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Introduction



Sparse direct solvers

Discretization of a physical problem
(e.g. Code_Aster, finite elements)

⇓

A X = B

A large and sparse, B dense or sparse
Sparse direct methods : A = LU (LDLT)

Often a significant part of simulation cost

Objective discussed in this presentation:
how to reduce the cost of sparse direct solvers?

Focus on large-scale applications and architectures
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Multifrontal Factorization with Nested Dissection

N n = Nd
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3D problem complexity
→ Flops: O(n2), mem: O(n4/3)
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Low-rank matrices

Take a dense matrix B of size b×b and compute its SVD B = XSY:
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Low-rank matrices

Take a dense matrix B of size b×b and compute its SVD B = XSY:

B = X1S1Y1 + X2S2Y2 with S1(k, k) = σk > ε, S2(1, 1) = σk+1 ≤ ε

If B̃ = X1S1Y1 then ∥B− B̃∥2 = ∥X2S2Y2∥2 = σk+1 ≤ ε
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Low-rank matrices

Take a dense matrix B of size b×b and compute its SVD B = XSY:

B = X1S1Y1 + X2S2Y2 with S1(k, k) = σk > ε, S2(1, 1) = σk+1 ≤ ε

If B̃ = X1S1Y1 then ∥B− B̃∥2 = ∥X2S2Y2∥2 = σk+1 ≤ ε

If the singular values of B decay very fast (e.g. exponentially) then
k≪ b even for very small ε (e.g. 10−14) ⇒ memory and CPU
consumption can be reduced considerably with a controlled loss
of accuracy (≤ ε) if B̃ is used instead of B
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Low-rank matrix formats
Frontal matrices are not low-rank but in some applications they
exhibit low-rank blocks

σ

τ

A block B represents the interaction be-
tween two subdomains σ and τ .
If they have a small diameter and are far
away their interaction is weak ⇒ rank is
low.
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H and BLR matrices

H-matrix BLR matrix
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H and BLR matrices

H-matrix BLR matrix

• Theoretical complexity can be
as low as O(n)

• Complex, hierarchical
structure

• Theoretical complexity can be
as low as O(n4/3)

• Simple structure

Find a good comprise between complexity and performance
⇒ Ongoing collaboration with STRUMPACK team (LBNL) to

compare BLR and hierarchical formats
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Standard BLR factorization: FSCU

++

• FSCU

(Factor,

Solve,

Compress,

Update)

• Easy to handle numerical pivoting, a critical feature often
lacking in other low-rank solvers

• Potential of this variant was studied in
▶ Amestoy, Ashcraft, Boiteau, Buttari, L’Excellent, and Weisbecker. Improving

Multifrontal Methods by Means of Block Low-Rank Representations, SIAM J. Sci.
Comput., 2015.

…but it had much room for improvement
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Novel variants to improve
the BLR factorization



LUAR variant: accumulation and recompression

+

• FSCU (Factor, Solve, Compress, Update)
• FSCU+LUAR

◦ Better granularity in Update operations
◦ Potential recompression ⇒ complexity reduction: O(n

5
3 ) → O(n

14
9 )

⇒ Collaboration with LSTC to design efficient recompression strategies
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FCSU variant: compress before solve

• FSCU (Factor, Solve, Compress, Update)
• FSCU+LUAR

◦ Better granularity in Update operations
◦ Potential recompression ⇒ complexity reduction: O(n

5
3 ) → O(n

14
9 )

⇒ Collaboration with LSTC to design efficient recompression strategies

• FCSU(+LUAR)

◦ Restricted pivoting, e.g. to diagonal blocks

⇒ not acceptable in
many applications ⇒ encouraging results with new variant
compatible with pivoting

◦ Low-rank Solve ⇒ complexity reduction: O(n
14
9 ) → O(n

4
3 )
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Performance and scalability
of the BLR factorization



Multicore performance results
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Structural mechanics
Matrix of order 8M
Required accuracy: 10−9

Seismic imaging
Matrix of order 17M
Required accuracy: 10−3

Electromagnetism
Matrix of order 21M
Required accuracy: 10−7

Results on 24 Haswell cores:

factorization time (s)
application MUMPS BLR BLR+ ratio

structural 2066.9 1129.0 377.9 5.5
seismic 5649.5 1998.8 773.7 7.3
electromag. 13842.7 3702.9 736.1 18.8

▶ Amestoy, Buttari, L’Excellent, and Mary. Performance and Scalability of the Block
Low-Rank Multifrontal Factorization on Multicore Architectures, submitted to ACM
Trans. Math. Srans. Math. Soft.., 2017.13/18 Mathias 2017, 25-27 Oct. 2017, Paris



Distributed-memory performance results

• Volume of communications is reduced less than flops ⇒ higher
relative weight of communications

• Low-rank compression cannot be predicted ⇒ load unbalance
increases

⇒ Ongoing work to design strategies to overcome these issues

Results on 900 Ivy Bridge cores:

factorization time (s)
application MUMPS BLR BLR+ ratio

structural 263.0 156.9 104.9 2.5
seismic 600.9 231.2 123.4 4.9
electromag. 1242.6 454.3 233.8 5.3
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Result on a very large problem

Result on matrix 15Hz (order 58× 106, nnz 1.5× 109)
on 900 cores:

flops factors memory (GB) elapsed time (s)
(PF) size (TB) avg. max. ana. fac. sol.

MUMPS 29.6 3.7 103 120 OOM OOM OOM
BLR 1.3 0.7 37 57 437 856 0.2/RHS
ratio 22.9 5.1 2.8 2.3

⇒ this result opens promising perspectives for
frequency-domain inversion with low-rank direct solver

even at high frequencies

15/18 Mathias 2017, 25-27 Oct. 2017, Paris



Conclusion
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H vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use H theory on BLR matrices?

cmin

Complexity mainly depends on rmax,
the maximal rank of the blocks
With H partitioning, rmax is small

BLR: a particular case of H?

Problem: in H formalism, the maxrank of the blocks of a BLR
matrix is rmax = b (due to the non-admissible blocks)
Solution: bound the rank of the admissible blocks only, and make
sure the non-admissible blocks are in small number
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sure the non-admissible blocks are in small number
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Complexity of dense BLR factorization

BLR-admissibility condition of a partition P
P is admissible ⇔ Nna = #{σ × τ ∈ P, σ × τ is not admissible} ≤ q

Non-Admissible Admissible

Main result
There exists an admissible P for q = O(1), s.t. the maxrank of the admissible
blocks of A is r = O(rHmax).
The complexity of the factorization of a dense matrix of order m is thus:
Cfacto = O(r2m3/b2 +mb2q2) = O(r2m3/b2 +mb2) = O(rm2) (for b = O(

√
rm))

▶ Amestoy, Buttari, L’Excellent, and Mary. On the Complexity of the Block Low-Rank
Multifrontal Factorization, SIAM J. Sci. Comput., 2017.
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Complexity experiments: problems

1. Poisson: N3 grid with a 7-point stencil with u = 1 on the
boundary ∂Ω

∆u = f

2. Helmholtz: N3 grid with a 27-point stencil, ω is the angular
frequency, v(x) is the seismic velocity field, and u(x, ω) is the
time-harmonic wavefield solution to the forcing term s(x, ω).(

−∆− ω2

v(x)2

)
u(x, ω) = s(x, ω)

ω is fixed and equal to 4Hz.
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Experimental MF flop complexity: Poisson (ε = 10−10)

Nested Dissection
ordering (geometric)

Mesh size N
64 96 128 160 192 224 256 320

F
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p 
co

un
t

10 11

10 12

10 13

10 14

10 15

FR

fit: 5 n 2.02

FSCU

fit: 2244 n 1.45

FSCU+LUAR

fit: 4283 n 1.38

FCSU+LUAR

fit: 14385 n 1.27

METIS ordering
(purely algebraic)
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fit: 3 n 2.05

FSCU

fit: 1344 n 1.48

FSCU+LUAR

fit: 2927 n 1.40

FCSU+LUAR

fit: 6066 n 1.33

• good agreement with theoretical complexity
(O(n2), O(n1.67), O(n1.55), and O(n1.33))

• remains close to ND complexity with METIS ordering
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Experimental MF flop complexity: Helmholtz (ε = 10−4)

Nested Dissection
ordering (geometric)

Mesh size N
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fit: 32 n 1.84
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fit: 50 n 1.79
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fit: 63 n 1.76

METIS ordering
(purely algebraic)

Mesh size N
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FR

fit: 9 n 2.03

FSCU

fit: 25 n 1.86

FSCU+LUAR

fit: 42 n 1.81

FCSU+LUAR

fit: 38 n 1.79

• good agreement with theoretical complexity
(O(n2), O(n1.83), O(n1.78), and O(n1.67))

• remains close to ND complexity with METIS ordering
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Experimental MF complexity: factor size

NNZ (Poisson)

Mesh size N
64 96 128 160 192 224 256 320
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to
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FR

fit: 3 n 1.40

BLR

fit: 16 n 1.04  log n

NNZ (Helmholtz)

Mesh size N
64 96 128 160 192 224 256 320

F
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to
rs
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e

10 9

10 10

10 11

FR

fit: 15 n 1.36

BLR

fit: 6 n 1.19  log n

• good agreement with theoretical complexity
(FR: O(n1.33); BLR: O(n logn) and O(n1.17 logn))
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Experimental Setting: Machines

Experiments are done on the shared-memory machines of the
LIP laboratory of Lyon:

1. brunch
◦ Four Intel(r) 24-cores Broadwell @ 2,2 GHz
◦ Peak per core is 35.2 GF/s
◦ Total memory is 1.5 TB

2. grunch
◦ Two Intel(r) 14-cores Haswell @ 2,3 GHz
◦ Peak per core is 36.8 GF/s
◦ Total memory is 768 GB
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Exploiting tree-based multithreading in MF solvers

thr0-3 thr0-3 thr0-3 thr0-3

Node
parallelism

L0 layer

thr0-3 thr0-3

thr0-3

• Work based on W. M. Sid-Lakhdar’s PhD thesis
◦ L0 layer computed with a variant of the Geist-Ng algorithm
◦ NUMA-aware implementation
◦ use of Idle Core Recycling technique (variant of work-stealing)

▶ L’Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a
multifrontal solver, Parallel Computing.

⇒ how big an impact can tree-based multithreading make?
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Impact of tree-based multithreading on BLR

%hai

%lai

Higher AI

Lower AI

24 threads 24 threads
+ tree MT

time %lai time %lai

FR 509 21%

424 13%

BLR

307 35% 221 24%

⇒ 1.7 gain becomes 1.9 thanks to tree-based MT
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Right Looking Vs. Left-Looking analysis

FR BLR
RL LL RL LL

1 thread
Update 6467 1064
Total 7390 2242

24 threads
Update 338 336 110 67
Total 424 421 221 175

read once

written at each step

RL factorization

read at each step

written once

LL factorization

⇒ Lower volume of memory transfers in LL (more critical in MT)

Update is now less memory-bound: 1.9 gain becomes 2.4 in LL
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Performance of Outer Product with LUA(R) (24 threads)

Double complex (z) performance
benchmark of Outer Product

Size of Outer Product
0 20 40 60 80 100

G
flo

ps
/s
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b=256
b=512

LL LUA LUAR∗

average size of Outer Product 16.5 61.0 32.8

flops (×1012)
Outer Product 3.76 3.76 1.59
Total 10.19 10.19 8.15

time (s)
Outer Product 21 14 6
Total 175 167 160

∗ All metrics include the Recompression overhead
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Compress before Solve + pivoting: CFSU variant

k

D

X

YT

B̃

How to assess the quality of pivot k?
We need to estimate ∥B̃:,k∥max:
∥B̃:,k∥max ≤ ∥B̃:,k∥2 = ∥XYTk,:∥2 = ∥YTk,:∥2,
assuming X is orthonormal (e.g. RRQR, SVD).

matrix residual flops (% FR)
FSCU FCSU CFSU FSCU FCSU CFSU

af_shell10 2e-06 5e-06 4e-06 29.9 22.7 22.7
Lin 4e-05 4e-05 4e-05 24.0 18.5 18.5
mario002 2e-06 fail 1e-06 82.8 — 72.2
perf009ar 3e-13 1e-01 9e-11 26.0 22.7 22.1
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