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Introduction




Multifrontal Factorization with Nested Dissection
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Low-rank matrices

Take a dense matrix B of size b x b and compute its SVD B = XSY:
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Low-rank matrices

Take a dense matrix B of size b X b and compute its SVD B = XSY:

B = X1S1Y1 + X2SaYy  with Sl(k, k) = 0k > €, 52(1, 1) =o0k+1 Z €
If B= X1S1Y1 then ”B - B”Q = ||X2$2Y2||2 =o0k+1 L €

If the singular values of B decay very fast (e.g. exponentially) then
k < b even for very small € (e.g. 107*) = memory and CPU
consumption can be reduced considerably with a controlled loss
of accuracy (< ¢) if B is used instead of B



Low-rank matrix formats

Frontal matrices are not low-rank but in some applications they
exhibit low-rank blocks

A block B represents the interaction be-
tween two subdomains o and T.

If they have a small diameter and are far
g away their interaction is weak = rank is
! ! low.
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H and BLR matrices

H-matrix BLR matrix
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H and BLR matrices

H-matrix BLR matrix

e Theoretical complexity can be e Theoretical complexity?

as low as O(n) = O(n*/?), as we will prove
e Complex, hierarchical e Simple structure
structure

Find a good comprise between complexity and performance

= Ongoing collaboration with STRUMPACK team (LBNL) to
compare BLR and hierarchical formats
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Applications




Experimental Setting: Matrices (1/3)

» 3D Seismic Modeling
Helmholtz equation

Single complex (c) arithmetic
Unsymmetric LU factorization
Required accuracy: ¢ = 1073
A o Credits: SEISCOPE

Depth (km)

matrix n nnz flops storage

5Hz 2.9M 70OM 650TF 59.7GB
THz 7.2M  177M | 4042 TF 205.0 GB
10Hz 17.2M 446M 2.6 PF 7108 GB

Full-Rank statistics

»  Amestoy, Brossier, Buttari, L'Excellent, Mary, Métivier, Miniussi, and Operto. Fast 3D
frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal
direct solver: application to OBC data from the North Sea, Geophysics, 2016.
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Experimental Setting: Matrices (2/3)

E,, BLR STRATEGY 2, IR =0, £5, = 1077

3D Electromagnetic Modeling

Maxwell equation

Double complex (z) arithmetic
Symmetric LDLT factorization
Required accuracy: ¢ = 1077
Credits: EMGS

memgs

matrix n nnz flops storage
E3 2.9M 37M | 579 TF 775GB
E4 17M  226M 1.8 PF 1.77T8B
S3 3.3M 43M | 78 0TF 946 GB
S4 21IM  266M 2.5 PF 21718

Full-Rank statistics

> Shantsev, Jaysaval, de la Kethulle de Ryhove, Amestoy, Buttari, L'Excellent, and Mary.
Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver,
9/30  Geophysical Journal International, 2017. Sparse Days, 6-8 Sep. 2017, Toulouse



10/30

Experimental Setting: Matrices (3/3)

3D Structural Mechanics
Double real (d) arithmetic
Symmetric LDLT factorization
Required accuracy: € = 107
Credits: Code_Aster (EDF)

matrix n nnz flops storage
perfOO8d 1.9M 81M | 101.0TF 52.6 GB
perfOO8ar 3.9M 159M | 3775 TF 129.8 GB
perfOO8cr 7.9M 321M 1.6 PF 341.1 GB
perfO09ar 54M 209M 23.4TF  40.2GB

Full-Rank statistics
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The Block-Low Rank
Factorization




Standard BLR factorization: FSCU

e FSCU

12/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Standard BLR factorization: FSCU

e FSCU (Factor,

12/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Standard BLR factorization: FSCU

e FSCU (Factor, Solve,

12/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Standard BLR factorization: FSCU

s | e | ) —|

00

-
|:|I:I
n

e FSCU (Factor, Solve, Compress,

[

12/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Standard BLR factorization: FSCU

e FSCU (Factor, Solve, Compress, Update)

12/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Standard BLR factorization: FSCU

e FSCU (Factor, Solve, Compress, Update)

12/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Standard BLR factorization: FSCU

e FSCU (Factor, Solve, Compress, Update)

12/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Standard BLR factorization: FSCU

e FSCU (Factor, Solve, Compress, Update)

12/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Standard BLR factorization: FSCU

e FSCU (Factor, Solve, Compress, Update)

12/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Standard BLR factorization: FSCU

e FSCU (Factor, Solve, Compress, Update)

12/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Standard BLR factorization: FSCU
I I

e FSCU (Factor, Solve, Compress, Update)

12/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Standard BLR factorization: FSCU

e FSCU (Factor, Solve, Compress, Update)

12/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Standard BLR factorization: FSCU

e FSCU (Factor, Solve, Compress, Update)

12/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Standard BLR factorization: FSCU

I \/

e FSCU (Factor, Solve, Compress, Update)

12/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Standard BLR factorization: FSCU

e FSCU (Factor, Solve, Compress, Update)

12/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Standard BLR factorization: FSCU

e FSCU (Factor, Solve, Compress, Update)

12/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Standard BLR factorization: FSCU

e FSCU (Factor, Solve, Compress, Update)

12/30 Sparse Days, 6-8 Sep. 2017, Toulouse



LUAR variant: accumulation and recompression

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR

13/30 Sparse Days, 6-8 Sep. 2017, Toulouse



LUAR variant: accumulation and recompression

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR
o Better granularity in Update operations

13/30 Sparse Days, 6-8 Sep. 2017, Toulouse



LUAR variant: accumulation and recompression

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR
o Better granularity in Update operations

o Potential recompression = complexity reduction: O(n%) — O(n%)
= Collaboration with LSTC to design efficient recompression strategies

13/30 Sparse Days, 6-8 Sep. 2017, Toulouse



LUAR variant: accumulation and recompression

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR

o Beftter granularity in Update operations

o Potential recompression = complexity reduction: O(n%) — O(n%)
= Collaboration with LSTC to design efficient recompression strategies

13/30 Sparse Days, 6-8 Sep. 2017, Toulouse



LUAR variant: accumulation and recompression

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR
o Better granularity in Update operations

o Potential recompression = complexity reduction: O(n%) — O(n%)
= Collaboration with LSTC to design efficient recompression strategies

13/30 Sparse Days, 6-8 Sep. 2017, Toulouse



FCSU variant: compress before solve

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR
o Better granularity in Update operations

o Potential recompression = complexity reduction: O(n%) — O(n%)
= Collaboration with LSTC to design efficient recompression strategies

e FCSU(+LUAR)

14/30 Sparse Days, 6-8 Sep. 2017, Toulouse



FCSU variant: compress before solve
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FCSU variant: compress before solve
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o Beftter granularity in Update operations
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o Potential recompression = complexity reduction: O(n3) — O(n’s )
= Collaboration with LSTC to design efficient recompression strategies
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o Restricted pivoting, e.g. to diagonal blocks
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FCSU variant: compress before solve

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR

o Beftter granularity in Update operations

o Potential recompression = complexity reduction: O(n%) — O(n%)
= Collaboration with LSTC to design efficient recompression strategies

e FCSU(+LUAR)
o Restricted pivoting, e.g. to diagonal blocks

o Low-rank Solve = complexity reduction: O(n's ) — O(n?)
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Complexity of the
factorization




H vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use H theory on BLR matrices?
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H vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use H theory on BLR matrices?

Cmin? <F

Complexity mainly depends on rmax,
the maximal rank of the blocks
With H partitioning, rmax is small

5

e Problem: in H formalism, the maxrank of the blocks of a BLR
matrix is rmax = b (due to full-rank blocks)

e H theory applied to BLR does not give a satisfying result
e Solution: extend the theory by bounding the number of
full-rank blocks

> Amestoy, Buttari, LExcellent, and Mary. On the Complexity of the Block Low-Rank
Multifrontal Factorization, SIAM SISC, 2016.
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Complexity of multifrontal BLR factorization

operations (OPC) factor size (NNZ)
r=0(1) r=0O(N) r=0(1) r=0O(N)
FR | O(n?) o(n?) O(n%) O(n%)

BLR O(n%)—O(n%) O(n%)—O(n%) O(nlogn) O(nélogn)

H O(nlogn) O(n% logn) O(nlogn) O(n% logn)

in the 3D case (similar analysis possible for 2D)

Important properties: with both r = O(1) or r = O(N)
e Complexity depends on how the BLR factorization is performed
e The BLR complexity exponent is always lower than the FR one

e The best BLR complexity is not so far from the H-case

17/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Complexity of multifrontal BLR factorization

operations (OPC) factor size (NNZ)
r=0(1) r=0O(N) r=0(1) r=0O(N)
FR | O(n?) o(n?) O(n%) O(n%)

BLR O(n%)—O(n%) O(n%)—O(n%) O(nlogn) O(nélogn)

H O(nlogn) O(n% logn) O(nlogn) O(n% logn)

in the 3D case (similar analysis possible for 2D)

Important properties: with both r = O(1) or r = O(N)
e Complexity depends on how the BLR factorization is performed
e The BLR complexity exponent is always lower than the FR one

e The best BLR complexity is not so far from the H-case
How to convert complexity reduction into performance gain?
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Performance on Multicores




Experimental Setting

Experiments are done on the brunch shared-memory machine of
the LIP laboratory of Lyon:

e Four Intel(r) 24-cores Broadwell @ 2,2 GHz
e Peak per core is 35.2 GF/s
e Total memory is 1.5 TB

19/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Getting Gflops/s out of the BLR factorization

Follow the FR/BLR ratio on matrix S3

e Flop: 7.7 ratio
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Getting Gflops/s out of the BLR factorization

Follow the FR/BLR ratio on matrix S3

e Flop: 7.7 ratio

e Time:
o Sequential (1 thread): 3.3 ratio
o Multithreaded (24 threads): 1.7 ratio

e Tree-based multithreading is critical because the bottom of the
assembly tree has a higher relative cost in BLR = 1.9 ratio

e | eft-looking factorization reduces the volume of memory
transfer in BLR (“"communication-avoiding"”) = 2.4 ratio

e Accumulation (LUA) = 2.5 ratio
e Recompression (LUAR) = 2.6 ratio
e Compress before Solve (FCSU) = 3.6 ratio
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Multicore performance results (24 threads)
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>  Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Block
Low-Rank Multifrontal Factorization on Multicore Architectures, submitted to ACM
TOMS, 2017.
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FCSU variant: compress before solve

e FSCU (Factor, Solve, Compress, Update)

e FSCU+LUAR
o Beftter granularity in Update operations N
o Potential recompression = complexity reduction: O(ng) — O(n%)

= Collaboration with LSTC to design efficient recompression strategies

e FCSU(+LUAR)
o Restricted pivoting, e.g. to diagonal blocks
o Low-rank Solve = complexity reduction: O(n's ) — O(n?)
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FCSU variant: compress before solve

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR

o Beftter granularity in Update operations N
5

o Potential recompression = complexity reduction: O(n3) — O(n’s )

= Collaboration with LSTC to design efficient recompression strategies
e FCSU(+LUAR)

o Restricted pivoting, e.g. to diagonal blocks = not acceptable in

many applications
11 4
o Low-rank Solve = complexity reduction: O(ns ) — O(n3)
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Compress before Solve + pivoting: CFSU variant

How fo assess the quality of pivot k?
We need to estimate ||B. «||max:

I 1B kllmax < [1B:llz = IIXYY ll2 = [IYE |2,

assuming X is orthonormal (e.g. RRQR, SVD).

s}

rmatrix residual flops (% FR)
FSCU FCSU CFSU | FSCU FCSU CFsSU

af_shelllO | 2e-06 5e-06 L4Le-06 | 29.9 227 22.7

mario002 | 2e-06 fail le-06 | 82.8 — 72.2
perfOO9ar | 3e-13 1le-01 9e-11 | 26.0 22.7 22.1

23/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Distributed-memory BLR
factorization




Strong scalability analysis

2000

1000

500

Time (s)

250

30x10 45x10 60x10 75x10 90x10
Number of MPIs x Number of cores

e Flops reduced by 12.8 but volume of communications only by
2.2 = higher relative weight of communications

e | oad unbalance (ratio between most and less loaded
processes) increases from 1.28 to 2.57
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Communication analysis

PO

P1

P2

P3

LU messages

CB messages
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Communication analysis

PO

P1

P2

P3

LU messages

CB messages

e Volume of LU messages is reduced in BLR (compressed
factors)

e Volume of CB messages can be reduced by compressing the
CB = but it is an overhead cost

26/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Communication analysis

10 11
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e FR case: LU messages dominate
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Communication analysis

10 11

10 10

10°

108

Total bytes sent

6 < %
10 © LU messages
x x CB messages
0 2 4 6 8
Front size x104

e FR case: LU messages dominate

e BLR case: CB messages dominate = underwhelming
reduction of comms.

= CB compression allows for truly reducing the comms.
Represents an overhead cost but may lead to speedups

depending on network speed w.rt. processor speed
26/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Distributed performance results (90 x 10 cores)
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= promising preliminary results, much work left to do!
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Conclusion
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Complexity experiments: problems

1. Poisson: N2 grid with a 7-point stencil with u = 1 on the
boundary 0f2
Au="f

2. Helmholtz: N3 grid with a 27-point stencil, w is the angular
frequency, v(x) is the seismic velocity field, and u(x,w) is the
time-harmonic wavefield solution to the forcing term s(x, w).

<—A - %;2) u(x,w) = s(x,w)

w is fixed and equal to 4Hz.
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Experimental MF flop complexity: Poisson (e = 10719)

Nested Dissection
ordering (geometric)
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e good agreement with theoretical complexity
(O(n2)' O(n1'67), O(n1'55), and O(n1'33))
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Experimental MF flop complexity: Poisson (e = 10719)
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METIS ordering
(purely algebraic)
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e good agreement with theoretical complexity
(o(nZ)‘ O(n1'67), O(n1'55), and O(n1'33))

e remains close to ND complexity with METIS ordering
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Experimental MF flop complexity: Helmholtz (¢ = 107%)

Nested Dissection
ordering (geometric)
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e good agreement with theoretical complexity
(O(n2), O(n1'83), O(n1'78), and O(n1'67))

e remains close to ND complexity with METIS ordering
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Experimental MF complexity: factor size

NNZ (Poisson) NNZ (Helmholtz)
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e good agreement with theoretical complexity
(FR: O(n'33); BLR: O(nlogn) and O(n*'7logn))

30/30 Sparse Days, 6-8 Sep. 2017, Toulouse



Experimental Setting: Machines

Experiments are done on the shared-memory machines of the
LIP laboratory of Lyon:

1. brunch
o Four Intel(r) 24-cores Broadwell @ 2,2 GHz
o Peak per core is 35.2 GF/s
o Total memory is 1.5 TB

2. grunch
o Two Intel(r) 14-cores Haswell @ 2,3 GHz
o Peak per core is 36.8 GF/s
o Total memory is 768 GB
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Performance of Outer Product with LUA(R) (24 threads)

Double complex (z) performance

benchmark of Outer Product

Glops/s

0 20 40 60 80 100
Size of Outer Product

LL LUA  LUAR*

average size of Outer Product 16.5 61.0 328

12 Outer Product 3.76 3.76 1.59
flops (107 ) 1019 1019 815
. (s) Outer Product 21 14 6
fmets Total 175 167 160

* All metrics include the Recompression overhead
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Performance of Outer Product with LUA(R) (24 threads)

—
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Double complex (z) performance
benchmark of Outer Product

50

Glops/s

0 20 40 60 80 100
Size of Outer Product

LL LUA  LUAR*

average size of Outer Product

16.5 61.0 32.8

Outer Product

3.76 3.76 1.59

12
flops (x10°75) 1) 1019 1019 815
i (s) Quter Product 21 14 6
fmets 175 167 160

Total

* All metrics include the Recompression overhead
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Performance of Outer Product with LUA(R) (24 threads)

Double complex (z) performance

benchmark of Outer Product

Glops/s

—e—b=256
—e—b=512

0 20 40 60 80 100

Size of Outer Product

LL LUA  LUAR*

average size of Outer Product 16.5 61.0 328
Outer Product 3.76 376 1.59

flops (x10'2)

Total 10.19 10.19 8.15
time (s) Outer Product 21 14 6
Total 175 167 160

* All metrics include the Recompression overhead
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