Complexity and parallelism of the
solution phase in sparse direct solvers

P. Amestoy! A. Buttari? J.-Y. L'Excellent’ T.
Mary* G. Moreau®

LINP-IRIT, 2CNRS-IRIT, 3INRIA-LIP, #University of Manchester
PMAA18, June 29, 2018

Introduction

Systems of linear equations:

Ax = b, where A is sparse. In direct methods, 3 steps:

e analysis: nested dissection;
e factorization: A — LU;
e solve: Ly = b and Ux = y.

C | n=NxN n=NxNxN
Factorization O(N?) O(N®)
Solve O(N?log N) O(N*)

Complexities on regular 2D /3D problems!. N is the grid size.

Factorization is usually the most expensive part, however solve
can be critical...

lgeor:73.

2/19

Critical solve: one RHS multiple times, multiple RHS...

Example of applications:
Helmholtz or Maxwell equations

matrix n nrhs Taero | Tsolve
bHz 2.9M 2302 44 236

EI PE
SEISCOPE 4 omg ‘ 17.24 2302 779 ‘ 2585
EMCS H3 2.8M 8000 82 569
H17 | 17.4M 8000 1559 8118

Run on EOS computer, 90 nodes (full rank solve).

More attention should be given to the complexity of the solve

phase!
3/19

Nested dissection

00000000000
00~ ~00000” ~
of Yoo o

Dy

(X 4 [3
0000000000
00~ "00000” ~00

o D1,808: D39 Dy

0. _000006. _00
0000000000000

Ordering

Nested dissection (ND): divide and conquer algorithm to reorder
variables of the matrix A to reduce fill-in and build the separator tree.

4/19

Separator tree and solve algorithm

|
e Separator tree: representation of the dependencies between
computations during the solve algorithm.

e Solve algorithm: Ly = b (resp. Ux = y) follows a bottom up
(resp. top down) traversal of the separator tree;

5/19

Separator tree and solve algorithm

e Separator tree: representation of the dependencies between
computations during the solve algorithm.

e Solve algorithm: Ly = b (resp. Ux = y) follows a bottom up
(resp. top down) traversal of the separator tree;

Critical path: longest path in the separator tree in terms of operations.

5/19

Cdense(m) = ©(m®): solve complexity for node of size m.

U

x/5

2ablm:17.

Full-rank (forward):
* y1 ¢ Lyghy;
® by b — Loy

= Cdense(m) = @(m2)

6/19

Cdense(m) = ©(m®): solve complexity for node of size m.

u X/B Full-rank (forward):
* y1 ¢ Lyghy;
® by b — Loy

= Cdense(m) = @(m2)

Block Low-rank (BLR): low-rank property on off-diagonal block:

C~ UVT, with U,V of size mx r

2ablm:17.
6/19

Cdense(m) = ©(m®): solve complexity for node of size m.

U

X/B

Full-rank (forward):
* y1 ¢ Lyghy;
® by b — Loy

= Cdense(m) = @(m2)

Block Low-rank (BLR): low-rank property on off-diagonal block:

C~ UV, with U,V of size mx r = Cdense(m) = @(m1‘5)

Complexity: O(N?log N) — O(N?) in 2D, O(N*) — ©(N?3) in 3D?

2ablm:17.

6/19

Complexity of the critical path versus total complexity

We consider the potential gain G(N) such that

C(N)

9N =z

where

e C(N) is the complexity of the solve phase;

e C°(N) is the complexity of the critical path.

Two possible applications:

e Sparse RHS: since one RHS = (1) branch of the separator tree,
G(N) is the potential gain when exploiting sparsity.
* Tree parallelism: G(N) is a metric to measure parallelism.

7/19

1. Introduction

2. Complexity analysis

3. Application

3.1 RHS sparsity
3.2 Parallelism

8/19

Complexity study

Complexity on the separator tree

E 4% nodes

Solve phase and critical path:

Let my be the size of frontal matrix at layer £ and Cgense = ©(mj') be
the dense complexity of the solve:

C(N) = Z #nodesy X Cense(me)
¢

CE(N) =) " Ftnedes; x Cdense(me)

14

10/19

Complexity on the separator tree

Nested dissection formulas 2D: #nodes, = 4¢, my = N/2‘3.

log N log N

C(N) = Z O(4° x (N/29%) =O(N™) 2°77)
IogN el:goN

CE(N) = Z 0% x (N/29)™) =O(N™ > 27%)
£=0

Depending on the values of a:

| c(n) ce(N)
FR (o =2) @(N2 log) @(Nz)
BLR (a=15) | O(N?) O(N9)

Complexity analysis results for 2D regular problems.

11/19

Asymptotic complexity analysis

Same applies for 3D problems.

| Gap(N) Gsp(N)

FR (o =2) O(logN) ©(1)
BLR (o= 1.5) | O(NY?) ©O(log N)

Complexity analysis results for 2D and 3D regular problems.

= Asymptotic value of G(/N) increases more rapidely in BLR!

12/19

Application

Exploiting RHS sparsity

Computation follows paths in the separator tree from active nodes to
root. Each RHS requires to traverse one branch.

X: initial
f: fill in g

When sufficiently sparse, computation of RHS vector amounts to
traverse ©(1) branches.
Does this remain true with multiple RHS ?

14/19

Extension to multiple RHS with multiple nonzeros

23456 123456 142563

f1f!

u14 72 |££ 1 17
uy 7 FIfIF]
(a) DEN (b) TP) INI (d) PO (e) FT (f) FT+BLK

Toward an optimal number of operations®

e Vertical sparsity: avoiding computation within columns;
e Horizontal sparsity: avoiding computation within rows;
¢ Column ordering: reducing interval sizes (Postorder or Flat Tree);

* Blocking: building minimal number of groups (BLK).

Samim:17.
15/19

Results on toy problems

Configuration: one RHS with one nonzero.

10t

v Dense 10%) v Dense
——fit: 10N*!log N —fit: 12N
© BLR O BLR

z ——fit: 100N>0 £, ——fit: 133N*1log N

= O Dense+ES 2 O Dense+ES
——fit: 27N'® q ——fit: 3N*0
O BLR+ES ¢ BLR+ES
——fit: 5104N"* 10 1 |—fit: 603N

lLl 1500 2000 2500 3000 35004000 v 64 96 128 160 192 224 256
N N
(a) 2D Poisson problem. (b) 3D Poisson problem.

Theory is confirmed by experimental results.
Asymptotic results were also confirmed for multiple RHS with
multiple nonzeros.

16/19

Impact on real-life problems

H3 H17 5Hz 10Hz
0PS FR BLR | FR BLR | FR BLR | FR BLR
DEN 72.01 36.8 813.41 286.15 | 15.51 12.85 | 184.68 117.77
ES 12.95 6.46 138.35 46.56 || 3.28 1.3 38.77 10.98
G(N) |s5.56 5.69 | 5.87 6.14 | 4.72 9.88 | 4.76 10.72

Number of operations (x10'?) of the forward elimination in BLR and FR.

H3 H17 5Hz 10Hz
Tr FR BLR | FR BLR | FR BLR | FR BLR
DEN 377 273 3532 2008 50 43 456 251
ES 166 119 1339 630 23 16 186 85
Gi(N) | 2.27 2.29 | 2.63 3.18 | 2.17 2.69 | 2.45 2.95

Times (s) of the forward elimination in BLR and FR. 90 nodes.

= Potential gains from BLR and ES are both significative.
However, G:(N) does not follow G(N).

17/19

Tree parallelism

G(N) is equivalent to theoretical
, speed up:

08

06 y
50% ‘

Factorization ‘ Solve
0.4 v

. Gop(N) Gap(N) | Gap(N) Gap(N)
oo FR o(1) (1) | ©(logN) o(1)
— BLR ‘ O(log N) o(1) ‘ O(NY2) O(log N)

Comparison with the factorization phase.

Distribution of operations in the separator
tree.

Consequences:

e more tree parallelism than factorization;

e should be taken into account in the design of parallel algorithms.

18/19

Conclusion
Solve phase

e Some applications are bounded by the solve time;

e More attention should be given to the solve phase.

e Exploiting sparsity becomes more efficient as the problem size
grows.

Parallelism

e Exhibits more tree parallelism;

e Design solve-oriented algorithms.

19/19

	Introduction
	Complexity study
	Application
	RHS sparsity
	Parallelism

