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Introduction




Sparse direct solvers

Discretization of a physical problem
(e.g. Code_Aster, finite elements)

I
AX=8B

A large and sparse, B dense or sparse
Sparse direct methods : A = LU (LDLT)

Often a significant part of simulation cost

Objective discussed in this presentation:
how to reduce the cost of sparse direct solvers?

Focus on large-scale applications and architectures
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Multifrontal Factorization with Nested Dissection
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Low-rank matrices

Take a dense matrix B of size b x b and compute its SVD B = XSY:
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S Yy

So Y,
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Low-rank matrices

Take a dense matrix B of size b x b and compute its SVD B = XSY:

B = X1S1Y1 + X2SaYs  with Sl(k, k) =0k > €&, Sg(l, 1) =0ky1 J €
If B=X1S1Y1 then ||B—Blla=]X2S2Ysllo=0ws1 <e¢

If the singular values of B decay very fast (e.g. exponentially) then
k < b even for very small € (e.g. 10714) = memory and CPU
consumption can be reduced considerably with a controlled loss

of accuracy (< ¢) if B is used instead of B
5/18 Mathias 2017, 25-27 Oct. 2017, Paris



Low-rank matrix formats

Frontal matrices are not low-rank but in some applications they
exhibit low-rank blocks

A block B represents the interaction be-
tween two subdomains o and T.

If they have a small diameter and are far
g away their interaction is weak = rank is
! ! low.
I I
! - !
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H and BLR matrices

5

H-matrix BLR matrix
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H and BLR matrices

5

e Theoretical complexity can be e Theoretical complexity can be

H-matrix BLR matrix

as low as O(n) as low as O(n*/3)
e Complex, hierarchical e Simple structure
structure
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H and BLR matrices

5

e Theoretical complexity can be e Theoretical complexity can be

H-matrix BLR matrix

as low as O(n) as low as O(n*/3)
e Complex, hierarchical e Simple structure
structure

Find a good comprise between complexity and performance

= Ongoing collaboration with STRUMPACK team (LBNL) to
compare BLR and hierarchical formats
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Standard BLR factorization: FSCU

e FSCU
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Standard BLR factorization: FSCU

e FSCU (Factor,

e Easy to handle numerical pivoting, a critical feature often
lacking in other low-rank solvers
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Standard BLR factorization: FSCU

e FSCU (Factor, Solve, Compress, Update)

e Easy to handle numerical pivoting, a critical feature often
lacking in other low-rank solvers

e Potential of this variant was studied in

> Amestoy, Ashcraft, Boiteau, Buttari, LExcellent, and Weisbecker. Improving
Multifrontal Methods by Means of Block Low-Rank Representations, SIAM J. Sci.
Comput,, 2015.
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Standard BLR factorization: FSCU

e FSCU (Factor, Solve, Compress, Update)

e Easy to handle numerical pivoting, a critical feature often
lacking in other low-rank solvers

e Potential of this variant was studied in

> Amestoy, Ashcraft, Boiteau, Buttari, LExcellent, and Weisbecker. Improving
Multifrontal Methods by Means of Block Low-Rank Representations, SIAM J. Sci.
Comput,, 2015.

...but it had much room for improvement
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Novel variants to improve
the BLR factorization




LUAR variant: accumulation and recompression

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR

10/18 Mathias 2017, 25-27 Oct. 2017, Paris



LUAR variant: accumulation and recompression

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR
o Better granularity in Update operations

10/18 Mathias 2017, 25-27 Oct. 2017, Paris



LUAR variant: accumulation and recompression

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR
o Better granularity in Update operations

o Potential recompression = complexity reduction: O(n%) — O(n¥)
= Collaboration with LSTC to design efficient recompression strategies

10/18 Mathias 2017, 25-27 Oct. 2017, Paris



LUAR variant: accumulation and recompression

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR

o Beftter granularity in Update operations

o Potential recompression = complexity reduction: O(n%) — O(n¥)
= Collaboration with LSTC to design efficient recompression strategies

10/18 Mathias 2017, 25-27 Oct. 2017, Paris



LUAR variant: accumulation and recompression

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR
o Better granularity in Update operations

o Potential recompression = complexity reduction: O(n%) — O(n¥)
= Collaboration with LSTC to design efficient recompression strategies

10/18 Mathias 2017, 25-27 Oct. 2017, Paris



FCSU variant: compress before solve

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR
o Better granularity in Update operations

o Potential recompression = complexity reduction: O(n%) — O(n¥)
= Collaboration with LSTC to design efficient recompression strategies

e FCSU(+LUAR)
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FCSU variant: compress before solve

e FSCU (Factor, Solve, Compress, Update)

o FSCU+LUAR
o Beftter granularity in Update operations N
o Potential recompression = complexity reduction: O(n%) — O(n9)

= Collaboration with LSTC to design efficient recompression strategies

e FCSU(+LUAR)
o Restricted pivoting, e.g. to diagonal blocks
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FCSU variant: compress before solve
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o Beftter granularity in Update operations
5 14
o Potential recompression = complexity reduction: O(n3) — O(n's )
= Collaboration with LSTC to design efficient recompression strategies

e FCSU(+LUAR)
o Restricted pivoting, e.g. to diagonal blocks
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FCSU variant: compress before solve

e FSCU (Factor, Solve, Compress, Update)
e FSCU+LUAR

o Beftter granularity in Update operations
5 14
o Potential recompression = complexity reduction: O(n3) — O(n's )
= Collaboration with LSTC to design efficient recompression strategies

o FCSU(+LUAR)

o Restricted pivoting, e.g. to diagonal blocks = not acceptable in
many applications = encouraging results with new variant
compatible with pivoting

o Low-rank Solve = complexity reduction: O(ns ) — O(n?)

/18 Mathias 2017, 25-27 Oct. 2017, Paris



Performmance and scalability
of the BLR factorization




Multicore performance results

O (km)
1o

15 20

J))) )

Structural mechanics Seismic imaging Electromagnetism
Matrix of order 8M Matrix of order T7TM Matrix of order 21M
Required accuracy: 1077 Required accuracy: 1072 Required accuracy: 1077

Results on 24 Haswell cores:

factorization time (s)
application MUMPS BLR BLR+  ratio

structural 20669 1129.0 3779 55
seismic 56495 19988 7737 7.3
electromag. | 13842.7 37029 7361 1838

>  Amestoy, Buttari, L'Excellent, and Mary. Performance and Scalability of the Block
Low-Rank Multifrontal Factorization on Multicore Architectures, submitted to ACM
13/18  Trans. Math. Srans. Math. Soft.., 2017. Mathias 2017, 25-27 Oct. 2017, Paris



Distributed-memory performance results

e Volume of communications is reduced less than flops = higher
relative weight of commmunications

e | ow-rank compression cannot be predicted = load unbalance
increases
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Distributed-memory performance results

e Volume of communications is reduced less than flops = higher
relative weight of commmunications

e | ow-rank compression cannot be predicted = load unbalance
increases

= Ongoing work to design strategies to overcome these issues

Results on 900 lvy Bridge cores:

factorization time (s)
application | MUMPS BLR BLR+ rafio

structural 263.0 1569 1049 25
seismic 6009 2312 1234 49
electromag. | 1242.6 4543 2338 53
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Result on a very large problem

Result on matrix 15Hz (order 58 x 10%, nnz 1.5 x 109)
on 900 cores:

flops  factors memory (GB) elapsed time (s)

(PF) | size (TB) | avg. max. ana. fac. sol.
MUMPS | 29.6 3.7 103 120 | OOM OOM OOM
BLR 13 0.7 37 57 | 437 856 0.2/RHS
ratio 229 51 2.8 2.3

= this result opens promising perspectives for
frequency-domain inversion with low-rank direct solver
even at high frequencies

15/18 Mathias 2017, 25-27 Oct. 2017, Paris



Conclusion
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H vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use H theory on BLR matrices?

Cmin? <F

Complexity mainly depends on rmax,
the maximal rank of the blocks
With H partitioning, rmax is small

|+

BLR: a particular case of H?

Problem: in H formalism, the maxrank of the blocks of a BLR
matrix is rmax = b (due to the non-admissible blocks)

Solution: bound the rank of the admissible blocks only, and make
sure the non-admissible blocks are in small number

18/18 Mathias 2017, 25-27 Oct. 2017, Paris



Complexity of dense BLR factorization

BLR-admissibility condition of a partition P

P is admissible < Np, = #{o X 7 € P, o X 7 is not admissible} < g

Non-Admissible Admissible
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Complexity of dense BLR factorization
BLR-admissibility condition of a partition P

P is admissible < Nn, = #{o X 7 € P, o X 7 is not admissible} < g

Non-Admissible Admissible

Main result
There exists an admissible P for g = O(1), s.t. the maxrank of the admissible

blocks of A is r = O(r’L,).
The complexity of the factorization of a dense matrix of order m is thus:
Cracto = O(r*m? /b? + mb%g?) = O(r*m?/b? + mb?) = O(rm?) (for b = O(y/rm))

> Amestoy, Buttari, LExcellent, and Mary. On the Complexity of the Block Low-Rank
18/18  Multifrontal Factorization, SIAM J. Sci. Comput., 2017. \/5thias 2017, 25-27 Oct. 2017, Paris



Complexity experiments: problems

1. Poisson: N2 grid with a 7-point stencil with u = 1 on the
boundary 0f2
Au="f

2. Helmholtz: N3 grid with a 27-point stencil, w is the angular
frequency, v(x) is the seismic velocity field, and u(x,w) is the
time-harmonic wavefield solution to the forcing term s(x, w).

<—A - %;2) u(x,w) = s(x,w)

w is fixed and equal to 4Hz.

18/18 Mathias 2017, 25-27 Oct. 2017, Paris



Experimental MF flop complexity: Poisson (e = 10719)

Nested Dissection
ordering (geometric)

O FR
—fit:5n
107 ¢ v FScu
—fit: 2244 n 45

{ FSCU+LUAR

2.02

14 L
=10 ——fit: 4283 n 38
3 O FCSU+LUAR
° P 1.27
2 fit: 14385 n
I 10 13 L

[N

o
-
N

i

o
-
=

64 96 128 160 192 224256 320
Mesh size N

e good agreement with theoretical complexity
(O(n2)' O(n1'67), O(n1'55), and O(n1'33))
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Experimental MF flop complexity: Poisson (e = 10719)
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METIS ordering
(purely algebraic)

O FR

—fit: 3n 2%

Vv FScu
—fit: 1344 n 148
{ FSCU+LUAR
——fit: 2927 n 140
O FCSU+LUAR
—fit: 6066 n 133

64 96 128
Mesh size N

e good agreement with theoretical complexity
(o(nZ)‘ O(n1'67), O(n1'55), and O(n1'33))

e remains close to ND complexity with METIS ordering

18/18
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Experimental MF flop complexity: Helmholtz (¢ = 107%)

Nested Dissection
ordering (geometric)

16
10 O FR
—fit: 12n 20
51| v Fscu
10 —fit: 32n 8¢
{ FSCU+LUAR
g | |—ftson 70
§1° O FCSU+LUAR
2 ——fit: 63n 17°
PR
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Mesh size N

320

METIS ordering
(purely algebraic)

100 FR
—fit.9n 2%
s[| v Fscu
1077 ¢ | ——fit; 25 n 186
{ FSCU+LUAR
£, [|—fit4zn 18
310 O FCSU+LUAR
a —fit: 38 n 170
o
= 10 13

64 96 128 160 192 224256 320
Mesh size N

e good agreement with theoretical complexity
(O(n2), O(n1'83), O(n1'78), and O(n1'67))

e remains close to ND complexity with METIS ordering
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Experimental MF complexity: factor size

NNZ (Poisson) NNZ (Helmholtz)

101 F
O FR O FR
—fit:3n 140 101 | |——fit: 15n 136
Vv BLR Vv BLR
—fit: 16 n 104 log n y —fit: 6n +1° log n
1010} J
() i
N N
a @ 10 10
S S
|5} Q
IS ©
w 109 w
10°
108

64 96 128 160 192 224256 320 64 96 128 160 192 224256 320
Mesh size N Mesh size N

e good agreement with theoretical complexity
(FR: O(n'33); BLR: O(nlogn) and O(n*'7logn))
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Experimental Setting: Machines

Experiments are done on the shared-memory machines of the
LIP laboratory of Lyon:

1. brunch
o Four Intel(r) 24-cores Broadwell @ 2,2 GHz
o Peak per core is 35.2 GF/s
o Total memory is 1.5 TB

2. grunch
o Two Intel(r) 14-cores Haswell @ 2,3 GHz
o Peak per core is 36.8 GF/s
o Total memory is 768 GB

18/18 Mathias 2017, 25-27 Oct. 2017, Paris
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multifrontal solver, Parallel Computing.



Exploiting tree-based multithreading in MF solvers

Node
parallelism

LO layer
Tree

parallelism

thrQ thrl thr2 thr3

e Work based on W. M. Sid-Lakhdar's PhD thesis
o LO layer computed with a variant of the Geist-Ng algorithm

o NUMA-aware implementation
o use of Idle Core Recycling technique (variant of work-stealing)

P> L'Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a
multifrontal solver, Parallel Computing.

= how big an impact can tree-based multithreading make?



Impact of tree-based multithreading on BLR

Higher Al

Polai Lower Al

24 threads 24 threads
+ tree MT

time %iai | time Yolai

FR 509 21%
BLR
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24 threads 24 threads
+ tree MT
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Impact of tree-based multithreading on BLR

Higher Al

c%3151]

Lower Al

24 threads 24 threads
+ tree MT

time %iai | time %lai

FR 509 21% | 424 13%
BLR | 307 35%
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Impact of tree-based multithreading on BLR

Higher Al

%Iai

Lower Al

24 threads 24 threads
+ tree MT

time %iai | time %lai

FR 509 21% | 424 13%
BLR | 307 35% | 221 24%

= 1.7 gain becomes 1.9 thanks to tree-based MT

18/18 Mathias 2017, 25-27 Oct. 2017, Paris



Right Looking Vs. Left-Looking analysis
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Right Looking Vs. Left-Looking analysis

FR BLR
RL  LL RL  LL
Update | 6467 1064
1 thread Total 7390 2242
Update | 338 336 | 110 67
ch threads 4| w24 421 | 221 175
[ read once [ read at each step

Il written at each step Il written once

RL factorization LL factorization

= Lower volume of memory transfers in LL (more critical in MT)
Update is now less memory-bound: 1.9 gain becomes 2.4 in LL



Performance of Outer Product with LUA(R) (24 threads)

Double complex (z) performance

benchmark of Outer Product

Glops/s

0 20 40 60 80 100
Size of Outer Product

LL LUA  LUAR*

average size of Outer Product 16.5 61.0 328
Outer Product 376 3.76 1.59

flops (x10'2)

Total 10.19 10.19 8.15
time (s) Outer Product 21 14 6
Total 175 167 160

* All metrics include the Recompression overhead
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Compress before Solve + pivoting: CFSU variant

How fo assess the quality of pivot k?
We need to estimate ||B. «||max:

I 1B kllmax < [1B:llz = IIXYY ll2 = [IYE |2,

assuming X is orthonormal (e.g. RRQR, SVD).

s}

rmatrix residual flops (% FR)
FSCU FCSU CFSU | FSCU FCSU CFsSU

af_shelllO | 2e-06 5e-06 L4Le-06 | 29.9 227 22.7

mario002 | 2e-06 fail le-06 | 82.8 — 72.2
perfOO9ar | 3e-13 1le-01 9e-11 | 26.0 22.7 22.1
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