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Abstract. High-performance computing hardware now supports many different floating-point
formats, from 64 bits to only 4 bits. While the effects of reducing precision in numerical linear
algebra computations have been extensively studied, some of these low precision formats also possess
a very narrow range of representable values, meaning underflow and overflow are very likely. The
goal of this article is to analyze the consequences of this narrow range on the accuracy of matrix
multiplication. We describe a simple scaling that can prevent overflow while minimizing underflow.
We carry out an error analysis to bound the underflow errors and show that they should remain
dominated by the rounding errors in most practical scenarios. We also show that this conclusion
remains true when multiword arithmetic is used. We perform extensive numerical experiments that
confirm that the narrow range of low precision arithmetics should not significantly affect the accuracy
of matrix multiplication—provided a suitable scaling is used.
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1. Introduction. The error analysis of computations in floating-point arith-
metic traditionally focuses on rounding errors and assumes the absence of underflow
and overflow, because the long-standing high precision floating-point arithmetics like
binary64 and binary32 of the IEEE 754 standard [11] offer a very wide range of rep-
resentable values.

Motivated by machine learning applications, there is an emergence of hardware
supporting floating-point arithmetics not only with reduced precision, but also with
much narrower range than 32- or 64-bit arithmetic. This includes the IEEE 754
binary16 arithmetic [11, Sec. 3.6] and more recently the 4-, 6-, and 8-bit floating-
point formats in NVIDIA GPUs [3], standardized by the Open Compute Project
standards [14, 16].

This motivates two new developments:
• the incorporation of scaling techniques within standard linear algebra com-
putations in order to prevent overflow and minimize underflow;

• and new error analyses taking into account the effect of underflow, because
even with scaling the range of these new formats is so narrow that some
amount of underflow is inevitable.

This paper accomplishes this goal for matrix multiplication. We describe a simple
diagonal scaling that suffices to prevent overflow and to guarantee that the errors
resulting from underflow stay bounded. We carry out an error analysis that shows
that these underflow errors should moreover be dominated by the rounding errors in
most cases. The narrower range of these emerging low precision arithmetics should
therefore not be a cause of major concern in practice. These conclusions extend to
the use of multiword arithmetic [7], which we show to reduce both the rounding and
underflow errors by a factor of the same order.

The rest of this article is structured as follows. In Section 2, we describe a
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general model of mixed precision matrix multiplication hardware, and provide a list
of practical examples that fit into this model. In Section 3, we carry out the rounding
error analysis of matrix multiplication with such a hardware model to determine
whether underflow errors can become problematic. In Section 4 we extend our analysis
to the use of multiword arithmetic. In Section 5 we present extensive numerical
experiments that support the conclusions of our analysis. Finally, in Section 6 we
provide some concluding remarks.

2. Hardware model and examples.

2.1. The model of matrix multiplication.

Model 1 (Mixed precision MMA unit). We consider a mixed precision matrix
multiply-accumulate (MMA) unit with the following specifications to compute a given
matrix product C = AB. The input matrices A and B must be rounded to a floating-
point format, called the input format, which uses t bits of precision and an exponent
range [emin, emax], leading to:

• a unit roundoff equal to u = 2−t;
• a range of normalized numbers equal to ±[fmin, fmax], with fmin = 2emin

and fmax = 2emax(2 − 2u). If subnormal numbers are available, the interval
[−fmin, fmin] contains representable values uniformly spaced by 2ufmin. The
maximum distance between any real number in [−fmin, fmin] and the nearest
floating-point number is therefore

gmin =

{
fmin/2 if subnormals are not available

ufmin with subnormals (gradual underflow)
. (2.1)

The computation of the inner products are performed in a floating-point format, called
the accumulation format, which uses T ≥ t bits of precision and an exponent range
[Emin, Emax] ⊇ [emin, emax], leading to:

• a unit roundoff equal to U = 2−T ;
• a range of normalized numbers equal to ±[Fmin, Fmax], with Fmin = 2Emin

and Fmax = 2Emax(2− 2U). If subnormal numbers are available, the interval
[−Fmin, Fmin] contains representable values uniformly spaced by 2UFmin. The
maximum distance between any real number in [−Fmin, Fmin] and the nearest
floating-point number is therefore

Gmin =

{
Fmin/2 if subnormals are not available

UFmin with subnormals (gradual underflow)
. (2.2)

For both the input and accumulation formats, we use the following model of
floating-point arithmetic [6, Equation 2]. Assuming overflow does not occur,

f l(x) = x(1 + δ) + η, |δ| ≤ u, |η| ≤ gmin, ηδ = 0, (2.3)

where fl(x) refers to the operator that rounds x ∈ R to the nearest number repre-
sentable in the input format. Similarly,

FL(x op y) = (x op y)(1 + δ) + η, |δ| ≤ U, |η| ≤ Gmin, ηδ = 0, (2.4)

where FL(x op y) refers to the operator rounding x op y to the accumulation format
with op ∈ {+,−,×,÷}. In the above, the condition ηδ = 0 refers to the fact that
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Table 2.1. Features of the floating-point formats present in current and recently
announced hardware devices. The bottom six formats have narrow ranges whilst the
top four have relatively wide ranges. When the formats are used for inputs in Model 1,
their parameters are emin, emax, t, fmin, fmax, and u (listed in the table) and when used
in accumulation, the parameters are Emin, Emax, T , Fmin, Fmax, and U , respectively.

Format emin emax t fmin fmax u

binary64 (double) [11] -1022 1023 53 2−1022 ∼ 1.798× 10308 2−53

binary32 (single) [11] -126 127 24 2−126 ∼ 3.403× 1038 2−24

tf32 (19-bit) [5] -126 127 11 2−126 ∼ 3.401× 1038 2−11

bfloat16 [12] -126 127 8 2−126 ∼ 3.389× 1038 2−8

binary16 [11] -14 15 11 2−14 65504 2−11

fp8-E4M3 [14] -6 8 4 2−6 448 2−4

fp8-E5M2 [14] -14 15 3 2−14 57344 2−3

fp6-E2M3 [16] 0 2 4 20 7.5 2−4

fp6-E3M2 [16] -2 4 3 2−2 28 2−3

fp4-E2M1 [16] 0 2 2 20 6 2−2

each error can only be affected by either rounding or underflow, but not both at the
same time.

The models (2.3) and (2.4) assume round-to-nearest mode [11, Sec. 4.3]. However,
these models continue to hold with directed rounding modes (such as round-to-zero,
etc.) by replacing u and gmin (resp. U and Gmin) with 2u and 2gmin (resp. 2U and
2Gmin). This remark is particularly of interest for NVIDIA tensor cores, which use
round-to-nearest for the input format but round-to-zero for the accumulation format.

2.2. Practical examples of MMA hardware. We now provide some practical
examples of hardware that satisfy Model 1.

We first list in Table 2.1 the floating-point formats that are available, or were
announced to appear, in hardware. The top two formats are the traditional IEEE
754 [11] formats which we consider of relatively wide range and precision. The tf32
and bfloat16 formats that follow them have reduced precision, but have the range
almost as wide as the binary32 formats of IEEE 754.

The binary16 format is an IEEE 754 low precision format; we consider it to be a
narrow range format since the maximum representable value is 65504—approximately
33 orders of magnitude smaller than fmax of bfloat16.

The Open Compute Project (OCP) 8-bit floating-point specification [14] specifies
two 8-bit formats, their encoding, and conversion operations from wider floating-point
formats to these two new 8-bit formats. The fp8-E5M2 format is encoded in a 5-bit
exponent and a 2-bit fraction, whilst fp8-E4M3 is encoded in a 4-bit exponent and a 3-
bit fraction. The values and special values that these formats represent largely follow
the rules of IEEE 754, except in a few important cases for fp8-E4M3, as follows. fp8-
E4M3 does not represent infinities and represents only two NaN values, a negative and
positive. This way fp-E4M3 gains one extra bit pattern for increasing emax to 8 and
thus expanding the dynamic range. fp8-E5M2 represents infinities and NaNs as usual,
following the rules defined in the IEEE 754 standard, however, no interpretation for
the fraction bits of different NaNs is provided. The OCP also provides specification for
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Table 2.2. Hardware-accelerated matrix multipliers in the latest data center GPU
hardware devices, some of which are prevalent in the TOP500. † According to the
instruction set reference manual [1, Table 29] the 8-bit formats on AMD MI300 may
not be OCP [14] compliant since they have only one bit pattern for zero and different
exponent biases than the OCP formats.

Device Input format Accumulation format

NVIDIA PTX ISA 8.5 [2] fp8-E5M2 binary32
fp8-E4M3 binary32
binary16 binary16
binary16 binary32
bfloat16 binary32

tf32 binary32

AMD MI300 ISA [1, Table 27] fp8-E5M2† binary32
fp8-E4M3† binary32
binary16 binary32
bfloat16 binary32

tf32 (called xf32 in [1]) binary32

conversion operations from wider floating-point formats to the fp8 formats. It requires
saturating and non-saturating conversion modes. Saturating conversion mode returns
a maximum value in the target fp8 format when a rounded source value is higher than
the maximum representable number; in the non-saturating mode, fp8-E4M3 yields a
NaN and fp8-E5M2 an infinity.

Table 2.1 also lists two 6-bit formats and one 4-bit formats, with extremely narrow
ranges and precisions introduced in a subsequent OCP standard [16]. These are likely
to be available within the forthcoming NVIDIA Blackwell [3] architecture.

We now list in Table 2.2 some examples of hardware that implement MMA units
satisfying Model 1, along with the corresponding combinations of input and accumu-
lation formats. This type of MMA unit is commonly found on NVIDIA and AMD
GPUs, and are thus very widespread in the modern computing landscape: they appear
on more than 100 of the machines in the TOP5001.

NVIDIA GPUs provide so-called tensor cores units which can use various low
precision formats as the input format: binary16, bfloat16, tf32, and since the latest
Hopper architecture, both fp8 formats. In almost all cases, the accumulation format
is binary32. It is not specified whether this hardware is OCP-compliant.

3. Error analysis of matrix multiplication. Let A ∈ Rm×n and B ∈ Rn×q.
Our goal is to compute the product C = AB with the MMA unit of Model 1. Since
the coefficients of A and B may not belong to the range of the input format, we must
scale them. We compute

C = Λ−1
(
f l(ΛA) f l(BM)

)
M−1 (3.1)

where Λ and M are nonsingular diagonal matrices with diagonal coefficients λi and
µi, respectively and where fl(·) denotes the rounding operator (2.3). In order to avoid

1https://www.top500.org/lists/top500/list/2024/06/

https://www.top500.org/lists/top500/list/2024/06/
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introducing rounding errors in the scaling, we assume that the scaling factors λi and µi

are all powers of two. Moreover, we also assume the absence of underflows/overflows
before the scaling by Λ and M and after the scaling by Λ−1 and M−1, that is, we
assume that the matrices A, B, and C are all stored in a sufficiently high precision
format to be represented exactly.

Let θ be the maximum value that we wish to allow in ΛA and BM . Then,
the maximum coefficient on each row of ΛA and each column of BM is in (θ/2, θ].
There exists an optimal value for θ: as it increases, underflow is minimized, so we
must take its largest possible value which prevents overflow from occuring both in
the input and in the intermediate computations. Preventing overflow in the input
requires θ ≤ fmax, whereas preventing it in the accumulation requires θ ≤

√
Fmax/n.

We therefore should set

θ = min(fmax,
√
Fmax/n). (3.2)

3.1. Analysis. Let us now consider the inner product xT y between a row x of
A and a column y of B. The scaling (3.1) leads to

s = λ−1µ−1 f l(λx)T f l(µy), (3.3)

where the scaling factors λ and µ are powers of two satisfying

θ

2∥x∥∞
< λ ≤ θ

∥x∥∞
, (3.4a)

θ

2∥y∥∞
< µ ≤ θ

∥y∥∞
. (3.4b)

Let x̃ = fl(λx) and ỹ = fl(µy); they satisfy

x̃ = λx+∆x, |∆x| ≤ uλ|x|+ gmin, (3.5)

ỹ = µy +∆y, |∆y| ≤ uµ|y|+ gmin, (3.6)

where the inequalities hold componentwise: for instance, (3.5) implies |∆xi| ≤ uλ|xi|+
gmin for i = 1: n. The errors∆x and∆y contain both the conversion error to precision
u and the error gmin caused by the underflow of the coefficients of magnitude smaller
than fmin. Note that each ∆xi may be comprised of only one type of error, conversion
or underflow. We obtain

s = λ−1µ−1(λx+∆x)T (µy +∆y) (3.7)

= xT y + ε1, (3.8)

where

|ε1| ≤ λ−1|∆x|T |y|+ µ−1|x|T |∆y|+ λ−1µ−1|∆x|T |∆y| (3.9)

≤ (2u+ u2)|x|T |y|
+ gmin

(
(1 + u)(λ−1eT |y|+ µ−1|x|T e) + gminλ

−1µ−1eT e
) (3.10)

≤ (2u+ u2)|x|T |y|
+ ngmin

(
(1 + u)(λ−1∥y∥∞ + µ−1∥x∥∞) + gminλ

−1µ−1
)
,

(3.11)
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where in (3.10) e denotes the vector of all ones. Using (3.4), we have λ−1 ≤ 2θ−1∥x∥∞
and µ−1 ≤ 2θ−1∥y∥∞, which yields

|ε1| ≤ (2u+ u2)|x|T |y|
+ ngmin

(
4θ−1(1 + u)∥x∥∞∥y∥∞ + 4θ−2gmin∥x∥∞∥y∥∞

) (3.12)

= (2u+ u2)|x|T |y|+ 4nθ−1gmin(1 + u+ θ−1gmin)∥x∥∞∥y∥∞ (3.13)

= (2u+ u2)|x|T |y|+ 4nω(1 + u+ ω)∥x∥∞∥y∥∞ (3.14)

with

ω = θ−1gmin =
gmin

min
(
fmax,

√
Fmax/n

) . (3.15)

Note that the appearance of ∥x∥∞∥y∥∞, as opposed to |x|T |y|, is unavoidable. To
understand why, consider the case where x has one very large coefficient xk = ∥x∥∞,
which corresponds to a very small coefficient yk. In this case |x|T |y| can be much
smaller than ∥x∥∞∥y∥∞ and if ỹ underflows the error is not bounded by |x|T |y|.

Next, we take into account the errors that occur in the intermediate computations
in the accumulation format. We must consider both the rounding errors in precision U
and the errors caused by the possible underflow of intermediate coefficients FL(x̃kỹk).
Assume that r such coefficients underflow, each causing an underflow error bounded
by

λ−1µ−1Gmin ≤ 4θ−2Gmin∥x∥∞∥y∥∞. (3.16)

The computed ŝ therefore satisfies

ŝ = s+ ε2 (3.17)

with

|ε2| ≤ nU |λ−1x̃|T |µ−1ỹ|+ 4rθ−2Gmin∥x∥∞∥y∥∞ (3.18)

≤ nU(|x|T |y|+ |ε1|) + 4rθ−2Gmin∥x∥∞∥y∥∞, (3.19)

where the term nU |x|T |y| accounts for the rounding errors in precision U [13]. Note
that we have the bound r ≤ n, because if there are r′ multiplications that underflow,
there can be at most n−r′ underflow errors in the additions. If subnormals are flushed
to zero, this is simply because we only have n−r′ nonzero terms to sum. With gradual
underflow, this is a consequence of Sterbenz lemma [9, Thm. 2.5],[17], by which any
addition of two floating-point numbers yielding a subnormal result must be exact.

Combining (3.8) and (3.19), we finally obtain

ŝ = xT y + ε1 + ε2 = xT y + ε, (3.20)

with

|ε| ≤
(
(2u+ u2)(1 + nU) + nU

)
|x|T |y|

+
(
4nω(1 + u+ ω)(1 + nU) + 4rθ−2Gmin

)
∥x∥∞∥y∥∞.

(3.21)

Going back to the full matrix product C = AB, we have proven that the computed
Ĉ satisfies

Ĉ = AB + E (3.22)
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with

|eij | ≤
(
(2u+ u2)(1 + nU) + nU

)
|ai|T |bj |

+
(
4nω(1 + u+ ω)(1 + nU) + 4rijθ

−2Gmin

)
∥ai∥∞∥bj∥∞,

(3.23)

where eij is the coefficient of E in position (i, j), ai is the ith row of A, bj is the
jth column of B, and rij ≤ n is the number of accumulation underflows in the inner
product aTi bj . We can weaken this bound in order to bound ∥E∥ as a function of
∥A∥∥B∥, for some choice of matrix norm. For example, we have

∥E∥∞ ≤
((

2u+ u2 + 4n2ω(1 + u+ ω)
)(
1 + nU

)
+ nU + 4n2θ−2Gmin

)
∥A∥∞∥B∥∞.

(3.24)

3.2. Summary and discussion. We summarize our analysis in the following
theorem.

Theorem 3.1. Let A ∈ Rm×n and B ∈ Rn×q and consider a mixed precision
MMA unit as specified in Model 1. Let Λ and M be diagonal matrices whose co-
efficients are powers of two such that the elements of ΛA and BM are all bounded
by

θ = min
(
fmax,

√
Fmax/n

)
.

Let C = AB be computed as

C = Λ−1
(
f l(ΛA) f l(BM)

)
M−1

where f l(·) denotes the rounding operator to the input format and where the inner
products in the matrix product f l(ΛA) f l(BM) are each computed in the accumulation

format. Then the computed Ĉ satisfies

∥Ĉ −AB∥∞ ≤
((

2u+ u2 + 4n2θ−1gmin(1 + u+ θ−1gmin)
)(
1 + nU

)
+ nU + 4n2θ−2Gmin

)
∥A∥∞∥B∥∞.

(3.25)

A simplified version of bound (3.25) can be obtained by dropping second-order
terms:

∥Ĉ −AB∥∞ ≲
(
2u+ nU + 4n2θ−1gmin + 4n2θ−2Gmin

)
∥A∥∞∥B∥∞. (3.26)

This bound can be compared with the one obtained with a mixed precision MMA
unit without considering the range limitations (that is, assuming underflow does not
occur). A componentwise bound is given by Blanchard et al. [4, Thm. 3.2],

|Ĉ −AB| ≲ (2u+ nU)|A||B|, (3.27)

which implies the normwise bound

∥Ĉ −AB∥∞ ≲ (2u+ nU)∥A∥∞∥B∥∞. (3.28)

Bound (3.26) thus recovers the term 2u+nU coming from the rounding errors. In ad-
dition, it also accounts for the errors caused by underflows with the terms 4n2θ−1gmin

(input underflows) and 4n2θ−2Gmin (accumulation underflows).
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Several comments are in order. In most cases we can expect θ ≥ 1, in which case
we have θ−2Gmin ≤ θ−1gmin since U ≤ u and Fmin ≤ fmin, and therefore the error
generated by accumulation underflows is anyway bounded by the underflows in the
input. It is possible to have θ < 1 if n > Fmax, but this is conceivable only for very
large matrices and an accumulation format with a narrow range such as binary16.
Therefore, in most cases, we can expect accumulation underflows to be insignificant
compared with input underflows.

Regarding the latter, if gradual underflow is used, then gmin = ufmin ≪ u and
thus the input underflows are dominated by the rounding errors. If subnormals are not
used, then gmin = fmin/2. If Fmax is sufficiently large so that fmax ≤

√
Fmax/n and

thus θ = fmax, then ω = θ−1fmin/2 = fmin/(2fmax) corresponds to twice the inverse
width of the range of the input format. For all formats of interest, ω is smaller than
the corresponding unit roundoff u and hence we can expect the rounding errors to
remain the dominant source of errors, even with subnormals stored as zero. However,
since the ω term depends on n2 whereas the u term does not depend on n, underflows
may become problematic for large matrices.

Finally, note that if underflows occur we can only obtain a normwise bound,
as opposed to a componentwise one like (3.27). This is due to the appearance of
∥x∥∞∥y∥∞ instead of |x|T |y| in the error analysis, which is unavoidable as mentioned
before.

Overall, can the underflows become a cause of concern? There cannot be a de-
finitive answer in general, because it depends on the properties of the input and
accumulation formats, as well as the inner dimension n of the matrices. However, in
practice, for most cases of interest, we can expect the answer to be no: the under-
flows should remain dominated by the rounding errors, and thus the range limitations
should not significantly affect the accuracy of the computation—provided a suitable
scaling is used, naturally. It is indeed worth noting that if the diagonal scaling (3.1)
is not used, we are no longer able to obtain informative bounds—in fact, the relative
accuracy of the computed result can be arbitrarily bad.

4. Multiword arithmetic. Multiword arithmetic is a popular approach to en-
hance the accuracy of computations. It consists in representing numbers as the un-
evaluated sum of low precision floating-point numbers

∑p−1
i=0 w(i), where each w(i) is

a low precision “word”, and where p is the number of words. Given a number w ∈ R,
its multiword decomposition can be computed as

w(i) = fl

(
w −

i−1∑
j=0

w(j)

)
, i = 0: p− 1, (4.1)

where fl(·) rounds to the target low precision format as per (2.4). Denoting by u its
unit roundoff, the resulting decomposition achieves an error of order up:

w +∆w =

p−1∑
i=0

w(i), |∆w| ≤ up|w|. (4.2)

This can be applied elementwise to matrices A and B to obtain multiword decompo-
sitions A ≈

∑p−1
i=0 A(i) and B ≈

∑p−1
j=0 B

(j). The matrix product C = AB can then

be evaluated as the sum of the p(p + 1)/2 products A(i)B(j) of lowest order (those
for which i + j < p). Fasi et al. [7] carry out error analysis of this approach based
on a general MMA model similar to the one used by Blanchard et al. [4] (which thus
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does not take into account range limitations). They obtain an error bound of order
max(up, U); see (4.33).

In the following, we seek to analyze the effect of range limitations on the accuracy
of this multiword approach, that is, we extend the analysis of the previous section
made for a “single word” product to the case of a general p-word product.

4.1. Analysis. First, note that with the decomposition (4.1), we have |w(i)| ≤
ui(1+u)|w|, so that the magnitude of the words w(i) quickly decreases as i increases.
Without a suitable scaling these words would therefore quickly underflow. In order
to reduce the amount of underflow, we therefore employ scaling, as suggested by
Ootomo and Yokota [15] in the case p = 2, by slightly adapting the decomposition as
follows:

w(i) = fl

(
(w −

i−1∑
j=0

ujw(j))/ui

)
, i = 0: p− 1, (4.3)

which yields

w +∆w =

p−1∑
i=0

uiw(i), |∆w| ≤ up|w|. (4.4)

The idea is then to apply this decomposition elementwise on the scaled matrices ΛA
and BM : we compute

A(i) = fl

((
ΛA−

i−1∑
k=0

ukA(k)
)
/ui

)
(4.5)

B(j) = fl

((
BM −

j−1∑
k=0

ukB(k)
)
/uj

)
(4.6)

and we approximate C = AB as

C ≈ Λ−1

( ∑
i+j<p

ui+jA(i)B(j)

)
M−1. (4.7)

Let us begin by bounding the accuracy of the multiword decomposition of A and
B. Let us consider any row x of A and any column y of B, and denote x(i) and y(j)

the corresponding rows and columns of A(i) and B(j), respectively. We also denote
λ the corresponding scaling factor for row x and xk the kth coefficient of x. Let us
prove by induction on ℓ that we have

λxk =

ℓ∑
i=0

uix
(i)
k +∆x

(ℓ)
k , |∆x

(ℓ)
k | ≤ max(uℓ+1|λxk|, uℓgmin). (4.8)

For ℓ = 0, we have x
(0)
k = fl(λxk) = λxk +∆x

(0)
k , where |∆x

(0)
k | ≤ u|λxk| if x(0)

k does

not underflow, and if it does, |∆x
(0)
k | ≤ gmin. Now, assuming (4.8) holds for some ℓ,

then x
(ℓ+1)
k = fl(∆x

(ℓ)
k /uℓ+1) satisfies

x
(ℓ+1)
k =

∆x
(ℓ)
k

uℓ+1
+ ε (4.9)

where

|ε| ≤ u
|∆x

(ℓ)
k |

uℓ+1
≤ max(u|λxk|, gmin) (4.10)
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if x
(ℓ+1)
k does not underflow and |ε| ≤ gmin if it does underflow. In either case we have

uℓ+1x
(ℓ+1)
k = ∆x

(ℓ)
k +∆x

(ℓ+1)
k (4.11)

with

|∆x
(ℓ+1)
k | = |uℓ+1ε| ≤ max(uℓ+2|λxk|, uℓ+1gmin). (4.12)

This concludes the induction proof.
Since (4.8) holds for all coefficients xk of x, we obtain the vector inequality

λx =

p−1∑
i=0

uix(i) +∆x(p−1), |∆x(p−1)| ≤ max(up|λx|, up−1gmin) (4.13)

where the max() is componentwise and where we have taken ℓ = p− 1. Hence

x =

p−1∑
i=0

λ−1uix(i) +∆x, (4.14)

where since λ−1 ≤ 2θ−1∥x∥∞

|∆x| = |λ−1∆x(p−1)| ≤ max(up|x|, λ−1up−1gmin) (4.15)

≤ max(up|x|, 2up−1θ−1gmin∥x∥∞). (4.16)

Similarly we have for y

y =

p−1∑
j=0

µ−1ujy(j) +∆y, |∆y| ≤ max(up|y|, 2up−1θ−1gmin∥y∥∞). (4.17)

Going back to the full matrices A and B, we have therefore proven

A =

p−1∑
i=0

uiΛ−1A(i) +∆A, ∥∆A∥∞ ≤ ζ∥A∥∞ (4.18)

B =

p−1∑
j=0

ujB(j)M−1 +∆B, ∥∆B∥∞ ≤ ζ∥B∥∞ (4.19)

with

ζ = max(up, 2nup−1θ−1gmin). (4.20)

This generalizes the multiword decomposition error bound of order up by taking into
account possible underflows, which add the error term 2nup−1θ−1gmin.

It now remains to bound the accuracy of the product C = AB approximated
with (4.7) and computed in the accumulation format. Denoting ∆C the errors in the

computation of the products A(i)B(j) in the accumulation format, the computed Ĉ
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satisfies

Ĉ = Λ−1

( ∑
i+j<p

ui+jA(i)B(j) +∆C

)
M−1 (4.21)

= Λ−1

( p−1∑
i=0

p−1∑
j=0

ui+jA(i)B(j) −
∑

i+j≥p

ui+jA(i)B(j) +∆C

)
M−1 (4.22)

=

p−1∑
i=0

uiΛ−1A(i)

p−1∑
j=0

ujB(j)M−1 + Λ−1

(
∆C −

∑
i+j≥p

ui+jA(i)B(j)

)
M−1 (4.23)

= (A−∆A)(B −∆B) + Λ−1∆CM−1 −
∑

i+j≥p

ui+jΛ−1A(i)B(j)M−1 (4.24)

= AB + E. (4.25)

Since by construction |A(i)| ≤ (1 + u)|ΛA| and |B(j)| ≤ (1 + u)|BM |, we have∥∥∥∥ ∑
i+j≥p

ui+jΛ−1A(i)B(j)M−1

∥∥∥∥
∞

≲ (p− 1)up∥A∥∞∥B∥∞. (4.26)

To bound the error ∆C, [7, Theorem 2.1] obtains a relative error bound of order
(n+p2)U , to which we must add the accumulation underflows. Proceeding identically
to the single word analysis of the previous section, we obtain

∥∆C∥∞ ≲
(
(n+ p2)U + 4rnθ−2Gmin

)
∥A∥∞∥B∥∞, (4.27)

where r bounds the maximum number of possible underflows in the computation of
any coefficient of C: for the same reason as in the p = 1 case, we have the bound
r ≤ np(p+ 1)/2. In conclusion we have proven

∥E∥∞ ≲
(
2ζ + ζ2 + (p− 1)up

+ (n+ p2)U + 2p(p+ 1)n2θ−2Gmin

)
∥A∥∞∥B∥∞,

(4.28)

where ζ is defined in (4.20).

4.2. Summary and discussion. We summarize the extension of Theorem 3.1
to multiword arithmetic in the following theorem.

Theorem 4.1. Let A ∈ Rm×n and B ∈ Rn×q and consider a mixed precision
MMA unit as specified in Model 1. Let Λ and M be diagonal matrices whose co-
efficients are powers of two such that the elements of ΛA and BM are all bounded
by

θ = min
(
fmax,

√
Fmax/n

)
.

Let the p-word decompositions ΛA ≈
∑p−1

i=0 uiA(i) and BM ≈
∑p−1

j=0 u
jB(j) be com-

puted as

A(i) = fl

((
ΛA−

i−1∑
k=0

ukA(k)
)
/ui

)
(4.29)

B(j) = fl

((
BM −

j−1∑
k=0

ukB(k)
)
/uj

)
(4.30)
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where f l(·) denotes the rounding operator to the input format. Let C = AB be com-
puted as

C = Λ−1

( ∑
i+j<p

ui+jA(i)B(j)

)
M−1, (4.31)

where the inner products in the matrix products A(i)B(j) are all computed in the
accumulation format. Then the computed Ĉ satisfies

∥Ĉ −AB∥∞ ≲
(
(p+ 1)up + 4nup−1θ−1gmin

+ (n+ p2)U + 2p(p+ 1)n2θ−2Gmin

)
∥A∥∞∥B∥∞.

(4.32)

Bound (4.32) is to be compared with the bound obtained by Fasi et al. [7, Theo-
rem 2.1] without taking into account range limitations:

∥Ĉ −AB∥∞ ≲
(
(p+ 1)up + (n+ p2)U

)
∥A∥∞∥B∥∞. (4.33)

The comparison shows that we recover the same two terms of order up and U , and
we have two new terms of order up−1θ−1gmin and θ−2Gmin to account for the input
and accumulation underflows, respectively.

More importantly, we should compare bound (4.32) with bound (3.26) obtained
by Theorem 3.1, to check whether the conclusions of the previous sections continue
to hold with multiword arithmetic. The comparison shows that the error terms as-
sociated with the input format, 2u and 4nθ−1gmin in (3.26), are both reduced with
multiword arithmetic by a factor of order up−1, giving (p+ 1)up and 4nup−1θ−1gmin

in (4.32). Therefore, the main conclusion of Theorem 4.1 is that the use of multiword
arithmetic reduces in equal measure the rounding errors and the underflow errors as-
sociated with the input format; hence we can expect the latter to remain dominated
by the former even when p > 1.

If the number of words p is large enough so that up ≲ U + θ−2Gmin, the errors
associated with the accumulation format will dominate. However, for the same reasons
as discussed in the previous section, we can expect the accumulation underflow errors
of order θ−2Gmin to be insignificant and remain dominated by the rounding errors of
order U .

Overall, we conclude once more that underflows should not be a cause for concern,
even when rounding errors are reduced with the use of multiword arithmetic.

5. Numerical experiments.

5.1. Experimental setting. For the numerical experiments we have utilized
the CPFloat2 package [8] that allows for simulating custom-precision and custom-
range floating-point formats on a conventional hardware containing IEEE 754 bi-
nary64 arithmetic. For this work we have extended the package to be able to sim-
ulate formats with exponent limits emin and emax that do not have the constraint
emin = 1− emax imposed by the IEEE 754 standard. This allowed us to simulate the
precision and range of the fp8-E4M3 format of the OFP8 standard [14] with emin = −6
and emax = 8.

The elements of the matrices A ∈ Rm×n and B ∈ Rn×q are generated as ±10ϕ

where the sign ± is randomly chosen with equal probability and where ϕ is randomly

2https://github.com/north-numerical-computing/cpfloat

https://github.com/north-numerical-computing/cpfloat
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p = 1 p = 1 unbounded range

p = 2 p = 2 unbounded range

p = 3 p = 3 unbounded range

Fig. 5.1. Normwise relative errors of Model 1 with two 8-bit input formats and the
accumulation format binary16, compared with MATLAB’s binary64 matrix multipli-
cation. Above each figure the input-accumulation format combination and the use of
subnormals are specified.

sampled from the uniform [−ℓ, ℓ] distribution using MATLAB’s rand. This generates
matrix elements of magnitudes in the range [10−ℓ, 10ℓ]. We tested various values for
ℓ without observing significant differences in the results. In the following, we use
ℓ = 10. For the matrix dimensions, we fix the outer dimensions m = q = 10 and vary
the inner dimension n.

We measure the accuracy of matrix multiplication with the normwise relative
error

∥Ĉ − C∥∞
∥A∥∞∥B∥∞

, (5.1)

where the “exact” C is computed in binary64 arithmetic.
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Fig. 5.2. Normwise relative errors of Model 1 with one 16-bit input format and
two 8-bit formats and the accumulation format binary32, compared with MATLAB’s
binary64 matrix multiplication. Above each figure the input-accumulation format com-
bination and the use of subnormals are specified.
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The data files and code for reproducing the experiments are available3.

5.2. Experimental results. Figures 5.1 and 5.2 report the normwise relative
error (5.1) in various settings. On each row of each figure, we test various combinations
of input and accumulation formats: Figure 5.1 uses fp8 (E4M3 or E5M2) for the input
and binary16 for the accumulation, whereas Figure 5.2 uses fp8 or binary16 for the
input and binary32 for the accumulation. In each figure, the left and right columns
plot the results without and with subnormals, respectively. Finally, in each graph,
we test various number of words p ∈ {1, 2, 3}, corresponding to single-, double-, and
triple-word arithmetic as detailed in Section 4.

In each setting, we compare the error when using Model 1 with the error obtained
with an unbounded exponent range. The latter is naturally impractical, since it is
not implemented in hardware; we simply use it to determine whether the accuracy is
limited by the range or by the precision. Indeed, if the two errors overlap then we
can conclude that the narrow range has not been a limiting factor, whereas if they
diverge it means that the underflows have increased the error.

The results show that in almost all cases the two types of error overlap, which
confirms the theoretical conclusions of our error analysis: underflows do not contribute
significantly to the overall error in matrix multiplication with narrow range formats.
Importantly, this is true both for single-word and multiword arithmetic: for example,
in Figure 5.2, using triple-word arithmetic (p = 3) with fp8-E4M3 input achieves an
accuracy of order at least 10−5, despite its very narrow range.

The only case where the errors with narrow range and unbounded range slightly
diverge is in the bottom-left subplot of Figure 5.1. This corresponds to the input
format fp8-E4M3 and the accumulation format binary16, with subnormals off. The
divergence only occurs for the largest values of n. The issue here is that for large values
of n and an accumulation format with relatively narrow range such as binary16, θ
in (3.2) is equal to

√
Fmax/n =

√
65504/n. Thus when n exceeds 65504, θ becomes

smaller than 1 and as n increases small values of θ will lead to more input underflows.
The divergence disappears when using subnormals and/or binary32 accumulation,
and is in any case very small.

6. Conclusion. We have analyzed the accuracy of matrix multiplication when
using floating-point arithmetic with a narrow range of representable values. We have
used Model 1, a model of mixed precision matrix multiply–accumulate hardware which
is satisfied for several practical examples of hardware, notably the NVIDIA GPU
tensor cores.

We have proposed in (3.1) a simple scaling for matrix multiplication that suffices
to prevent overflow and minimize underflow. Using this scaling and under Model 1,
we have obtained in Theorem 3.1 an error bound that takes into account both the
rounding errors and underflow errors. The bound suggests that the underflow errors
should be dominated by the rounding errors in most practical cases: in particular,
this is the case when subnormals and/or high precision accumulation are used. We
have proved that these conclusions extend to the use of multiword arithmetic in Theo-
rem 4.1. We have also performed extensive numerical experiments that confirm these
conclusions.

Overall, we therefore expect that the narrow range of emerging low precision
arithmetics should not be a limiting factor to the accuracy of matrix multiplication.
We expect this conclusion to extend to most standard linear algebra computations,

3https://github.com/north-numerical-computing/narrow-range-FP-underflow-experiments

https://github.com/north-numerical-computing/narrow-range-FP-underflow-experiments
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provided a suitable scaling can be found—such as the one proposed in [10] for the
solution of linear systems.
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