
MULTIWORD MATRIX MULTIPLICATION OVER LARGE FINITE
FIELDS IN FLOATING-POINT ARITHMETIC∗

JÉRÉMY BERTHOMIEU† , STEF GRAILLAT† , DIMITRI LESNOFF† , AND THEO MARY†

Abstract. This article is concerned with the efficient computation of modular matrix multi-
plication C = AB mod p, a key kernel in computer algebra. We focus on floating-point arithmetic,
which allows for using efficient matrix multiplication libraries. However, the existing approach is
limited to primes p with bitsize at most half the mantissa size (e.g., 26 bits with double precision
arithmetic), and becomes quite inefficient when p approaches this limit. We present a new approach
that overcomes this limitation and can efficiently handle primes with larger bitsizes. The key idea is
to use multiword decompositions A =

∑u−1
i=0 αiAi and B =

∑v−1
j=0 βjBj , which represent A and B

as the scaled sum of u and v matrices (words) Ai and Bj with smaller coefficients. The product C
can then be reconstructed by computing uv modular products AiBj mod p. We provide a rigorous
analysis that proves the correctness of this approach for suitably chosen scaling parameters α and β.
Our analysis determines the maximum bitsize of p that can be handled for a given (u, v) decomposi-
tion; in particular, we show that using a (2, 2) decomposition suffices to handle bitsizes almost equal
to the full mantissa size (e.g., the 26 bits limit is raised to 51 bits in double precision arithmetic).
Moreover, we show that (1, v) decompositions with v > 1 are also of interest to handle intermediate
bitsizes. We perform an extensive experimental analysis for various matrix shapes and prime bit-
sizes. Our performance benchmarks on both CPU and GPU architectures confirm the efficiency of
the proposed approach, which can outperform the existing single word approach for bitsizes as low
as 23, and can handle bitsizes as high as 51 while retaining high performance.

Key words. matrix multiplication, multiword decomposition, modular arithmetic, finite fields,
floating-point arithmetic, CPU, GPU, high-performance computing, rounding error

AMS subject classifications. 65Y05, 65Y20, 65F99, 65G50

1. Introduction. We are interested in efficiently computing the modular matrix
product

C = AB mod p, (1.1)

where p ∈ N is prime, which is a key kernel in computer algebra problems. Indeed,
solving computer algebra problems requires efficient yet exact linear algebra oper-
ations on rational numbers, such a matrix inversion, linear system solving, PLUQ
factorization, echelon form, characteristic or minimal polynomial. A direct compu-
tation with rationals is infeasible due to the growth of intermediate coefficients. To
circumvent this issue, computations are done over a finite field of modular integers
Z/pZ, and the exact solution is reconstructed using, for example, the Chinese remain-
der theorem. Moreover, this reconstruction has a chance of not being valid for some
values of p, so it is desirable to handle values as large as possible to minimize this
chance. Therefore, in this article, we aim to efficiently compute (1.1) for large values
of p.

To this purpose, most computer algebra systems implement elementary arithmetic
operations and linear algebra subroutines over finite fields, see for example FLINT [9],
NTL [13] and FFLAS/Linbox [8]. These libraries use either integer or floating-point
arithmetic to represent finite field elements. FLINT adopts a GMP-based integer
approach [7], while NTL implements its own arbitrary-precision integer arithmetic.
In contrast, FFLAS uses floating-point arithmetic, which generally provides better

∗Version of January 28, 2025.
†Sorbonne Université, CNRS, LIP6, F-75005, Paris, France

(jeremy.berthomieu@lip6.fr, stef.graillat@lip6.fr, dimitri.lesnoff@lip6.fr, theo.mary@lip6.fr)

1

mailto:jeremy.berthomieu@lip6.fr
mailto:stef.graillat@lip6.fr
mailto:dimitri.lesnoff@lip6.fr
mailto:theo.mary@lip6.fr

performance due to the availability of SIMD (Single Instruction, Multiple Data) in-
structions, such as SSE, AVX, and FMA, and can take advantage of the BLAS (Basic
Linear Algebra Subprograms) libraries, which are highly optimized on modern CPUs
and GPUs. However, current floating-point approaches are limited by the restriction
to finite fields with prime moduli smaller than 226, which corresponds to half the man-
tissa bitsize in double-precision arithmetic. For primes larger than 226, these libraries
switch to (possibly arbitrary-precision) integer arithmetic, which is slower and lacks
the same level of hardware acceleration available to floating-point operations.

In this article, we propose new matrix multiplication algorithms that are able
to overcome this limitation and therefore enable more efficient modular matrix op-
erations, fully leveraging the performance potential of multicore CPUs and GPUs.
Our new algorithms are able to handle larger primes, from half all the way to the
full mantissa bitsize. The key idea to achieve this is to use the matrix multiword
decompositions

A =

u−1∑
i=0

αiAi, B =

v−1∑
j=0

βjBj , (1.2)

for which (1.1) becomes

C =

u−1∑
i=0

v−1∑
j=0

αiβjAiBj mod p. (1.3)

With a suitable choice of the scaling parameters α and β, the coefficients of matrices
Ai and Bj can be made sufficiently small so that the products AiBj mod p can be
efficiently computed with classical floating-point modular matrix multiplication algo-
rithms. We describe how to compute the decompositions (1.2) and the product (1.3)
in floating-point arithmetic, and we carry out a rigorous analysis to determine how
to choose α and β and to prove the correctness of the algorithms. In particular, we
determine the maximum size of p that can be handled depending on the number of
words u and v. This allows for adaptively selecting u and v based on the size of p, and
thus to optimize the cost of the algorithm which is proportional to uv. We also pres-
ent a concatenated variant of the algorithm that stacks together the Bj (respectively
Ai) matrices to increase the arithmetic intensity of the product, and is particularly
efficient when B (respectively A) is a tall-and-skinny (respectively short-and-wide)
matrix. We implement the proposed algorithms on both multicore CPU and GPU
architectures, and perform numerical experiments that confirm their ability to handle
primes as large as 252 while retaining high performance.

The rest of this article is organized as follows. We first describe in Section 2 the
existing single word algorithm and its limitations. We then propose the new multiword
algorithms in Section 3. We report our numerical experiments in Section 4. Finally,
we provide some concluding remarks in Section 5.

2. Existing single word algorithm and its limitations. Throughout this
article, we consider computations on integers using a floating-point arithmetic with t
bits of significand; for IEEE double precision, t = 53. We define F the set of floating-
point numbers that are nonnegative integers: this set certainly includes all integers
x such that 0 ≤ x ≤ 2t. We also define Fp the set of floating-point numbers that are
integers modulo p ∈ N, that is, less than p. For the entirety of the article, we assume
that t ≥ 3 and p ≥ 5.

2

We denote by fl(·) the result of a floating-point computation, where all operations
inside parentheses are done in floating-point working precision. We recall that floating-
point operations in the IEEE 754 standard satisfy, in absence of underflow or overflow,

fl(a op b) = (a ◦ b)(1 + η), |η| ≤ ϵ/(1 + ϵ), op ∈ {+,−,×, /}, (2.1)

where ϵ = 2−t is the unit roundoff.

2.1. Modular reductions in floating-point arithmetic. Computing exactly
with finite fields elements using floating-point arithmetic requires defining an efficient
modulo operator similar to the predefined operator for integer types. Each element

can be reduced using the FMOD instruction where FMOD (x, y) = fl
(
x−

⌊
x
y

⌋
y
)
. In a

finite field, we always reduce by the same modulus y = p and so we may precompute
its floating-point inverse q = fl(1/p). This yields Algorithm 2.1.

Algorithm 2.1: Floating-point reduction

Input : x ∈ F < 2t, a prime number p ∈ F < 2t−1, and q = fl(1/p).
Output: d ∈ Fp such that d = x mod p.

1 b = xq
2 c = ⌊ b ⌋
3 d = fma(−c, p, x) // x− cp
4 if d ≥ p then
5 d = d− p
6 if d < 0 then
7 d = d+ p

Proposition 2.1. Algorithm 2.1 is correct for any integer input x ∈ F and a
modulus p such that 4 ≤ p < 2t−1 and x < 2t.

Proof. As q = fl(1/p) it follows from (2.1) that q = (1/p)(1+η1) with |η1| ≤ ϵ/(1+
ϵ). Similarly as b = fl(xq), we have that b = (xq)(1+ η2) = (x/p)(1+ η1)(1+ η2) with
|η2| ≤ ϵ/(1 + ϵ). Approximation terms can be merged into one since b = (x/p)(1 + η)
with η = η1 + η2 + 2η1η2 and |η| ≤ 2ϵ. As by hypothesis, x ≤ 2t−2p, we have:
b ≤ (x/p)(1 + 2ϵ) < (1 + 2ϵ)2t−2 < 2t. As b < 2t, its integer part can be stored as
a floating-point number. As a consequence, c = ⌊ b ⌋. By definition of the Euclidean
division of x by p, there exist some integers q and r such that x = qp + r with
0 ≤ r < p. It follows that b = q(1 + η) + (r/p)(1 + η) which can be written as:

b = q + qη + (r/p)(1 + η)︸ ︷︷ ︸
γ

. (2.2)

We can deduce that γ ≤ 2ϵq + (r/p)(1 + 2ϵ). As r < p and q ≤ x/p ≤ 2t−2 then
2ϵq ≤ 1/2 and so γ ≤ 3/2+2ϵ < 2 as long as t ≥ 3. Moreover γ ≥ −2ϵq+(r/p)(1−2ϵ)
and so similarly γ ≥ −1/2 − 2ϵ > −1. We can conclude that b belongs to the
interval]q − 1, q + 2[and so c = ⌊ b ⌋ ∈ {q − 1, q, q + 1}. Let us now verify that
x− cp < 2t and so is exactly representable by a floating-point number. If c = q then
x− cp = r < p < 2t. If c = q−1 then x− cp = p+r ≤ 2p−1 < 2t. Finally if c = q+1
then x− cp = r − p so |x− cp| ≤ p < 2t.

In some cases we need to reduce the product of two integers whose result would
overflow before reduction, that is, be larger than 2t and thus not necessarily in F.

3

Algorithm 2.2: Modular product reduction [14, Function 3.6].

Input : x ∈ F and y ∈ F satisfying xy ≤ 2t−2p, a prime number
p ∈ F ≤ 2t−1 and q = fl(1/p)

Output: d ∈ F such that d = xy mod p.
1 h = fl(xy)
2 l = fma(x, y,−h) // xy − h
3 b = fl(h/p)
4 c = ⌊ b ⌋
5 d = fma(−c, p, h) // h− cp
6 if d ≥ p then
7 d = d− p
8 if d < 0 then
9 d = d+ p

Assuming a fused multiply-add fma instruction is available, these cases can be handled
with Algorithm 2.2 [14, Function 3.6]. The next result is a slightly more general version
of [14, Proposition 3.7].

Proposition 2.2. Algorithm 2.2 is correct for integer input x and y in F such
that their product satisfies xy ≤ 2t−2p and for input p ≤ 2t−1.

Proof. Using error-free transformation and fma, it is shown in [11, 12] that h+l =
xy with |l| ≤ ϵ|xy|. As xy ≤ 2t−1p, it follows that |l| ≤ p/2. By definition of h
and b, we have h = xy(1 + η1) and b = (h/p)(1 + η2) with |η1|, |η2| ≤ ϵ/(1 + ϵ)
so that h ≤ (1 + ϵ/(1 + ϵ))xy and b ≤ (1 + ϵ/(1 + ϵ))(h/p). As a consequence,
b ≤ (1 + 2ϵ)xy/p < 2t so that b is representable with a floating-point number and
finally c = ⌊ b ⌋.

Let us now write down the Euclidean division of xy by p. By definition there
exist some integers q and r such that xy = qp + r with 0 ≤ r < p. It follows that
(1 + η1)xy = (1 + η1)qp + (1 + η1)r and so h = (1 + η1)qp + (1 + η1)r. This can
be written as h/p = (1 + η1)q + (1 + η1)r/p and so h/p(1 + η2). We then have that
b = (1 + β)q + (1 + β)r/p with |β| ≤ 2ϵ which can be written as

b = q + qβ + (r/p)(1 + β)︸ ︷︷ ︸
α

.

We can deduce that α ≤ 2ϵq + (r/p)(1 + 2ϵ). As r < p and q ≤ xy/p ≤ 2t−2 then
2ϵq ≤ 1/2 and so α ≤ 3/2 + 2ϵ < 2 since t ≥ 3 by assumption on p. Moreover
α ≥ −2ϵq + (r/p)(1− 2ϵ) and so similarly α ≥ −1/2− 2ϵ > −1.

We can conclude that b belongs to the interval]q − 1, q + 2[and so
c = ⌊ b ⌋ ∈ {q − 1, q, q + 1}.

2.2. Block matrix product. Once we have defined a modulo operator using
floating-point arithmetic, modular matrix multiplication can be naively implemented
by simply performing a reduction after each floating-point operation to ensure the size
of the integers remain bounded: given A ∈ Fm×k and B ∈ Fk×n, C = AB ∈ Fm×n

can be computed as

C ← C + (ajb
T
j mod p) mod p, j = 1: k, (2.3)

where aj is the jth column of A and bTj is the jth row of B.

4

This approach is however extremely inefficient since it requires as many reductions
as floating-point operations. The number of reductions can be reduced by computing
instead

C ← C + (AjBj mod p) mod p, j = 1: ⌈ k/λ ⌉ , (2.4)

where Aj ∈ Fm×λ and Bj ∈ Fλ×n are block-columns of A and block-rows of B,
respectively, and where λ is a block size that controls how often the reductions are
performed. When choosing the value of λ we must ensure that the intermediate
computations do not reach the range at which integers are approximated when written
as a floating-point (numbers x with exponent e strictly greater than t such that
x ̸≡ 0 mod 2e−t). Assuming that the coefficients of A and B are in Fp (that is,
they are already reduced modulo p), then the coefficients of AjBj are bounded by
λ(p− 1)2 and so it suffices to take λ =

⌊
2t/(p− 1)2

⌋
. This approach is for example

implemented in the FFLAS library [4].
To perform the inner reduction in (2.4), the result of AjBj must be stored in a

temporary workspace. To avoid this additional workspace, one can remove this inner
reduction provided that the coefficients of C+AjBj remain representable at all steps
j of the computation. Then (2.4) becomes

C ← C +AjBj mod p, j = 1: ⌈ k/λ ⌉ , (2.5)

Algorithm 2.3 implements this latter approach.

Algorithm 2.3: Block matrix product over Fp

Input : A ∈ Fm×k, B ∈ Fk×n, C ∈ Fm×n
p , and a block size λ satisfying

Proposition 2.3.
Output: C = C +AB mod p ∈ Fm×n

p .

1 for j = 1 to ⌈ k/λ ⌉ do
2 C = C +AjBj // Aj, Bj submatrices of size m× λ and λ× n
3 C = C mod p // Using Algorithm 2.1

Computationally, Algorithm 2.3 is attractive because it mainly relies on the ef-
ficient matrix products AjBj . Indeed, it performs 2mkn floating-point operations
(flops) for the matrix products and only mn ⌈ k/λ ⌉ reductions, whose cost is thus
negligible for a sufficiently large block size λ. It is therefore crucial to determine the
largest possible λ such that the algorithm remains correct.

Proposition 2.3. Algorithm 2.3 is correct for input matrices A, B, a prime
number p < 2t−1, and a block size λ such that

λ max(A)max(B) + p− 1 ≤ 2t, (2.6)

where the operator max(·) returns the maximum coefficient of a matrix.

Proof. At each iteration of the for loop, each coefficient of AjBj is computed as
the dot product of vectors of size at most λ and is thus bounded by λmax(A)max(B).
Then, it is added to a coefficient of C, which is bounded by p− 1 since C is reduced
modulo p at each iteration. The result is thus exact as long as the coefficients of
C + AjBj and p match the conditions of Algorithm 2.1 on x and p, that is, as long
as (2.6) holds and p < 2t−1.

5

Algorithm 2.3 is classically used with C = 0 ∈ Fm×n
p and with A and B with

coefficients in Fp [4]. In this case, since max(A) and max(B) are both bounded by

p− 1, (2.6) rewrites as λ(p− 1)
2
+ p− 1 ≤ 2t, which holds for

λ =

⌊
2t − p+ 1

(p− 1)
2

⌋
. (2.7)

This provides a sufficient condition on the maximum size of p.

Corollary 2.4. Calling Algorithm 2.3 on A ∈ Fm×k
p , B ∈ Fk×n

p , C = 0 ∈ Fm×n
p

and block-size λ satisfying (2.7) correctly returns AB ∈ Fm×n
p if

p ≤ 2t/2. (2.8)

Proof. The result is correct if λ ≥ 1, that is, if (p − 1)2 + p − 1 ≤ 2t. Since
(p− 1)2 + p− 1 = p(p− 1), (2.8) is certainly sufficient.

With double precision arithmetic (t = 53), Algorithm 2.3 can thus only handle
prime numbers with at most 26 bits. Moreover, for prime numbers approaching this
limit, the algorithm becomes quite inefficient since it must use a small block size λ.

In the next section we propose a new approach based on multiword arithmetic
that can handle much larger primes.

3. New multiword algorithms. To overcome the limitations of the existing
block matrix product algorithm, we propose instead to rely on multiword arithmetic,
which consists in splitting the numbers into smaller parts, called words, which can
be stored with a smaller precision (with fewer bits). Multiword matrix multiplication
algorithms are well studied in inexact floating-point arithmetic, and have generated
a renewed interest due to their ability to emulate high precision arithmetic while
exploiting efficient mixed precision GPU hardware [5]. However, to the best of our
knowledge, using multiword arithmetic for modular integer computations (though still
based on floating-point arithmetic) is a new idea, which we develop in the rest of this
section.

3.1. Multiword matrix decomposition. Given M ∈ Fm×n
p with coefficients

bounded by p, we seek to decompose it as the unevaluated sum of u words Mi:

M =

u−1∑
i=0

αiMi,

where to balance the coefficients of Mi and make them as small as possible, we should
take α ≈ p1/u. If s bits are required to store the coefficients of M , about s/u bits
should be sufficient to store those of Mi. Algorithm 3.1 describes a method to obtain
such a decomposition using only floating-point arithmetic.

Proposition 3.1. Assuming 1 < p < 2t and u ≤ t, Algorithm 3.1 computes
exactly the decomposition

M =

u−1∑
i=0

αiMi (3.1)

where each matrix Mi has nonnegative coefficients bounded by

c = (α+ 1)(1 + ϵ)u−1 ≤ 2t,

where α =
⌈
p1/u

⌉
and ϵ = 2−t.

6

Algorithm 3.1: Multiword matrix decomposition

Input : M ∈ Fm×n
p and the number of words u.

Output: α ∈ N and M0, . . . ,Mu−1 ∈ Fm×n
p such that M =

∑u−1
i=0 αiMi.

1 α =
⌈
p1/u

⌉
2 T = M
3 for i = 0 to u− 2 do
4 R =

⌊
T
α

⌋
// Quotient

5 Mi = T − αR // Remainder

6 T = R

7 Mu−1 = T

Proof. In addition to Mi, we denote as Ti and Ri the values that T and R take
at the end of iteration i of the for loop, with the notation T−1 = M . Our goal is
to bound the coefficients of these matrices and check that no overflow occurs during
any step of the computation. Note first that since p > 1 we have α ≥ 2. Let us first

bound Ri =
⌊
fl(Ti−1

α)
⌋
from above. Using (2.1), we have

Ri =

⌊
fl(

Ti−1

α
)

⌋
=

⌊
Ti−1

α
(1 + η)

⌋
, |η| ≤ ϵ, (3.2)

where ϵ = 2−t is the unit roundoff of the floating-point arithmetic. We therefore have
the bound

Ri ≤
⌊
(1 + ϵ)

Ti−1

α

⌋
≤ (1 + ϵ)

Ti−1

α
. (3.3)

Since α ≥ 2 ≥ (1 + ϵ) we have Ri ≤ Ri−1, which means that the coefficients of R
decrease throughout the iterations. Thus for any i we have

αRi ≤ αR0 ≤ (1 + ϵ)T−1 ≤ (1 + ϵ)(p− 1) = p− 1 + pϵ ≤ p

since pϵ < 1. We have thus shown that the product αRi does not overflow and hence
is exact.

Let us now also bound Mi = Ti−1 − αRi from above. We first require a lower
bound on Ri. By (3.2), we have

Ri ≥
⌊
Ti−1

α
(1− ϵ)

⌋
≥ Ti−1

α
(1− ϵ)− 1.

We deduce an upper bound on Mi for i = 0: u− 2:

Mi = Ti−1 − αRi ≤ Ti−1 − Ti−1(1− ϵ) + α = Ti−1ϵ+ α ≤ pϵ+ α ≤ α+ 1,

where we have used the fact that for any i, Ti−1 ≤ T−1 ≤ p− 1.
It only remains to bound the last word Mu−1 = Tu−2 = Ru−2 from above.

Reusing (3.3) we obtain the recurrence relation

Ri ≤ (1 + ϵ)
Ti−1

α
=

(1 + ϵ)

α
Ri−1

which yields

Ri ≤
(
(1 + ϵ)

α

)i

R0 ≤
(
(1 + ϵ)

α

)i+1

T−1 ≤
(
(1 + ϵ)

α

)i+1

p.

7

Using α =
⌈
p1/u

⌉
≥ p1/u, we therefore obtain

Mu−1 = Ru−2 ≤ (1 + ϵ)u−1p−(u−1)/up = (1 + ϵ)u−1p1/u ≤ (1 + ϵ)u−1(α+ 1) =: c.

We have therefore shown that no overflow occurs during the computation as long
as p < 2t and c < 2t. Moreover for u ≤ t the condition c < 2t is included in the
conditon p < 2t:

c = (1 + ϵ)u−1p1/u ≤ 2u−1p1/u ≤ 2u−1+t/u = 2

(
u(u−1)+t

)
/u ≤ 2

(
t(u−1)+t

)
/u = 2t.

To conclude it suffices to observe that Mi = Ti−1 − αRi yields the recurrence
relation Ti−1 = Mi + αTi for i = 0: u− 2. Hence

T−1 =

u−2∑
i=0

αiMi + αu−1Tu−2

which yields the desired decomposition M =
∑u−1

i=0 αiMi since T−1 = M and
Tu−2 = Mu−1.

3.2. Multiword matrix multiplication. We now explain how to use the mul-
tiword decomposition to compute the product C = AB mod p with a much less re-
strictive condition on the size of p than with the single word approach.

We consider a general setting where the decompositions of A and B can use
possibly different numbers of words, denoted as u and v respectively. We thus compute
the decompositions

A =

u−1∑
i=0

αiAi, B =

v−1∑
j=0

βjBj ,

where α =
⌈
p1/u

⌉
and β =

⌈
p1/v

⌉
, and where the coefficients of the words Ai and

Bj are respectively bounded by

cA = (α+ 1)(1 + ϵ)u−1, cB = (β + 1)(1 + ϵ)v−1.

The product AB is then given as

AB =

u−1∑
i=0

v−1∑
j=0

αiβjAiBj .

Therefore one approach to compute C = AB mod p would be to compute for each pair
(i, j) the product AiBj mod p using the block matrix product in Algorithm 2.3, storing
the result in a temporary workspace T , scaling all coefficients of T by γij = αiβj

using the modular product reduction in Algorithm 2.2, and finally adding the result
γijT mod p in C.

Algorithm 3.2 describes a slightly more involved approach that does not require
any temporary workspace. The idea is to add the result of AiBj mod p directly into
C before scaling by γij . This is made possible by scaling C by γ−1

ij beforehand,

since γij(γ
−1
ij C +AiBj) = C + γijAiBj . This extra scaling has a negligible cost with

respect to the matrix products, and avoids the need for any additional workspace.
An important detail is that we do not actually compute γ−1

ij , which is not an integer
and thus not necessarily representable as a floating-point number, but rather δij =

8

γ−1
ij mod p, the modular inverse of γij (which is an integer less than p and thus in Fp).

As a remark, note that the use of the modular inverse requires p to be prime, since
it might not exist otherwise. Therefore, if one wishes to use this multiword product
with a composite p, the temporary workspace approach described above should be
used.

Algorithm 3.2: Multiword matrix product

Input : A ∈ Fm×k
p , B ∈ Fk×n

p , u, v.
Output: C = AB mod p ∈ Fm×n

p .

1 α =
⌈
p1/u

⌉
and β =

⌈
p1/v

⌉
2 Decompose A =

∑u−1
i=0 αiAi // Using Algorithm 3.1

3 Decompose B =
∑v−1

j=0 β
jBj // Using Algorithm 3.1

4 λ =
⌊
(2t − p+ 1)/

(
(α+ 1)(β + 1)(1 + ϵ)

u+v−2) ⌋
5 Initialize C = 0
6 for i = 0 to u− 1 do
7 for j = 0 to v − 1 do
8 γ = αiβj mod p // Using Algorithm 2.2

9 δ = γ−1 mod p // Modular inverse

10 C = δC mod p // Using Algorithm 2.2

11 C = C +AiBj // Using Algorithm 2.3 with block size λ
12 C = γC mod p // Using Algorithm 2.2

13 return C

Before discussing the condition on the size of p for this multiword product to
be correct, we first describe a variant thereof in Algorithm 3.3. This variant con-
catenates the matrices Bj in order to compute the products AiBj , for a fixed i and
for all j = 0: v − 1, as a single contiguous matrix product Ai[B0 . . . Bv−1]. This is
potentially more efficient than computing each AiBj product independently because
the concatenated product has a larger rightmost dimension (nv instead of n) and
thus a higher arithmetic intensity. Note that a variant where we concatenate the Ai

matrices instead of the Bj ones is also possible; in general one should try to maximize
the smallest of the two outer dimensions of the product, hence concatening the Bj

matrices when n < m and the Ai ones when n > m.

Proposition 3.2. Algorithm 3.2 (and its concatenated variant Algorithm 3.3)
computes exactly C = AB mod p under the conditions p < 2t−1, max(u, v) ≤ t, and

cAcB + p− 1 = (α+ 1)(β + 1)(1 + ϵ)u+v−2 + p− 1 ≤ 2t. (3.4)

Proof. We need to check the exactness of all steps. By Proposition 3.1 the multi-
word decompositions obtained by Algorithm 3.1 are exact if p < 2t and max(u, v) ≤ t.
By Proposition 2.2, the computation of γ = αiβj mod p using Algorithm 2.2 is exact if
αi mod p ≤ p and βj mod p ≤ p are reduced modulo p before applying Algorithm 2.2.
To compute δ efficiently, one computes it as (α−1)i(β−1)j . To ensure it is computed
exactly, it is necessary to perform a modular reduction at each step of modular pow-
ering. The scalings δC and γC are also exact since δ, γ, and all the coefficients of C
are all bounded by p. Finally, the condition for the block product C = C + AiBj to
be exact using Algorithm 2.3 is given by (2.6) in Proposition 2.3:

λ max(Ai)max(Bj) + p− 1 ≤ 2t,

9

Algorithm 3.3: Multiword matrix product with concatenation

Input : A ∈ Fm×k
p , B ∈ Fk×n

p , u, v.
Output: C = AB mod p ∈ Fm×n

p .

1 Compute α =
⌈
p1/u

⌉
and β =

⌈
p1/v

⌉
2 Decompose A =

∑u−1
i=0 αiAi // Using Algorithm 3.1

3 Decompose B =
∑v−1

j=0 β
jBj // Using Algorithm 3.1

4 λ =
⌈
(2t − p+ 1)/

(
(α+ 1)(β + 1)(1 + ϵ)u+v−2

) ⌉
5 Initialize C = 0
6 for i = 0 to u− 1 do
7 [T0 . . . Tv−1] = Ai[B0 . . . Bv−1] // Using Algorithm 2.3 with block

size λ
8 for j = 0 to v − 1 do
9 γ = αiβj mod p // Using Algorithm 2.2

10 Tj = γTj mod p // Using Algorithm 2.2

11 C = C + Tj mod p // Using Algorithm 2.1

which yields (3.4) since by Proposition 3.1 max(Ai) ≤ cA and max(Bj) ≤ cB .
Finally, it is easy to check that Algorithm 3.3 is equivalent to Algorithm 3.2 and

leads to the same conditions.

Proposition 3.2 provides in (3.4) a sufficient condition on the size of p for the
multiword product to be exact. To obtain a more readable and easily interpretable
condition, at the price of a harmless breach of correctness, we can replace cA and cB
by p1/u + 1 and p1/v + 1 to obtain

p1/u+1/v + p1/u + p1/v + p ≤ 2t. (3.5)

We will use this more readable and almost correct condition to make a few com-
ments.

• Note first that by setting u = v = 1, (3.5) reduces to p2 + 3p ≤ 2t: we thus
recover the condition p ≲ 2t/2 of the single word algorithm.

• Consider now the case where u = v = 2. Then (3.5) becomes 2p+2p1/2 ≤ 2t,
that is, p + p1/2 ≤ 2t−1. Since p1/2 ≤ p, we thus obtain an almost ideal
condition p ≤ 2t−2. We conclude that two words for both A and B suffice
to handle almost all primes that fit on the target floating-point arithmetic.
Moreover, if we increase v (or u) to 3, (3.5) becomes p1/2+1/3+p1/2+p1/3+p ≤
2t. When p is large, we have p1/2+1/3 + p1/2 + p1/3 ≤ p, and so the condition
reduces to p ≤ 2t−1, a slight improvement compared with u = v = 2. Note
that this is an ideal condition since p < 2t−1 is already required by the
modular reduction operations (Algorithms 2.1 and 2.2).

• Interestingly, using u = 1 and v > 1 (or the converse) still provides a signifi-
cant improvement to the single word condition: (3.5) yields p1+1/v+p1/v+p ≤
2t or, neglecting the p1/v + p term, p ≲ 2tv/(v+1). Thus for v = 2, the condi-
tion is p ≲ 22t/3, for v = 3, it is p ≲ 23t/4, and so on. As v tends to a larger
and larger number of words, the condition tends towards the ideal p ≲ 2t.

3.3. Discussion on the cost of the algorithms. Now that we have deter-
mined the maximum p that a given pair (u, v) can handle, it remains to discuss the
cost of the algorithm as function of u and v. Algorithm 3.2 performs uv matrix prod-
ucts of dimensions m×k×n, hence requiring 2uvmkn flops. This is a factor uv more

10

than the single word product. The multiword product also requires uvmn(⌈ k/λ ⌉+2)
reductions, which is also about a factor uv more than the single word one. However, a
key difference is that the block size λ is not the same: in the single word case λ ≈ 2t/p2

whereas in the multiword case λ ≈ 2t/p1/u+1/v. Therefore the multiword product can
use a potentially much bigger block size λ, which results in a more efficient product
since it reduces the relative cost of the reductions and also increases the arithmetic
intensity of the matrix products. As for Algorithm 3.3, it performs the same flops
as Algorithm 3.2, but is potentially more efficient thanks to an increased arithmetic
intensity.

Based on this analysis, we can make some predictions on which approach is the
best depending on the size of p. We will then check these predictions in our exper-
iments. Throughout this discussion we assume u ≤ v, with the understanding that
the converse is also possible. We refer to the different variants as (u, v)-product.

The single word (1, 1)-product is the least expensive and so is expected to be
the best choice as long as it can use a sufficiently large block size, that is, when
p≪ 2t/2. As p approaches this limit, the (1, 1)-product will become increasingly less
efficient until it is no longer correct. Around this limit we should therefore switch to a
multiword product with the smallest possible cost, that is, u = 1 and v = 2; this (1, 2)-
product should be the best until p approaches its new limit p≪ 22t/3. At this point,
we have the choice between increasing u or v; since 1× 3 < 2× 2, the (1, 3)-product
performs fewer flops than the (2, 2)-product and is therefore preferable as long as
p≪ 23/4. At this point, we again have the choice between the (1, 4)-product and the
(2, 2)-product, which perform the same number of flops. Since the limit for the (1, 4)-
product, p ≪ 24t/5, is more restrictive than that of the (2, 2)-product, p ≪ 2t, the
latter may seem preferable than the former. However, when considering the concate-
nated variant of these algorithms, the (1, 4)-product increases the arithmetic intensity
by a factor up to 4, instead of 2 for the (2, 2)-product. Hence in situations where the
concatenated (2, 2)-product remains memory bound, the concatenated (1, 4)-product
could outperform it as long as p ≪ 24t/5. Finally, as mentioned before, the (2, 2)-
product will remain correct for almost all representable values of p, p ≤ 2t−2; however,
as p approaches this limit, the block size λ will tend to 1. Therefore, we might expect
the (2, 3)-product, the next least expensive variant, to become more efficient for very
large p.

Table 3.1
Summary of the comparison between the different (u, v)-product variants.

(u, v) (1, 1) (1, 2) (1, 3) (1, 4) (2, 2) (2, 3)

Normalized flops (= uv) 1 2 3 4 4 6
Approximate limit on p 2t/2 22t/3 23t/4 24t/5 2t−2 2t−1

Limit on bitsize(p) for t = 53 26 35 39 42 51 52

We summarize this discussion in Table 3.1, which compares for each (u, v)-product
its normalized flops cost (equal to uv) and its limit on p. To give a concrete indication
of this limit we also print the maximum bitsize of p (that is, the limit on log2 p
exclusive), when the target floating-point arithmetic is double precision (t = 53).

In summary, the following (u, v)-product algorithms are best used for the following
bitsizes of p:

• bitsize p ∈ [1 , 26]: use the (1, 1)-product;
• bitsize p ∈ [27, 35]: use the (1, 2)-product;

11

• bitsize p ∈ [36, 39]: use the (1, 3)-product;
• bitsize p ∈ [40, 42]: use the (2, 2)-product or the (1, 4)-product;
• bitsize p ∈ [43, 51]: use the (2, 2)-product;
• bitsize p ∈ [52, 52]: use the (2, 3)-product;
• all of the above ranges should in practice be shifted down by a few bits due
to the lower efficiency of the product when using a small block size.

We conclude this section by discussing the storage cost of our multiword approach.
The (u, v)-product requires k(um+vn) entries for the input words and mn entries for
the output. Thus, the more words are used, the more storage is needed: the approach
presents a trade-off between the bitsize of p that is supported and the memory usage.
Moreover, the use of concatenation introduces an additional temporary workspace
requiring vmn entries. Interestingly, in the case of a tall-and-skinny matrix B (n ≪
m, k), the (1, v)-product variants require a negligible storage overhead compared with
the storage of matrix A, which makes these variants much less storage intensive than
variants with u ≥ 2, such as the (2, 2)-product.

4. Performance benchmarks.

4.1. Experimental setting. We have developed two implementations of the
proposed algorithms. The first one is written in FORTRAN and targets CPU archi-
tectures; the second one is written in CUDA and targets NVIDIA GPU architectures.

The CPU code was compiled using the ifort compiler (v19.1.3) and the Intel
MKL (2019.5) library, which we used for all BLAS operations. It was run on two
Intel Xeon Gold 6248 CPUs with 20 cores each at 2.50GHz, which have a double
precision theoretical peak performance of about 1,600 Gflops/s.

The GPU code was compiled with CUDA v12.6 and the flags: -arch=sm_80,
g++ 11.4.0 and -std=c++17; all the CUDA instructions are executed on the default
stream. We used cuBLAS for all BLAS operations. The code was run on an NVIDIA
A100 GPU, which has a theoretical peak performance of about 19000 Gflops/s for
double precision arithmetic using tensor cores.

We have written CUDA kernels for the few operations that were not directly avail-
able through cuBLAS. This includes in particular kernels to perform the elementise
modular reductions and floor operations on a matrix.

As is common when comparing algorithms that perform different number of flops,
we choose as performance metric the “effective” Gflops/s rate, defined as

Effective Gflops/s =
2mkn

tavg
× 10−9 (4.1)

where tavg is the execution time of the algorithm in seconds averaged over 10 runs
and where 2mkn corresponds to the number of flops performed by one matrix product
of dimensions m × k × n. This metric is best understood as a scaled inverse of the
execution time; it can also provide some indication of how well the hardware is utilized,
although care should be taken when comparing it to the theoretical Gflops/s peaks
given above, since even the (1,1)-product performs more than 2mkn flops (due to the
modular reductions).

Since the values of the matrix coefficients do not affect the performance of the
algorithms, we simply generate them randomly. We consider two scenarios which
differ on both the matrix dimensions and what is included in the execution time of
the multiword algorithms.

• Large square matrices (Subsection 4.2.1): we first benchmark the algorithms
in a general scenario involving large square matrices withm = k = n = 10016,

12

with no particular application in mind. In this scenario, the execution time
of the multiword algorithms includes everything: the time for computing the
product but also the time for computing the decomposition of both matri-
ces. Since the matrices are large and square, the former requires O(n3) flops
whereas the latter only requires O(n2) flops, so that the performance of the
algorithms are driven by the performance of the product. We do not test the
use of concatenation (Algorithm 3.3) in this scenario, since all matrix dimen-
sions are large. We use dimensions that are multiples of 32 because this leads
to more consistent and better performance on GPU.

• Unbalanced matrices (Subsection 4.2.2): in this second scenario, we consider
a matrix product with unbalanced dimensions, m = 10923, k = 32768, and
n = 32; B is thus a tall-and-skinny matrix. These dimensions of matrices are
motivated by the polynomial system solving application where one needs to
compute the minimal/characteristic polynomial of a square matrix of order k
but with only m dense rows [1, 6]. The remaining k−m rows are actually very
sparse as they are rows of the identity matrix. This minimal/characteristic
polynomial is computed using the block-Wiedemann algorithm [3, 10] whose
bottleneck consists in performing 2k/n iterated products of the m×k matrix
A with a k × n matrix B, where n ≪ k is a block size parameter under our
control; n = 32 is a typical choice. Note that matrix A is fixed throughout
all iterations. Therefore, in this scenario, we do not include the time for
computing the multiword decomposition of matrix A, which can be computed
only once and reused for all iterations. We thus only measure the time for
computing the decomposition of B and for computing the product. Again,
because the product requires O(mkn) flops whereas the decomposition of B
only requires O(kn) flops, the cost of the decomposition of B is negligible. In
this scenario we will test the use of concatenation on matrix B to increase its
right dimension n, which is quite small.

Overall, our benchmark consider three scenarios (square matrices, and unbalanced
matrices with or without concatenation), for two architectures (CPU and GPU). This
leads to six different figures as summarized in Table 4.1.

Table 4.1
Summary of the benchmarks and the corresponding figures.

CPU GPU

Square matrices Figure 4.1 Figure 4.2
Unbalanced matrices (without concatenation) Figure 4.3 Figure 4.5
Unbalanced matrices (with concatenation) Figure 4.4 Figure 4.6

4.2. Discussion of the results.

4.2.1. Square matrices. We begin by discussing the results for square matrices
on CPU (Figure 4.1). All variants exhibit the same trend with two distinct regimes
depending on the bitsize of p: first, a performance plateau which corresponds to
the maximum performance achievable when p is small enough so that the cost of
the reductions is negligible; then, a performance drop when p begins approaching its
limit, due to a decreasing block size λ, which leads to a greater number of modular
reductions and more inefficient matrix products.

For example, the (1,1)-product (the reference single word algorithm) achieves a

13

15 20 25 30 35 40 45 50
Bitsize(p)

0

200

400

600

800

1000

1200

Ef
fe

ct
iv

e
GF

lo
ps

/s
(1, 1)
(1, 2)
(1, 3)
(1, 4)
(2, 2)
(2, 3)

Fig. 4.1. Performance benchmark for square matrices on CPU.

15 20 25 30 35 40 45 50
Bitsize(p)

0

2500

5000

7500

10000

12500

15000

Ef
fe

ct
iv

e
GF

lo
ps

/s

(1, 1)
(1, 2)
(1, 3)
(1, 4)
(2, 2)
(2, 3)

Fig. 4.2. Performance benchmark for square matrices on GPU.

performance plateau of 1200 Gflops/s which is reasonably close to the 1600 Gflops/s
theoretical peak of the hardware. This confirms that when p is small enough, the
(1,1)-product is very efficient and its performance is driven by the matrix product.
However, when p becomes larger, the performance drops rapidly. Thus, although the
(1,1)-product still produces correct results for primes with 24, 25 and 26 bits, the
performance in these cases is too low to be practical.

Our benchmarks therefore confirm the interest of the proposed multiword vari-

14

ants, which can handle larger primes while maintaining high performance. In partic-
ular, the (1, 2)-product outperforms the (1, 1)-product for bitsize(p) ≥ 23. It achieves
a performance plateau of 400 Gflops/s, about 3× lower than the performance plateau
of the (1, 1)-product. Note that this 3× time increase (which is larger than the 2×
flops increase) can be explained by analyzing the time breakdown of the (1, 2)-variant.
While the (1, 1)-variant essentially consists of a single block matrix product (Algo-
rithm 2.3), the (1, 2)-variant also requires computing the multiword decomposition
of matrix B and the scalings by δ and γ with Algorithm 2.2. Despite requiring a
negligible amount of flops, in practice these extra operations are less efficient than the
block product and thus become non-negligible: they represent about 26% and 6% of
the total time for the (1, 2)-variant, respectively.

While the (1, 2)-product remains correct until bitsize(p) ≤ 35 the (1, 3)-product
starts outperforming it for bitsize(p) ≥ 29, with a performance plateau of about 280
Gflops/s. The (1, 4) and (2, 2)-products both require 4 products and thus achieve
the same performance plateau of about 200 Gflops/s, which starts outperforming the
(1, 3)-product when bitsize(p) ≥ 33. In this scenario, the (1, 4)-product therefore
never significantly outperforms the (2, 2)-product, which maintains its plateau for far
larger primes. As expected, the (2, 2)-product remains correct for all tested primes;
however, its performance eventually drops and gets surpassed by that of the (2, 3)-
product, when bitsize(p) ≥ 43. Even for such large primes, the (2, 3)-product allows
for an almost constant performance of about 150 GFlops/s, which is quite satisfactory
given the size of p. Moreover this shows that using more than 3× 2 = 6 subproducts
would not be useful.

All of the above comments on the CPU benchmark also apply to the GPU one
(Figure 4.2), which exhibits similar trends. The performance of the (1, 1)-product
plateaus at 16000 Gflops/s for small primes, but is rapidly surpassed by that of the
multiword variants when p gets larger. One notable observation is that the perfor-
mance plateau of the (u, v)-product is almost perfectly equal to that of the (1, 1)-
product divided by uv, which suggests that the performance is entirely driven by the
matrix product. Thus, the (1, 2)-product plateaus at 8000 Gflops/s, the (1, 3)-product
at 5300 Gflops/s, etc. The points of crossover (points for which the best algorithm
changes), while not exactly equal as in the CPU benchmark, remain similar.

4.2.2. Unbalanced matrices and effect of concatenation. Figures 4.3–4.6
show the performance benchmarks for unbalanced matrices. We can observe the same
overall trends as for square matrices, with one notable difference: the matrix products
in this case have much lower arithmetic intensity. Thus, the absolute performance val-
ues are smaller, that is, farther from the theoretical peak: the (1, 1)-product plateaus
at about 500 Gflops/s on CPU (Figure 4.3) and 4000 Gflops/s on GPU (Figure 4.5).
Nevertheless, the relative performance of the multiword variants remains similar than
previously and, in particular, we confirm once more the ability of these variants to
handle larger primes while retaining satisfactory performance.

Moreover, because of the lower arithmetic intensity of the product, using con-
catenation in the multiword product becomes interesting. This is illustrated in the
performance benchmarks of Figure 4.4 (CPU) and Figure 4.6 (GPU), for which we
replace the multiword product (Algorithm 3.2) with its concatenated variant (Al-
gorithm 3.3). The benchmarks show indeed that the performance of the multiword
variants can be significantly improved by the use of concatenation (note that the (1,1)-
product is unaffected by this change and its performance remains identical). Table 4.2
plots the increase of the performance plateau of the multiword variants achieved by

15

15 20 25 30 35 40 45 50
Bitsize(p)

0

100

200

300

400

500
Ef

fe
ct

iv
e

GF
lo

ps
/s

(1, 1)
(1, 2)
(1, 3)
(1, 4)
(2, 2)
(2, 3)

Fig. 4.3. Performance benchmark for unbalanced matrices on CPU.

15 20 25 30 35 40 45 50
Bitsize(p)

0

100

200

300

400

500

Ef
fe

ct
iv

e
GF

lo
ps

/s

(1, 1)
(1, 2)
(1, 3)
(1, 4)
(2, 2)
(2, 3)

Fig. 4.4. Performance benchmark for unbalanced matrices on CPU, with concatenation.

the use of concatenation. On CPU, we observe greater performance increases for
greater values of v (for example, 21%, 47%, and 63% increase for the (1, 2), (1, 3) and
(1, 4) variants, respectively). This is expected since a larger v corresponds to a larger
increase of the arithmetic intensity. To a lesser extent, greater values of u also lead
to greater performance increases (for example, 22% vs 32% increase for the (1, 2) and
(2, 2) variants). An interesting consequence of this behavior is that, thanks to con-

16

15 20 25 30 35 40 45 50
Bitsize(p)

0
500

1000
1500
2000
2500
3000
3500
4000

Ef
fe

ct
iv

e
GF

lo
ps

/s
(1, 1)
(1, 2)
(1, 3)
(1, 4)
(2, 2)
(2, 3)

Fig. 4.5. Performance benchmark for unbalanced matrices on GPU.

15 20 25 30 35 40 45 50
Bitsize(p)

0
500

1000
1500
2000
2500
3000
3500
4000

Ef
fe

ct
iv

e
GF

lo
ps

/s

(1, 1)
(1, 2)
(1, 3)
(1, 4)
(2, 2)
(2, 3)

Fig. 4.6. Performance benchmark for unbalanced matrices on GPU, with concatenation.

catenation, the (1, 4)-product achieves a performance plateau of 174 Gflops/s which
is higher than that of the (2, 2)-product (152 Gflops/s). Therefore, for bitsize(p) = 32
or 33, the (1, 4)-product slightly outperforms the (2, 2) one (see Figure 4.4).

While concatenation also leads to significant performance increases on GPU, the
trend for different (u, v) variants is more unexpected. As shown in Table 4.2, the
variants with v = 2 benefit from concatenation much more than the other variants,
especially those with v = 3. After investigating this surprising behavior, we have

17

determined that this is in fact because the cuBLAS matrix product performance is
actually lower for n = 96 (corresponding to v = 3) than for n = 64 (corresponding
to v = 2). As a result of this behavior, the (1, 3) and (1, 4) variants are never better
than the (2, 2) one.

Table 4.2
Improvement of the performance plateau (Gflops/s) of multiword variants by the use of con-

catenation (see Figures 4.3–4.6).

(1, 2) (1, 3) (1, 4) (2, 2) (2, 3)

CPU
Non-concatenated 218 142 107 115 76
Concatenated 265 209 174 152 117
Increase 22% 47% 63% 32% 55%

GPU
Non-concatenated 1932 1314 980 995 663
Concatenated 3438 1921 1600 1776 1004
Increase 78% 46% 63% 79% 52%

4.2.3. Summary: variant selection. Table 4.3 summarizes the conclusions
of these experiments by indicating, for each of the six benchmarks of Table 4.1, the
range of bitsizes for which a given (u, v) variant is the best. We can see that the
crossover bitsizes (where the best variant changes), while not exactly equal, are very
similar from one benchmark to the other. In particular, the existing (1, 1) approach
is systemetically outperformed before its theoretical limit of 26 bits, with crossover
bitsizes between 23 and 25. Moreover, the table also shows that each of the multiword
variants considered in our benchmarks can be the best for some range of bitsizes, which
confirms the importance of adapting (u, v) for optimizing the cost of the product.

Table 4.3
Synthesis of the bitsizes for which a given (u, v) variant performs best.

(1, 1) (1, 2) (1, 3) (1, 4) (2, 2) (2, 3)

Theory (Subsection 3.3) [1,26] [27,35] [36,39] — [40,51] [52,52]
CPU square [1,22] [23,28] [29,31] — [32,42] [43,52]
CPU unbalanced [1,22] [23,29] [30,32] — [33,43] [44,52]
CPU unbalanced concat [1,22] [23,27] [28,31] [32,33] [34,42] [43,52]
GPU square [1,23] [24,30] [31,33] — [34,45] [46,52]
GPU unbalanced [1,23] [24,30] [31,33] — [34,44] [45,52]
GPU unbalanced concat [1,22] [23,30] [31,31] — [32,43] [44,52]

5. Conclusion. We have presented a new approach to efficiently compute mod-
ular matrix multiplication C = AB mod p in floating-point arithmetic. The existing
single word product is limited to bitsizes of p less than 26 and becomes very inefficient
when p approaches this limit. We have proposed in Algorithm 3.2 a new multiword
product that decomposes A and B into u and v words, respectively, and computes
C with uv modular matrix products. We have also described a concatened variant
in Algorithm 3.3 which can be more efficient when the products have low arithmetic
intensity. We have proved in Proposition 3.2 the correctness of this approach and
determined the maximum size of p that can be handled for a given (u, v) choice. As

18

summarized in Table 3.1, our multiword approach allows for handling bitsizes as large
as 52, and its cost can be optimized by adapting (u, v) depending on the size of p.
Our performance benchmarks on CPU and GPU architectures (see Table 4.1) confirm
the efficiency of this new approach.

This work opens several perspectives for further performance improvements. First,
the block products AjBj in Algorithm 2.3 could be computed in parallel via batched
matrix products kernels, at the cost of extra memory storage. Second, the multiword
approach could be extended to perform the AiBj matrix products in lower precision
arithmetic. While this would require a greater number of words (and therefore matrix
products) to handle a given bitsize of p, it would also allow the use of low precision
hardware, in particular GPU tensor cores [2].

Acknowledgements. This work was performed using HPC resources from
GENCI-IDRIS (Grant 2024-103516). It was partially supported by the the joint ANR-
FWF ECARP (ANR-19-CE48-0015) project, and by the EAGLES (ANR-22-CE91-
0007), De Rerum Natura (ANR-19-CE40-0018), InterFLOP (ANR-20-CE46-0009),
NuSCAP (ANR-20-CE48-0014), MixHPC (ANR-23-CE46-0005-01), and NumPEx
Exa-MA (ANR-22-EXNU-0002) projects of the French National Agency for Research
(ANR).

REFERENCES

[1] J. Berthomieu, V. Neiger, and M. Safey El Din, Faster change of order algorithm for
Gröbner bases under shape and stability assumptions, in Proceedings of the 2022 Interna-
tional Symposium on Symbolic and Algebraic Computation, ISSAC ’22, New York, NY,
USA, 2022, Association for Computing Machinery, p. 409–418, https://doi.org/10.1145/
3476446.3535484.

[2] P. Blanchard, N. J. Higham, F. Lopez, T. Mary, and S. Pranesh, Mixed precision block
fused multiply-add: Error analysis and application to GPU tensor cores, SIAM J. Sci.
Comput., 42 (2020), pp. C124–C141, https://doi.org/10.1137/19M1289546.

[3] D. Coppersmith, Solving homogeneous linear equations over GF(2) via block Wiedemann
algorithm, Math. Comp., 62 (1994), pp. 333–350, https://doi.org/10/b724r7.

[4] J.-G. Dumas, P. Giorgi, and C. Pernet, Dense linear algebra over word-size prime fields:
the FFLAS and FFPACK packages, ACM Trans. Math. Software, 35 (2008), pp. 1–42,
https://doi.org/10/dj6zp4.

[5] M. Fasi, N. J. Higham, F. Lopez, T. Mary, and M. Mikaitis, Matrix multiplication in
multiword arithmetic: Error analysis and application to GPU tensor cores, SIAM J. Sci.
Comput., 45 (2023), pp. C1–C19, https://doi.org/10.1137/21m1465032.

[6] J.-C. Faugère and C. Mou, Sparse FGLM algorithms, Journal of Symbolic Computation, 80
(2017), pp. 538–569, https://doi.org/10.1016/j.jsc.2016.07.025.

[7] T. Granlund and the GMP development team, GMP: The GNU Multiple Precision Arith-
metic Library, 6.2.1 ed., 2023. http://gmplib.org/.

[8] T. F.-F. group, FFLAS-FFPACK: Finite Field Linear Algebra Subroutines / Package,
v2.5.0 ed., 2023. http://github.com/linbox-team/fflas-ffpack.

[9] W. Hart, F. Johansson, and S. Pancratz, FLINT: Fast Library for Number Theory, 2013.
Version 2.4.0, http://flintlib.org.

[10] S. G. Hyun, V. Neiger, H. Rahkooy, and Éric Schost, Block-Krylov techniques in the
context of sparse-FGLM algorithms, Journal of Symbolic Computation, 98 (2020), pp. 163–
191, https://doi.org/10.1016/j.jsc.2019.07.010. Special Issue on Symbolic and Algebraic
Computation: ISSAC 2017.

[11] Y. Nievergelt, Scalar fused multiply-add instructions produce floating-point matrix arithmetic
provably accurate to the penultimate digit, ACM Trans. Math. Softw., 29 (2003), pp. 27–48,
https://api.semanticscholar.org/CorpusID:16228275.

[12] T. Ogita, S. M. Rump, and S. Oishi, Accurate sum and dot product, SIAM J. Sci. Comput.,
26 (2005), pp. 1955–1988, https://doi.org/10.1137/030601818.

[13] V. Shoup, NTL: a library for doing number theory, 2021, http://www.shoup.net.
[14] J. van der Hoeven, G. Lecerf, and G. Quintin, Modular SIMD arithmetic in Mathemagix,

ACM Trans. Math. Software, 43 (2016), https://doi.org/10/f82vvw.

19

https://doi.org/10.1145/3476446.3535484
https://doi.org/10.1145/3476446.3535484
https://doi.org/10.1137/19M1289546
https://doi.org/10/b724r7
https://doi.org/10/dj6zp4
https://doi.org/10.1137/21m1465032
https://doi.org/10.1016/j.jsc.2016.07.025
http://gmplib.org/
http://github.com/linbox-team/fflas-ffpack
http://flintlib.org
https://doi.org/10.1016/j.jsc.2019.07.010
https://api.semanticscholar.org/CorpusID:16228275
https://doi.org/10.1137/030601818
http://www.shoup.net
https://doi.org/10/f82vvw

	Introduction
	Existing single word algorithm and its limitations
	Modular reductions in floating-point arithmetic
	Block matrix product

	New multiword algorithms
	Multiword matrix decomposition
	Multiword matrix multiplication
	Discussion on the cost of the algorithms

	Performance benchmarks
	Experimental setting
	Discussion of the results
	Square matrices
	Unbalanced matrices and effect of concatenation
	Summary: variant selection

	Conclusion
	References

