
 1

presenter

Performance of Random Sampling for Computing Low-rank Approximations
of a Dense Matrix on GPUs

Théo Mary, Ichitaro Yamazaki, Jakub Kurzak,
Piotr Luszczek, Stanimire Tomov, Jack Dongarra

SC15
Austin, TX, USA
November 19, 2015

2/23

Low-Rank ApproximationLow-Rank Approximation

● For a matrix A, find B and C such that

 A ≈ B * C
m*n m*k k*n

● If ||A-BC|| ≤ ε then k=numerical rank of A
● “Low-rank” means k<<min(m,n)
● Approximation allows

– Reduced computation
– Reduced storage

SC15
Austin, TX, USA
November 19, 2015

3/23

Pivoted QR DecompositionPivoted QR Decomposition

● Pivoted QR decomposition has a form

AP = [Q
1
 Q

2
] [R

11
 R

12
]

 [R
22

]
with

– Q = [Q
1
 Q

2
] – m by n orthogonal matrix

– R = [R11 R12] – n by n upper triangular matrix
 [R22]

– P – n by n column pivot matrix
● Truncated Pivoted QR decomposition

 AP ≈ Q
1
 [R

11
 R

12
]

m*n m*k k*n

SC15
Austin, TX, USA
November 19, 2015

4/23

LAPACK's QP3LAPACK's QP3

● LAPACK's QP3 computes QR factorization with column pivoting using Level 3 BLAS
● No truncated QR available

– But only a single line change is necessary in the reference code
● Limitations:

– Includes Level 2 BLAS (in addition to Level 3 BLAS)
– Synchronization occurs at every step to pick a pivot
– Limited parallelism and data locality
– Excessive communication
– A costly update is needed when column norms drift numerically

SC15
Austin, TX, USA
November 19, 2015

5/23

Randomized Algorithm: OverviewRandomized Algorithm: Overview

● Stage I: generate Q, an orthogonal subspace spanning the range of A:

A ≈ AQTQ

● Stage II: use Q to compute low-rank approximation of A with standard deterministic methods

SC15
Austin, TX, USA
November 19, 2015

6/23

Stage I: Generating Orthogonal Subspace - IntuitionStage I: Generating Orthogonal Subspace - Intuition

● Generate random columns of B:
for i = 1, 2, …, k do

w
i
 = random(m,1)

b
i
 = w

i
A

end for
● B = [b

1
 b

2
 … b

k
]

● B is probably linearly independent
● Orthogonalize:

Q = orth(B)
● To improve robustness, use k+p columns

– p is the oversampling parameter – a small constant such as 10

SC15
Austin, TX, USA
November 19, 2015

7/23

Stage I: Generating Orthogonal Subspace - SamplingStage I: Generating Orthogonal Subspace - Sampling

● ℓ = k+p

 B = Ω * A
ℓ*n ℓ*m m*n

● Ω can be
– Gaussian random matrix

● Can use matrix-matrix multiply GEMM
– FFT matrix

● Can use FFT routines
● Padding might be necessary to get power-of-two speed

SC15
Austin, TX, USA
November 19, 2015

8/23

Sampling with GEMM or FFTSampling with GEMM or FFT

 B ≈ S * ∏ * A
ℓ*n ℓ*m m*m m*n

Method Complexity

GEMM O(mnℓ)

FFT O(mn log m)

Pruned FFT O(mn log ℓ)

m=50 000
n=500
ℓ=10..250

Lower is better

ℓ

SC15
Austin, TX, USA
November 19, 2015

9/23

Stage I: Noise Reduction Through Power MethodStage I: Noise Reduction Through Power Method

● If the singular values of A decay slowly, the sampled matrix B may contain significant noise due to the
following error bound:
||A-AQTQ|| ≤ C(Ω,p)σ

k+1

● To reduce the noise, q iterations of power method are applied:
B=Ω A (ATA)q

● This yields a new bound on noise
||A-AQTQ|| ≤ C(Ω,p)1/(2q+1)σ

k+1

● Due to round-off errors we need to reorthogonalize:
B

0
= ΩA

repeat q times:
Q

0
= orth(B

0
) ; B

1
= Q

0
AT

Q
1

= orth(B
1
) ; B

1
= Q

1
A

SC15
Austin, TX, USA
November 19, 2015

10/23

Randomized Pivoted QRRandomized Pivoted QR

● Truncated pivoted QR step:
BP ≈ Q (R

1:k
 R

k+1:n
)

= Q
k
R

1:k
(I

k
 R

1:k
-1R

k+1:n
)

= BP
1:k

(I
k
 R

1:k-1
R

k+1:n
)

=> AP ≈ AP
1:k

(I
k
 R

1:k
-1R

k+1:n
)

● QR step:
AP

1:k
 = QR

● Final approximation:
 AP ≈ Q R(I

k
 R

1:k
-1R

k+1:n
)

m*n m*k k*n
Q R

SC15
Austin, TX, USA
November 19, 2015

11/23

Pseudocode of the ImplementationPseudocode of the Implementation
1) Input: m*n matrix A

2)B
0
 = Ω A

3) for 1, 2, …, q do

4) Q
o
=orth(B

0
)

5) B
1
=Q

0
AT

6) Q
1
=orth(B

1
)

7) B
1
=Q

1
A

8)end for

9)Q, R, P = TruncatedPQR(B
q
)

10)Q, R = QR(AP
1:k

)

11)R=R(I
k
 R

1:k
-1R

k+1:n
)

12)Output: Q, R, P such that AP≈QR

SC15
Austin, TX, USA
November 19, 2015

12/23

Communication CostCommunication Cost
● Assuming two-level memory hierarch: fast (size=M) and slow

● If p and q are constant then randomized PQR converges towards communication lower bound

Algorithm #flops #words

Sampling (Gaussian) O(mnℓ) O(mnℓ/M1/2)

Iter. (mult.) O(mnℓq) O(mnℓq/M1/2)

Iter. (orth.) O((m+n)ℓ2) O((m+n)ℓ2/M1/2)

QRCP O(nℓ2) O(nℓ2)

QR O(mℓ2) O(nℓ2/M1/2)

Total O(mnℓ(1+q)) O(mnℓ(1+q)/M1/2)

QP3 O(mnk) O(mnk)

CAQP3 O(mn(m+n)) O(mn2/M1/2)

SC15
Austin, TX, USA
November 19, 2015

13/23

Orthogonalization and Numerical StabilityOrthogonalization and Numerical Stability

Algorithm Stability Cost

Householder QR ε high

Cholesky QR κ(A)2ε low

CA QR ε low

Classical Gram-Schmidt κ(A)2ε moderate

Modified Gram-Schmidt κ(A)ε high

We need orthogonalization for:
● Power method
● Factorization of sampled matrix: QR(B)

SC15
Austin, TX, USA
November 19, 2015

14/23

Cholesky QR OrthogonalizationCholesky QR Orthogonalization

● Cholesky QR algorithm:
1) Form S=XTX
2) Compute Cholesky factorization R=chol(S)
3) Solve Q=XR-1

● Possible orthogonalization schemes
– Repeat Cholesky QR multiple times
– Try Cholesky and if it fails use Householder QR
– For power method and tall-and-skinny matrices perform Cholesky on the bigger matrix and Householder

on the smaller one
– For power method orthogonalize only at some iterations
– Use mixed-precision Cholesky QR

● Our method of choice

SC15
Austin, TX, USA
November 19, 2015

15/23

Experimental SetupExperimental Setup

● Hardware:
– CPU: Intel Sandy Bridge, 16 cores
– GPU: NVIDIA Tesla K40c

● Matrices:
– Power spectrum: σi=-iα (α=3)

– Exponent spectrum: σ
i
=10-iγ (γ=0.1)

– HapMap

Power Exponent HapMap

m 500 000 500 000 503 783

n 500 500 506

k 50 50 50

p 10 10 10

ℓ 60 60 60

 σ
1

1 1 9900

 σ
k+1

8*10-6 1.3*10-5 500

 κ(A) 1.3*105 7.9*104 20

SC15
Austin, TX, USA
November 19, 2015

16/23

Orthogonalization: Numerical ResultsOrthogonalization: Numerical Results
● Test orthogonality at each iteration: ||I

ℓ
 -Q

0
Q

0
T|| and ||I

ℓ
-Q

1
Q

1
T||

● κ(B)≈κ(A)

Lower is better

SC15
Austin, TX, USA
November 19, 2015

17/23

ConvergenceConvergence

● Approximation error: ||AP – QR|| / ||A||

● Oversampling helps a lot
– No oversampling (p=0) gives an order of magnitude larger error than with oversampling (p=10)

QP3 Rand q=0 Rand q=1 Rand q=2

Power 4.47*10-5 9.08*10-5 4.59*10-5 4.45*10-5

Exponent 2.69*10-5 5.15*10-5 2.69*10-5 2.69*10-5

HapMap 5.99*10-5 9.86*10-1 8.74*10-1 8.18*10-1

SC15
Austin, TX, USA
November 19, 2015

18/23

Sampling PerformanceSampling Performance

Higher is better

SC15
Austin, TX, USA
November 19, 2015

19/23

Random QR Approx. vs QP3 – Rows VariableRandom QR Approx. vs QP3 – Rows Variable

Lower is better

SC15
Austin, TX, USA
November 19, 2015

20/23

Random QR Approx. vs QP3 – Columns VariableRandom QR Approx. vs QP3 – Columns Variable

Lower is better

SC15
Austin, TX, USA
November 19, 2015

21/23

Random QR Approx. across GPUsRandom QR Approx. across GPUs

Lower is better 3x speedup over CPU QP3

SC15
Austin, TX, USA
November 19, 2015

22/23

Random QR Approx. vs QP3 – Power Iterations VariableRandom QR Approx. vs QP3 – Power Iterations Variable

Lower is better

SC15
Austin, TX, USA
November 19, 2015

23/23

Summary and ConclusionsSummary and Conclusions

● Randomization works effectively for pivoted QR and may be considered a replacement for QP3
– Accuracy on test matrices is indistinguishable
– Further testing needed

● Randomized algorithms has attractive properties (Exascale-compliant)
– Data locality
– Higher parallelism levels
– Lack of synchronization
– Minimized communication

● New tests of usefulness needed from applications
– Clustering, …

● Possible extension: more comprehensive survey of QR implementations for low-rank approximation

