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Context

→ →

Linear system Ax = b

Often a keystone in scientific computing applications
(discretization of PDEs, step of an optimization method, …)

Matrix sparsity

A sparse matrix is “any matrix with enough zeros that it pays to
take advantage of them” (Wilkinson)

Large-scale systems

Increasingly faster computers available, need to efficiently make
use of them
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Iterative vs direct methods

Iterative methods
Build sequence xk converging towards x

, Computational cost: O (n) operations/iteration and memory

/ Convergence is application-dependent

Direct methods
Factorize A = LU and solve LUx = b

, Numerically reliable

/ Computational cost: O
(
n2
)
operations, O

(
n4/3

)
memory

Practical example on a 10003 27-point Helmholtz problem:
15 ExaFlops and 209 TeraBytes for factors!
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Iterative methods
Build sequence xk converging towards x

, Computational cost: O (n) operations/iteration and memory

/ Convergence is application-dependent

Direct methods
Factorize A = LU and solve LUx = b

, Numerically reliable

/ Computational cost: O
(
n2
)
operations, O

(
n4/3

)
memory

Practical example on a 10003 27-point Helmholtz problem:
15 ExaFlops and 209 TeraBytes for factors!

Our objective:
reduce the cost of sparse direct solvers …

…while maintaining their numerical reliability
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Low-rank matrices

Take a dense matrix B of size b×b and compute its SVD B = XSY:
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Low-rank matrices

Take a dense matrix B of size b×b and compute its SVD B = XSY:

k = min {k ≤ b;σk+1 ≤ ε} is the numerical rank at accuracy ε

B̃ = X1S1Y1 is a low-rank approximation to B: ∥B− B̃∥2 ≤ ε

Storage savings: b2/2bk = b/2k
Similar flops savings when used in most linear algebra kernels
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Low-rank blocks
Most matrices are not low-rank in general but in some

applications they exhibit low-rank blocks

σ

τ

hig
h r

an
k

low rank

complete domain

A block B represents the interaction
between two subdomains σ and τ .

Small diameter and far away ⇒ low numerical rank.

How to choose a good block partitioning of the matrix?
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H and BLR matrices

H-matrix

• Nearly linear complexity
• Complex, hierarchical structure

BLR is a comprise between complexity and performance:
◦ Small blocks ⇒ can fit on single shared-memory node
◦ No global order between blocks ⇒ flexible data distribution
◦ Easy to handle numerical pivoting
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Standard BLR factorization: FSCU

• FSCU

(Factor,

Solve,

Compress,

Update)

• Easy to handle numerical pivoting, a critical feature often
lacking in other low-rank solvers

• Potential of this variant was studied in
Amestoy, Ashcraft, Boiteau, Buttari, L’Excellent, and Weisbecker, Improving
Multifrontal Methods by Means of Block Low-Rank Representations, SIAM J. Sci.
Comput. (2015).
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Outline

1. Complexity
⇒ Joint work with P. Amestoy, A. Buttari, J.-Y. L’Excellent

2. Parallelism
⇒ Joint work with PA, AB, JYL

3. Comparison with HSS
⇒ Joint work with PA, AB, JYL, P. Ghysels, X. S. Li, F.-H. Rouet

4. Multilevel BLR Matrices
⇒ Joint work with PA, AB, JYL

5. Error Analysis
⇒ Joint work with N. Higham

6. Fast BLR Matrix Arithmetic
⇒ Ongoing work

8/51 Block Low-Rank Matrices Theo Mary



Complexity



Computing the BLR complexity
Assume all off-diagonal blocks are low-rank. Then:

getrf
trsm
gemm

Storage = costLR ∗ nbLR + costFR ∗ nbFR

= O(br) ∗O((m
b
)2) +O(b2) ∗O(m

b
)

= O(m2r/b+mb)

= O(m3/2r1/2) for b = (mr)1/2

FlopLU = costgetrf ∗ nbgetrf + costtrsm ∗ nbtrsm + costgemm ∗ nbgemm

= O(b3) ∗O(m
b
) +O(b2r) ∗O((m

b
)2) +O(br2) ∗O((m

b
)3)

= O(mb2 +m2r+m3r2/b2)

= O(m2r) for b = (mr)1/2

Result holds if a constant number of off-diag. blocks is full-rank.
⇒ how to ensure this condition holds?
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BLR admissibility condition

BLR-admissibility condition of a partition P

P is admissible ⇔
{

#{σ, σ × τ ∈ P is full-rank} ≤ q
#{τ, σ × τ ∈ P is full-rank} ≤ q

Non-Admissible Admissible

Main result
For any matrix, we can build an admissible P for q = O (1), s.t. the
maximal rank of the admissible blocks of A is r = O

(
rHmax

)
Amestoy, Buttari, L’Excellent, and Mary, On the Complexity of the Block Low-Rank
Multifrontal Factorization, SIAM J. Sci. Comput. (2017).
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From dense to sparse: nested dissection

N n = N2

D1

D2

D3

D4

D1

D2

D3

D4

S

Proceed recursively to
compute separator tree

Factorizing a sparse matrix
amounts to factorizing a

sequence of dense matrices
⇒

sparse complexity is directly
derived from dense one
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Nested dissection complexity formulas

2D: Csparse =
logN∑
ℓ=0

4ℓCdense(
N
2ℓ

)

→ common ratio 22−α

3D: Csparse =
logN∑
ℓ=0

8ℓCdense(
N2

4ℓ
)

→ common ratio 23−2α

Assume Cdense = O(mα). Then:

2D 3D

Csparse(n) Csparse(n)
α > 2 O(nα/2) α > 1.5 O(n2α/3)
α = 2 O(n logn) α = 1.5 O(n logn)
α < 2 O(n) α < 1.5 O(n)
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Complexity of the BLR factorization

storage flops

dense
FR O(m2) O(m3)

BLR O(m3/2) O(m2)

sparse 2D
FR O(n logn) O(n3/2)
BLR O(n) O(n logn)

sparse 3D
FR O(n4/3) O(n2)
BLR O(n logn) O(n4/3)

(assuming r = O(1))

• Significant asymptotic complexity reduction compared to FR
• Almost optimal for sparse 2D problems!!
• Still superlinear in 3D
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Experimental complexity fit: Poisson (ε = 10−10)

Storage Flops

• Good agreement with theoretical complexity:
◦ Storage: O(n logn) → O(n1.1 logn)
◦ Flops: O(n4/3) → O(n1.3)
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Parallelism



Shared-memory performance analysis

Matrix S3
Double complex (z) symmetric

Electromagnetics application (CSEM)
3.3 millions unknowns

Required accuracy: ε = 10−7

஻௅ோߝ��������������������������௫ܧ ൌ 10ି଻

࢑࢐࢏ࢾ ൌ
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૛

૛|࢑࢐࢏,ࢿ࢞ ൅ ࢑࢐࢏࢞|
૛

૛ ൅ ૛ࣁ

�௫ܧ����������

����������������������������������������������������������������������������

࢑࢐࢏ࢾ

��

flops (×1012) time (1 core) time (24 cores)

FR 78.0 7390 509
BLR 10.2 2242 309
ratio 7.7 3.3 1.7

7.7 gain in flops only translated to a 1.7 gain in time:
Can we do better?
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Exploiting tree-based multithreading in MF solvers

thr0-3 thr0-3 thr0-3 thr0-3

Node
parallelism

L0 layer

thr0-3 thr0-3

thr0-3

• Node parallelism approach based on OpenMP loops

• Node+tree parallelism approach based on Sid-Lakhdar’s PhD
L’Excellent and Sid-Lakhdar, A study of shared-memory parallelism in a
multifrontal solver, Parallel Computing (2014).

• In FR, top of the tree is dominant ⇒ tree MT brings little gain
• In BLR, bottom of the tree compresses less, becomes important

⇒ 1.7 gain becomes 1.9 thanks to tree-based multithreading
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Right-looking Vs. Left-looking analysis (24 threads)

FR time BLR time
RL LL RL LL

Update 338 336 110 67
Total 424 421 221 175

read once

written at each step

RL factorization

read at each step

written once

LL factorization

⇒ Lower volume of memory transfers in LL (more critical in MT)

Update is now less memory-bound: 1.9 gain becomes 2.4 in LL
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LUAR variant: accumulation and recompression

+++

• FSCU (Factor, Solve, Compress, Update)

• FSCU+LUAR

◦ Better granularity in Update operations
◦ Potential recompression

FSCU

+LUA +LUAR

flops (×1012)
Outer Product 3.8

3.8 1.6

Total 10.2

10.2 8.1

time (s)
Outer Product 21

14 6

Total 175

167 160

⇒ 2.4 gain becomes 2.6
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FCSU variant: compress before solve

• FSCU (Factor, Solve, Compress, Update)
• FSCU+LUAR
• FCSU(+LUAR)

◦ Restricted pivoting
◦ Low-rank Solve ⇒ flop reduction

2.6 gain becomes 3.7
flops (TF) time (s) residual

FSCU 8.1 160 1.5e-09
FCSU 4.0 111 2.7e-09
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Multicore performance results (24 threads)

5Hz 7Hz 10Hz E3 E4 S3 S4 p8d p8ar p8cr
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• “BLR”: FSCU, right-looking, node only multithreading
• “BLR+”: FCSU+LUAR, left-looking, node+tree multithreading

Amestoy, Buttari, L’Excellent, and Mary, Performance and Scalability of the Block
Low-Rank Multifrontal Factorization on Multicore Architectures, ACM Trans. Math.
Soft. (2018).22/51 Block Low-Rank Matrices Theo Mary
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Comparison with
HSS Matrices



Experimental Setting

• Experiments are done on the cori supercomputer of NERSC

• We compare
◦ the MUMPS solver based on BLR
◦ the STRUMPACK solver (LBNL) based on HSS

• Test problems come from several real-life applications: Seismic

(5Hz), Electromagnetism (S3), Structural (perf008d, Geo_1438, Hook_1498,

ML_Geer, Serena, Transport), CFD (atmosmodd, PFlow_742), MHD (A22,

A30), Optimization (nlpkkt80), and Graph (cage13)

• We test 7 tolerance values (from 9e-1 to 1e-6) and FR, and
compare the time for factorization + solve with:
◦ 1 step of iterative refinement in FR
◦ GMRES iterative solver in LR with required accuracy of 10−6 and

restart of 30
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Full-Rank solvers comparison

A22 A30 atmosmodd cage13 Geo_1438 Hook_1498 ML_Geer nlpkkt80 PFlow_742 Serena spe10-aniso Transport
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⇒ very similar FR performance
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Preconditioner vs direct solver mode

Optimal tolerance choice

BLR HSS

A22 1e-5 FR
A30 1e-4 FR
atmosmodd 1e-4 9e-1
cage13 1e-1 9e-1
Geo_1438 1e-4 FR
Hook_1498 1e-5 FR
ML_Geer 1e-6 FR
nlpkkt80 1e-5 5e-1
PFlow_742 1e-6 FR
Serena 1e-4 1e-1
spe10-aniso 1e-5 FR
Transport 1e-5 FR
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When high accuracy is needed…
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• No convergence except for low tolerances ⇒ direct solver
mode is needed

• BLR is better suited as HSS rank is too high
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When preconditioning works well…
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• Fast convergence even for high tolerance ⇒ preconditioner
mode is better suited

• As the size grows, HSS will gain the upper hand
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The middle ground
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• Find compromise between accuracy and compression
• In general, BLR favors direct solver while HSS favors
preconditioner mode

⇒ Performance comparison will depend on numerical difficulty
and size of the problem
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Preconditioner vs direct solver mode

Optimal tolerance choice

BLR HSS

A22 1e-5 FR
A30 1e-4 FR
atmosmodd 1e-4 9e-1
cage13 1e-1 9e-1
Geo_1438 1e-4 FR
Hook_1498 1e-5 FR
ML_Geer 1e-6 FR
nlpkkt80 1e-5 5e-1
PFlow_742 1e-6 FR
Serena 1e-4 1e-1
spe10-aniso 1e-5 FR
Transport 1e-5 FR

These results seem to suggest
the following trend:

size

difficultydifficulty

FR

BLR

HSS
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Ongoing work on BLR preconditioners

N. J. Higham and T. Mary, A New Preconditioner that Exploits Low-Rank
Approximations to Factorization Error, MIMS EPrint 2018.10.

BLR threshold = 10−2, iterate until converged to accuracy 10−9

Recent work with N. Higham to
improve factorization-based preconditioners

Matrix n Standard Improved
Iter. Time Iter. Time

audikw_1 1.0M 691 1163 331 625
Bump_2911 2.9M — — 284 1708
Emilia_923 0.9M 174 304 136 267
Fault_639 0.6M — — 294 345
Ga41As41H72 0.3M — — 135 143
Hook_1498 1.5M 417 902 356 808
Si87H76 0.2M — — 131 116

Good potential to improve low-precision, low-memory BLR solvers
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The MBLR Format



Compromise between complexity and parallelism

size

parallelism

FR

BLR

Hier.

⇒

size

parallelism

FR

BLR is a compromise between complexity and performance

Can we find an even better compromise?

Multilevel BLR (MBLR)

: one format to englobe them all?

BLR
(ℓ = 1) ℓ = 2 ℓ = 3 … Hier.

(ℓ = ∞)
parallelism complexity

Fixed number of levels ℓ

33/51 Block Low-Rank Matrices Theo Mary



Compromise between complexity and parallelism

size

parallelism

FR

BLR

Hier.

⇒

size

parallelism

FR

BLR

Hier.

???

BLR is a compromise between complexity and performance

Can we find an even better compromise?

Multilevel BLR (MBLR)

: one format to englobe them all?

BLR
(ℓ = 1) ℓ = 2 ℓ = 3 … Hier.

(ℓ = ∞)
parallelism complexity

Fixed number of levels ℓ

33/51 Block Low-Rank Matrices Theo Mary



Compromise between complexity and parallelism

size

parallelism

FR

BLR

Hier.

⇒

size

parallelism

FR

BLR

Hier.

MBLR

BLR is a compromise between complexity and performance

Can we find an even better compromise?

Multilevel BLR (MBLR)

: one format to englobe them all?

BLR
(ℓ = 1) ℓ = 2 ℓ = 3 … Hier.

(ℓ = ∞)
parallelism complexity

Fixed number of levels ℓ

33/51 Block Low-Rank Matrices Theo Mary



Compromise between complexity and parallelism

size

parallelism

FR

BLR

Hier.

⇒

size

parallelism

FR

MBLR

BLR is a compromise between complexity and performance

Can we find an even better compromise?

Multilevel BLR (MBLR): one format to englobe them all?

BLR
(ℓ = 1) ℓ = 2 ℓ = 3 … Hier.

(ℓ = ∞)
parallelism complexity

Fixed number of levels ℓ

33/51 Block Low-Rank Matrices Theo Mary



Bridging the gap between flat and hierarchical formats
Cdense = O(mα) ⇒ Csparse = O(nβ)

Storage

1 1.5 2 2.5 3
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1.6
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2
Flops
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Key motivation: Cdense < O(m2) (2D) or O(m3/2) (3D)
is enough to get O(n) sparse complexity!

• 2D flop and 3D storage complexity: just a little improvement needed

• 3D flop complexity: still a large gap between BLR and H

We propose a multilevel BLR format to bridge the gap
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Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:
Storage = costLR ∗ nbLR + costBLR ∗ nbBLR

= O(br) ∗O((m
b
)2) +O(b3/2r1/2) ∗O(m

b
)

= O(m2r/b+m(br)1/2)

= O(m4/3r2/3) for b = (m2r)1/3

Similarly, we can prove:
FlopLU = O(m5/3r4/3) for b = (m2r)1/3

Result holds if a constant number of off-diag. blocks is BLR.

FR BLR 2-BLR … H

storage
dense O(m2) O(m1.5) O(m1.33) … O(m logm)
sparse O(n1.33) O(n logn) O(n) … O(n)

flop LU
dense O(m3) O(m2) O(m1.66) … O(m log3m)
sparse O(n2) O(n1.33) O(n1.11) … O(n)
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Multilevel BLR complexity

Main result
For b = mℓ/(ℓ+1)r1/(ℓ+1), the ℓ−level complexities are:

Storage = O(m(ℓ+2)/(ℓ+1)rℓ/(ℓ+1))

FlopLU = O(m(ℓ+3)/(ℓ+1)r2ℓ/(ℓ+1))

Amestoy, Buttari, L’Excellent, and Mary, Bridging the gap between flat and
hierarchical low-rank matrix formats: the multilevel BLR format, submitted (2018).

• Simple way to finely control the desired complexity

• Block size b ∝ O(mℓ/(ℓ+1)) ≪ O(m)
⇒ may be efficiently processed in shared-memory

• Number of blocks per row/column ∝ O(m1/(ℓ+1)) ≫ O(1)
⇒ flexibility to distribute data in parallel

36/51 Block Low-Rank Matrices Theo Mary
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Influence of the number of levels ℓ

Storage
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• If r = O(1), can achieve O(n) storage complexity with only two
levels and O(n logn) flop complexity with three levels

• For higher ranks, optimal sparse complexity is not attainable
with constant ℓ but improvement rate is rapidly decreasing:
the first few levels achieve most of the asymptotic gain
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with constant ℓ but improvement rate is rapidly decreasing:
the first few levels achieve most of the asymptotic gain
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Numerical experiments (Poisson)

Storage Flop LU

• Experimental complexity in relatively good agreement with
theoretical one

• Asymptotic gain decreases with levels
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Error analysis



Why we need an error analysis

BLR builds an approximate factorization Aε = LεUε

The BLR threshold ε is controlled by the user
BUT the user does not know how to choose ε!

Each off-diagonal block B is approximated by
a low-rank matrix B̃ such that ∥B− B̃∥ ≤ ε

∥A− LεUε∥ ̸= ε because of error propagation
⇒ What is the overall accuracy ∥A− LεUε∥?

• Can we prove that ∥A− LεUε∥ = O(ε)?
• What is the error growth, i.e., how does the error depend on the
matrix size m?

• How do the different variants (FCSU, LUAR, etc.) compare?
• Should we use an absolute threshold (∥B− B̃∥ ≤ ε) or a relative
one (∥B− B̃∥ ≤ ε∥B∥)?
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Main result

Theorem
The FSCU factorization of a matrix of order m with block size b
and absolute threshold ε produces an error equal to

∥A− LεUε∥ =

√
m
b
ε∥L∥∥U∥+O(uε).

• ∥L∥∥U∥ ≤ ρm∥A∥ where ρm is the growth factor; with partial
pivoting, ρm is typically small ⇒ BLR factorization is stable!

• Error growth behaves as
√
m/b = O(m1/4) ⇒ very slow growth!

• Factorization variants only change the O(uε) term ⇒ no
significant difference!

•
√
m/b term can be dropped using relative threshold, but

compression rate is also lower
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Experimental results
matrix ε = 10−4 ε = 10−8 ε = 10−12

error bound error bound error bound

pwtk 7.7e−05 3.4e−04 7.3e−09 3.4e−08 5.1e−13 3.4e−12
cfd2 2.3e−04 2.7e−04 2.3e−08 2.7e−08 1.9e−12 2.7e−12
2cubes_sphere 9.3e−05 1.3e−04 9.9e−09 1.3e−08 1.2e−12 1.3e−12
af_shell3 1.4e−04 2.0e−04 1.7e−08 2.0e−08 1.7e−12 2.0e−12
audikw_1 2.8e−04 4.3e−04 1.6e−08 4.3e−08 1.2e−12 4.3e−12
cfd2 2.3e−04 2.7e−04 2.3e−08 2.7e−08 1.9e−12 2.7e−12
Dubcova3 2.0e−04 1.5e−04 2.3e−08 1.5e−08 2.4e−12 1.5e−12
Fault_639 1.6e−05 2.4e−03 3.3e−09 2.4e−07 6.6e−13 2.4e−11
hood 1.6e−05 8.5e−04 1.7e−09 8.5e−08 1.6e−13 8.5e−12
nasasrb 8.7e−05 5.3e−04 5.4e−09 5.3e−08 5.7e−13 5.3e−12
nd24k 1.1e−04 6.8e−04 1.5e−08 6.8e−08 1.1e−12 6.8e−12
oilpan 5.7e−06 2.8e−03 1.2e−09 2.8e−07 5.3e−14 2.8e−11
pwtk 7.7e−05 3.4e−04 7.3e−09 3.4e−08 5.1e−13 3.4e−12
shallow_water1 9.3e−07 1.1e−04 3.4e−09 1.1e−08 6.2e−14 1.1e−12
ship_003 5.4e−05 3.2e−04 6.0e−09 3.2e−08 6.1e−13 3.2e−12
thermomech_dM 5.5e−06 1.1e−04 1.6e−09 1.1e−08 3.7e−14 1.1e−12
x104 2.0e−05 1.1e−03 2.6e−09 1.1e−07 2.1e−13 1.1e−11

Measured error matches bound
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Open questions

• Choice of scaling strategy
• Error analysis of BLR solution phase and its use in conjunction
of iterative refinement

• Pivoting strategies for the BLR factorization
• Error analysis of multilevel BLR factorization
• Probabilistic error analysis: in the standard LU case, the
deterministic bound

|A− LU| ≤ γn|L||U| = O(nu)|L||U|

is known to be pessimistic. In recent work, we have shown that

|A− LU| ≤ γ̃n|L||U| = O(
√
nu)|L||U|

holds with high probability assuming rounding errors are
random. Can we apply this to BLR factorizations?
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Fast BLR Matrix Arithmetic



Context and objective

• Standard O(m3) matrix multiplication algorithm is not optimal:
O(mω) can be achieved, with 2 ≤ ω ≤ ω0 = log2 7 ≈ 2.81.

• Reminder: given a O(mω) matrix multiplication algorithm, the
LU factorization has the same complexity

• Example: Strassen’s algorithm achieves O(mω0) complexity(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
M1 = (A11 + A22)(B11 + B22),

M2 = (A21 + A22)B11,

M3 = A11(B12 − B22),

M4 = A22(B21 − B11),

M5 = (A11 + A12)B22,

M6 = (A21 − A11)(B11 + B12),

M7 = (A12 − A22)(B21 + B22),

⇒
C11 = M1 +M4 −M5 +M7,

C12 = M3 +M5,

C21 = M2 +M4,

C22 = M1 −M2 +M3 +M6.

• Question: can we use fast matrix arithmetic to improve the
O(m2r) BLR complexity?
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Formalism

• We model a BLR matrix A as A = SA + EA, where SA consists
of the FR blocks and EA of the LR ones

• Then, AB = (SA + EA)(SB + EB) = SASB + SAEB + SBEA + EAEB

• SASB product: O(p) FR-FR products

×

O(pb3) → O(pbω) ⇒ good enough

• Not so straighforward for the other three products!
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First naive approach

SAEB product: O(p2) FR-LR products

×

Problem: fast matrix multiplication works on square matrices

× → ×

O(p2)×O(b2r) → O(p2)×O(b2rω−1) = O(m2rω−1)
⇒ no asymptotic reduction in m, only in r

Since m≫ r, this is not a satisfying result ⇒ can we do better?
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Second approach based on accumulation

× → × b

pr

O(p2)×O(b2r) → O(p)×O(b2pr)

→ O(p)×O(max((pr)ω−2b2,prbω−1))

⇒ find new optimal b that equilibrates cost(SAEB) and cost(EAEB)

Theorem
With this approach, the complexity of the BLR factorization
becomes

O(m(3ω−1)/(ω+1)r(ω−1)2/(ω+1)).

⇒≈ O(m1.95r0.86) for ω = ω0 and O(m5/3r1/3) for ω = 2

⇒ asymptotic gain in m… but still not optimal
(lower bound is given by size(A) = O(m3/2r1/2))
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Third approach based on Strassen’s algorithm

• Key idea: use Strassen’s algorithm on the entire BLR matrix(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
M1 = (A11 + A22)(B11 + B22),

...

M7 = (A12 − A22)(B21 + B22),

⇒
C11 = M1 +M4 −M5 +M7,

...

C22 = M1 −M2 +M3 +M6.

⇒ Requires the stronger assumption that each Mi is BLR

Theorem
With this approach, the complexity of the BLR factorization
becomes

O(m(ωω0−1)/(ω+ω0−2)r(ω−1)2/(ω+ω0−2)).

⇒≈ O(m1.90r0.90) for ω = ω0 and ≈ O(m1.64r0.36) for ω = 2

Can we generalize this result to algorithms other than Strassen’s?
Replacing ω0 by ω → O(m(ω+1)/2r(ω−1)/2) achieves lower bound
for ω = 2
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Conclusion



Summary

Main results
• BLR dense factorization achieves O(m2r) complexity
• We must rethink our algorithms to convert this theoretical
reduction into actual time gains

• Good compromise between complexity and performance
compared to hierarchical formats

Recent advances
• Multilevel extension can achieve an even better compromise
• Error analysis provides both theoretical guarantees and new
insights

• Ongoing work on fast BLR matrix arithmetic

Slides and papers available here

http://personalpages.manchester.ac.uk/staff/theo.mary/
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