{i=1}^n x_i y_i$ be computed in precision *u*. The standard error bound is

$$|\widehat{\mathbf{s}} - \mathbf{s}| \le nu|\mathbf{x}|^{\mathsf{T}}|\mathbf{y}| \implies \frac{|\widehat{\mathbf{s}} - \mathbf{s}|}{|\mathbf{s}|} \le nu\kappa$$

- The bound only depends on the input x and y via the condition number $\kappa = \frac{|x|^T |y|}{|x^T y|}$. In particular, for nonnegative vectors, $\kappa = 1$ and so the bound is independent of the data.
- Yet, the actual error does depend on the data, and strongly so! Examples with fp32, with $x_i = rand(0, 1)$ and $X = 10^8$ ($n = 10^6$).

$$\circ x_1 + x_2 + \ldots + x_{n-1} + x_n \quad \Rightarrow \quad \text{error} \approx 2 \times 10^{-5}$$

- $\circ X + x_2 + \ldots + x_{n-1} + x_n \quad \Rightarrow \quad \text{error} \approx 4 \times 10^{-3}$
- $\circ x_1 + x_2 + \ldots + x_{n-1} + X \Rightarrow \text{error} \approx 1 \times 10^{-7}$

Data-aware mixed precision computing

• Rounding errors are commensurate with the magnitude of the data involved in the computation

$$| fl(a \text{ op } b) - a \text{ op } b | \le u | a \text{ op } b |$$

• Rounding errors are commensurate with the magnitude of the data involved in the computation

$$|fl(a \text{ op } b) - a \text{ op } b| \le u|a \text{ op } b|$$

 Small elements produce small errors ⇒ opportunity for mixed precision !

$$\begin{array}{c} 1.0\ 1\ 0\ 1\ 1\ 0\ 1 \\ + \\ \hline 1.1\ 0(1\ 0\ 1\ 1\ 0) \times 2^{-6} \\ = 1.0\ 1\ 1\ 0\ 0\ 0\ 0 \end{array}$$

- Different approaches exploit this fundamental observation at different levels of the computation.
 - Matrix level: multiword arithmetic
 - Block level: data sparse solvers such as BLR, block Jacobi
 - Column/row level: SVD, RRQR
 - Element level: SpMV, Krylov methods

Multiword arithmetic

• Double-double arithmetic most famous, but also recently:

🖹 Markidis et al. (2018) 🛛 🖹 Henry et al. (2019)

 Applying this elementwise to A = A₁ + ... + A_p and B = B₁ + ... + B_p to compute C = AB as

$$C = \sum_{i=1}^{p} \sum_{j=1}^{p} A_{i}B_{j}$$

- The p^2 terms $A_i B_j$ are not all needed because $|A_i B_j| \le u_{16}^{i+j-2}$
- For the same reason, using a more accurate matrix mult. algorithm on *A*₁*B*₁ is helpful

Double-fp16 arithmetic with tensor cores

- Compute C = AB as $A_1B_1 + A_2B_1 + A_1B_2$ on V100 GPUs
- Three variants:
 - Standard: use standard matrix mult. algorithm for each term

Double-fp16 arithmetic with tensor cores

- Compute C = AB as $A_1B_1 + A_2B_1 + A_1B_2$ on V100 GPUs
- Three variants:
 - Standard: use standard matrix mult. algorithm for each term
 - FABsum: use FABsum (more accurate) algorithm for each term

🖹 Fasi, Higham, Lopez, M., Mikaitis, Pranesh (2021)

Double-fp16 arithmetic with tensor cores

- Compute C = AB as $A_1B_1 + A_2B_1 + A_1B_2$ on V100 GPUs
- Three variants:
 - Standard: use standard matrix mult. algorithm for each term
 - FABsum: use FABsum (more accurate) algorithm for each term
 - FABsum (only A_1B_1): use FABsum on A_1B_1 and standard alg. on A_1B_2 and A_2B_1

🖹 Fasi, Higham, Lopez, M., Mikaitis, Pranesh (2021)

BLR matrices

Target: solve Ax = b.

Can we exploit the data structure of matrix A?

BLR matrices

Target: solve Ax = b.

Can we exploit the data structure of matrix A?

- Block low rank (BLR) matrices use a flat 2D block partitioning
 Amestoy et al. (2015, 2017, 2019)
- Diagonal blocks are full rank
- Off-diagonal blocks A_{ij} are approximated by low-rank blocks T_{ij} satisfying $||A_{ij} - T_{ij}|| \le \varepsilon ||A||$

BLR matrices

Target: solve Ax = b.

Can we exploit the data structure of matrix A?

- Block low rank (BLR) matrices use a flat 2D block partitioning
 Amestoy et al. (2015, 2017, 2019)
- Diagonal blocks are full rank
- Off-diagonal blocks A_{ij} are approximated by low-rank blocks T_{ij} satisfying $||A_{ij} - T_{ij}|| \le \varepsilon ||A||$

Behavior of low-rank methods in uniform finite precision now well understood 🖹 Higham and M. (2021)

- Since typically $u \ll \varepsilon$, effect of rounding errors usually insignificant $\Rightarrow \varepsilon$ controls the backward error of BLR LU
- Using low precision $(u \ge \varepsilon)$ **uniformly** not desirable (loss of low-rankness)

Data-driven mixed precision BLR matrices

Idea: store blocks far away from the diagonal in lower precisions Abdulah et al. (2019) Doucet et al. (2019) Abdulah et al. (2021)

- double
- single
- half

Data-driven mixed precision BLR matrices

Idea: store blocks far away from the diagonal in lower precisions Abdulah et al. (2019) Doucet et al. (2019) Abdulah et al. (2021)

- double
- single
- half

Data-aware analysis:

- Converting A_{ij} to precision \mathbf{u}_{low} introduces an error $\mathbf{u}_{low} \|A_{ij}\|$
- \Rightarrow If $||A_{ij}|| \le \varepsilon ||A|| / \mathbf{u}_{low}$, block can be safely stored in precision \mathbf{u}_{low}

Data-driven mixed precision BLR matrices

Idea: store blocks far away from the diagonal in lower precisions Abdulah et al. (2019) Doucet et al. (2019) Abdulah et al. (2021)

- double
- single
- half

Data-aware analysis:

- Converting A_{ij} to precision \mathbf{u}_{low} introduces an error $\mathbf{u}_{low} \|A_{ij}\|$
- \Rightarrow If $||A_{ij}|| \le \varepsilon ||A|| / \mathbf{u}_{low}$, block can be safely stored in precision \mathbf{u}_{low}

Data-driven mixed precision low rank compression

• Low-rank compress based on, e.g., SVD: $\Rightarrow ||B - U\Sigma V^T|| \le \varepsilon$, everything stored in **double precision**

Data-driven mixed precision low rank compression

- Low-rank compress based on, e.g., SVD: $\Rightarrow ||B U\Sigma V^T|| \le \varepsilon$, everything stored in **double precision**
- Mixed precision compression: partition the SVD into several groups of different precision
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2021)

Data-driven mixed precision low rank compression

- Low-rank compress based on, e.g., SVD: $\Rightarrow ||B U\Sigma V^T|| \le \varepsilon$, everything stored in **double precision**
- Mixed precision compression: partition the SVD into several groups of different precision
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2021)
- Why does it work ? Data-aware analysis:
- Converting U_i and V_i to precision u_i introduces error proportional u_i||Σ_i|| ⇒ Need to partition Σ such that ||Σ_i|| ≤ ε/u_i

Back to mixed precision BLR matrices

- double
- single
- half

Back to mixed precision BLR matrices

Up to $3.3 \times$ BLR LU flops reduction with almost no error increase Amestoy et al. (2021) Given a matrix *A*, can we benefit from storing **each of its elements** in different precisions?

• Is it worth it ?

Need to have elements of widely different magnitudes, and yet not structured in any obvious way (by blocks or columns, etc.)

• Is it practical ?

Probably not for compute-bound applications, but could it work for memory-bound ones?

Given a matrix *A*, can we benefit from storing **each of its elements** in different precisions?

• Is it worth it ?

Need to have elements of widely different magnitudes, and yet not structured in any obvious way (by blocks or columns, etc.)

• Is it practical ?

Probably not for compute-bound applications, but could it work for memory-bound ones?

• Natural candidate: SpMV

Data-aware analysis of SpMV

• Split row *i* of A into p buckets B_{ik} and sum elements of B_{ik} in precision u_k

$$y_{i} = \sum_{i=1}^{p} y_{i}^{(k)}, \quad y_{i}^{(k)} = \sum_{a_{ij}x_{j} \in B_{ik}} a_{ij}x_{j}$$
$$|\hat{y}_{i}^{(k)} - y_{i}^{(k)}| \leq n_{i}^{(k)}u_{k} \sum_{a_{ij}x_{j} \in B_{ik}} |a_{ij}x_{j}|$$

- Can guarantee a backward error of order ε by ensuring that the quantities $\sum_{a_{ij}x_i \in B_{ik}} |a_{ij}x_j|$ do not exceed ε
- \Rightarrow Explicit rule for building the buckets B_{ik} : put small elements in low precision bucket first, move to higher precision buckets when "full"

Mixed precision SpMV: role of vector x

- Critical issue: accuracy of SpMV depends on *x*, but not practical to change precision of *A* based on *x*
- Can still use it and cross fingers ...
- More promising avenue: use it in a setting where x is guaranteed to be "nice"

Mixed precision SpMV: role of vector x

- Critical issue: accuracy of SpMV depends on *x*, but not practical to change precision of *A* based on *x*
- Can still use it and cross fingers ...
- More promising avenue: use it in a setting where x is guaranteed to be "nice"
- \Rightarrow Krylov solvers! In GMRES, x is orthonormal.

Mixed precision SpMV: role of vector x

- Critical issue: accuracy of SpMV depends on *x*, but not practical to change precision of *A* based on *x*
- Can still use it and cross fingers ...
- More promising avenue: use it in a setting where x is guaranteed to be "nice"
- \Rightarrow Krylov solvers! In GMRES, x is orthonormal.

Matrix	lterati	ons	SpMV mixed cost	
	Uniform	Mixed	(% of unif.)	
arc_130	5	5	16%	
bcsstk04	79	79	59%	
steam3	45	45	26%	
lund_a	121	121	71%	
meshlel	14	14	89%	

Results with unpreconditioned unrestarted GMRES (tol = 10^{-6})

🖹 Graillat, Jézéquel, M., Molina (2021)

Conclusions

- Rounding errors are commensurate with the data involved in the computation ⇒ rounding errors not all equally important
- Creates opportunities for mixed precision: adapt the precision to the magnitude of the data!

Conclusions

- Rounding errors are commensurate with the data involved in the computation ⇒ rounding errors not all equally important
- Creates opportunities for mixed precision: adapt the precision to the magnitude of the data!
- Several (seemingly unconnected) mixed precision algorithms rely on this idea!
- Multiword arithmetic does it at the matrix level
- Mixed precision **BLR** solvers do it at the **block level**
- Mixed precision SVD does it at the column level
- Can even go to the element level in some applications: SpMV seems a promising candidate, especially within GMRES

Thank you! Questions?

Slides available at https://bit.ly/AN21data