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Context

→ →

Linear system Ax = b

Often a keystone in scientific computing applications
(discretization of PDEs, step of an optimization method, …)

Large, sparse matrices

Matrix A is sparse (many zeros) but also large (106–109 unknowns)

Direct methods
Factorize A = LU and solve LUx = b, Numerically reliable / Computational cost
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Structural sparsity
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2D problem complexity
• Flops: O(n3) → O(n3/2)
• Storage: O(n2) → O(n logn)
3D problem complexity
• Flops: O(n3) → O(n2)
• Storage: O(n2) → O(n4/3)
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Data sparsity

In many cases of interest the matrix has a block low-rank structure

σ

τ

B
ρ σ

τ

kε ≪ b

kε ≃ b

A block B represents the interaction between two subdomains.
Far away subdomains ⇒ block of low numerical rank:

B ≈ X YT

b× b b× kε kε × b

with kε ≪ b such that ∥B− XYT∥ ≤ ε
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Flat vs hierarchical matrices

How to choose a good block partitioning of the matrix?

BLR matrix H-matrix

• Superlinear complexity
• Simple, flat structure

• Nearly linear complexity
• Complex, hierarchical
structure
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Asymptotic complexity of
BLR factorization



BLR factorization: standard FCU variant

• FCU

(Factor,

Compress,

Update)

• Easy to handle numerical pivoting
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CFU factorization variant

• CFU

(Compress,

Factor,

Update)

• Factor step is performed on compressed blocks ⇒ reduced
flops

• How can we handle numerical pivoting?

◦ Restricting pivot choice to diagonal block is acceptable (in
combination with a pivot delaying strategy)

◦ Must still check entries in off-diagonal blocks: can be estimated
from entries in low-rank blocks
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CFU factorization variant
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Complexity of the dense BLR factorization

Complexity analysis based on H matrix theory
and requires the important assumption that
the number of full-rank blocks per
row/column is constant ⇒ can be guaranteed
with an adequate clustering (so-called BLR
admissibility condition)

Then, for a m×m dense matrix with blocks of rank r:
• Storage: O(m2) → O(m3/2r1/2)
• Flops LU: O(m3) → O(m7/3r2/3) (FCU) → O(m2r) (CFU)

P. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. On the Complexity of the
Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput. (2017).


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Complexity of the sparse BLR factorization

storage flops

dense
FR O(m2) O(m3)

BLR O(m3/2) O(m2)
H O(m logm) O(m log2m)

sparse 2D
FR O(n logn) O(n3/2)
BLR O(n) O(n logn)
H O(n) O(n)

sparse 3D
FR O(n4/3) O(n2)
BLR O(n logn) O(n4/3)
H O(n) O(n)

(assuming r = O(1))

• In a 2D world hierarchical matrices would not be needed
• Superlinear complexities in 3D
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Experimental complexity fit: 3D Poisson (ε = 10−10)

Storage Flops

• Good agreement with theoretical complexity:
◦ Storage: O(n logn) → O(n1.1 logn)
◦ Flops: O(n4/3) → O(n1.3)
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Two-level BLR format

Key idea: replace full-rank blocks by their BLR
approximation ⇒ two-level BLR matrix
Technically hierarchical, but much simpler

Storage complexity (assuming r = O(1)):

FR BLR 2-BLR … H

dense O(m2) O(m1.5) O(m1.33) … O(m logm)
sparse (2D) O(n logn) O(n) O(n) … O(n)
sparse (3D) O(n1.33) O(n logn) O(n) … O(n)

Flop complexity (assuming r = O(1)):

dense O(m3) O(m2) O(m1.66) … O(m log3m)

sparse (2D) O(n3/2) O(n logn) O(n) … O(n)
sparse (3D) O(n2) O(n1.33) O(n1.11) … O(n)
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Multilevel BLR format

Multilevel BLR (MBLR) format: recursively refine full-rank blocks
up to a constant number of levels ℓ

MBLR complexity

Storage = O(m(ℓ+2)/(ℓ+1)rℓ/(ℓ+1))

FlopLU = O(m(ℓ+3)/(ℓ+1)r2ℓ/(ℓ+1))

P. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. Bridging the gap between flat and hierarchical low-
rank matrix formats: the multilevel BLR format. Submitted (2018).



Flop complexity (assuming r = O(1)):

ℓ = 1 ℓ = 2

ℓ = 3 ℓ = 4

Hierar.

Dense O(m2) O(m1.66)

O(m1.5) O(m1.4)

O(m log2m)
Sparse (3D) O(n1.33) O(n1.11)

O(n logn) O(n)

O(n)

With r = O(1) only 4 levels are enough. With larger ranks more
levels needed but gain from adding more levels decreases rapidly
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Numerical experiments (3D Poisson)

Storage Flop LU

• Experimental complexity in relatively good agreement with
theoretical one

• Asymptotic gain decreases with levels
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Performance and scalability
of BLR solvers



Shared-memory performance analysis: an example

Matrix S3
Double complex (z) symmetric

Electromagnetics application (CSEM)
3.3 millions unknowns

Required accuracy: ε = 10−7

D. Shantsev, P. Jaysaval, S. Kethulle de Ryhove, P. Amestoy, A. Buttari,
J.-Y. L’Excellent, and T. Mary. Large-scale 3D EM modeling with a
Block Low-Rank multifrontal direct solver. Geophys. J. Int (2017).


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flops (×1012) time (1 core) time (24 cores)

FR 78.0 7390 509
BLR 10.2 2242 307
ratio 7.7 3.3 1.7

7.7 gain in flops only translated to a 1.7 gain in time:
Can we do better?
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Improving the performance of BLR factorization

Variant name time FR/BLR ratio

Full-Rank 509

+Tree par. 418

BLR (FCU) 307 1.7

+Tree par. 221 1.9
+Left-looking 175 2.4
+Accumulation 167 2.5
+Recompression 160 2.6
+CFU 111 3.8

Converting the theoretical flop reduction into actual time gains
on modern architectures requires careful algorithmic work
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Improving the performance of BLR factorization

Tree parallelism improves performance by reducing the relative
cost of the fronts at the bottom of the tree, which achieve poor
compression

Variant name time FR/BLR ratio
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+Tree par. 418
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thr0 thr1 thr2 thr3

Node
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par.

thr0-3 thr0-3

thr0-3

Converting the theoretical flop reduction into actual time gains
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Improving the performance of BLR factorization

Left-looking FCU improves performance thanks to a left-looking
approach which reduces memory transfers
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Improving the performance of BLR factorization

LUA improves performance because it accumulates multiple
low-rank updates and applies them at once increasing the
granularity of operations

Variant name time FR/BLR ratio

Full-Rank 509
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BLR (FCU) 307 1.7
+Tree par. 221 1.9
+Left-looking 175 2.4
+Accumulation 167 2.5

+Recompression 160 2.6
+CFU 111 3.8

+

Acc.−−→

Rec.−−→

Converting the theoretical flop reduction into actual time gains
on modern architectures requires careful algorithmic work
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Improving the performance of BLR factorization
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Improving the performance of BLR factorization

CFU reduces complexity because solve operations are also done
in low-rank
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Multicore performance results (24 cores)

Results with the BLR MUMPS solver:

P. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. Performance and Scalability of the Block Low-Rank
Multifrontal Factorization on Multicore Architectures. ACM Trans. Math. Soft. (2018).


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Distributed-memory performance results
Results on 300 → 900 cores

(eos supercomputer, CALMIP)

Number of MPIs x Number of cores
30x10 45x10 60x10 75x10 90x10

T
im

e 
(s

)

250

500

1000

2000
FR
BLR

Matrix 10Hz
Single complex (c) unsymmetric
Seismic imaging application (FWI)

17 millions unknowns
Required accuracy: ε = 10−3

P. Amestoy, R. Brossier, A. Buttari, J.-Y. L’Excellent, T. Mary,
L. Métivier, A. Miniussi, and S. Operto. Fast 3D frequency-
domain full waveform inversion with a parallel Block Low-
Rank multifrontal direct solver: application to OBC data
from the North Sea. Geophysics (2016).



How to improve the scalability of the BLR factorization? 
Two main difficulties:
• Higher weight of communications: flops reduced by 13 but
volume of communications only by 2

• Unpredictability of compression: more difficult to design good
mapping and scheduling strategies

20/39 Block Low-Rank Solvers Theo Mary

http://personalpages.manchester.ac.uk/staff/theo.mary/doc/GEO16.pdf
http://personalpages.manchester.ac.uk/staff/theo.mary/doc/GEO16.pdf
http://personalpages.manchester.ac.uk/staff/theo.mary/doc/GEO16.pdf
http://personalpages.manchester.ac.uk/staff/theo.mary/doc/GEO16.pdf


Rounding error analysis of
BLR factorization



Why we need an error analysis

Each off-diagonal block B is approximated by
a low-rank matrix B̃ such that ∥B− B̃∥ ≤ ε∥B∥
⇒ ∥A− Aε∥ ≤ ε∥A∥ with good norm choice
However:
∥A− LεUε∥ ̸= ε because of rounding errors
⇒ What is the overall accuracy ∥A− LεUε∥?

• Can we prove that ∥A− LεUε∥ = O(ε)? What is the role of the
unit roundoff u?

• What is the error growth, i.e., how does the error depend on the
matrix size n?

• How do the different variants (FCU, CFU, etc.) compare?

• Should we use an absolute threshold (∥B− B̃∥ ≤ ε) or a relative
one (∥B− B̃∥ ≤ ε∥B∥)?
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Main result: statement

Reminder
The full-rank LU factorization of A ∈ Rn×n satisfies

∥A− LU∥ ≤ nu∥L∥∥U∥+O(u2)

Main result
The FCU BLR factorization of A ∈ Rn×n with relative threshold ε
satisfies

∥A− LεUε∥ ≤ (nu+ ε)∥L∥∥U∥+O(uε) +O(u2)

The proof is quite technical and based on Stability of Block
Algorithms with Fast Level-3 BLAS (Demmel and Higham, 1992)

23/39 Block Low-Rank Solvers Theo Mary



Main result: comments

Main result
The FCU BLR factorization of A ∈ Rn×n with relative threshold ε
satisfies

∥A− LεUε∥ ≤ (nu+ ε)∥L∥∥U∥+O(uε) +O(u2)

• ∥L∥∥U∥ ≤ n2ρn∥A∥ where ρn is the growth factor
⇒ with partial pivoting, the BLR factorization is stable!

• Usually ε ≫ u:

⇒ Role of u is limited

⇒ Very slow error growth

⇒ Usage of fast matrix arithmetic

may be stable in BLR
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Main result
The FCU BLR factorization of A ∈ Rn×n with relative threshold ε
satisfies

∥A− LεUε∥ ≤ (nu+ ε)∥L∥∥U∥+O(uε) +O(u2)

• ∥L∥∥U∥ ≤ n2ρn∥A∥ where ρn is the growth factor
⇒ with partial pivoting, the BLR factorization is stable!

• Usually ε ≫ u:

⇒ Role of u is limited

⇒ Very slow error growth

⇒ Usage of fast matrix arithmetic

may be stable in BLR

For example with Strassen’s algo-
rithm, nu→ nlog2 12u ≈ n3.6u

Ongoing work with C.-P. Jeannerod, C. Per-

net, and D. Roche: Exploiting fast matrix

arithmetic within BLR factorizations:

O(n2) complexity → O(n(ω+1)/2)
(≈ O(n1.9) for Strassen)
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Relative vs absolute threshold

Theorem
The FCU BLR factorization of A ∈ Rn×n with absolute threshold ε
satisfies

∥A− LεUε∥ ≤ (nu+ θε)∥L∥∥U∥+O(uε) +O(u2)

where θ =
√
n/b− 1

∑n/b
i=1 ∥Lii∥+ ∥Uii∥

The BLR factorization with
absolute threshold

/ Has a faster error growth

/ Is scaling-dependent

, Is more efficient in practice
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Error analysis: CFU variant

Theorem
The CFU BLR factorization of A ∈ Rn×n with relative threshold ε
satisfies

∥A− LεUε∥ ≤ (nu+ ε)∥L∥∥U∥+O(κ(A)uε) +O(u2)
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Probabilistic rounding error analysis

Traditional bound: |A− LU| ≤ nu|L||U|
Traditional bound offers no accuracy guarantees when nu is large
⇒ important issue for large-scale, low-precision computations

Probabilistic bound: |A− LU| ≤ λ
√
nu|L||U| with high probability

10 1 10 2 10 3 10 4

10 -16

10 -14

10 -12

Solution of Ax = b, for 943
matrices from the SuiteSparse
collection

N. Higham and T. Mary. A New Ap-
proach to Probabilistic Rounding Error
Analysis. Submitted (2018).



Probabilistic rounding error analysis could be of special relevance
for low-rank solvers: nu+ ε → λ

√
nu+ ε?
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Low-accuracy BLR
preconditioners



Low-accuracy BLR preconditioners: storage

BLR factorization + GMRES solve with stopping tolerance 10−9

Matrix n Time (s) Storage (GB)
ε = 10−2 ε = 10−8 ε = 10−2 ε = 10−8

audikw_1 1.0M 1163 69 5 10
Bump_2911 2.9M — 282 34 56
Emilia_923 0.9M 304 63 7 12
Fault_639 0.6M — 45 5 9
Ga41As41H72 0.3M — 76 12 17
Hook_1498 1.5M 902 75 6 11
Si87H76 0.2M — 62 10 14

Low-accuracy BLR solvers:/ are slower and less robust, but require much less storage
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Improved preconditioner: context

Objective

• Compute solution to linear system Ax = b
• A ∈ Rn×n is ill conditioned

LU-based preconditioner

1. Compute approximate factorization A = L̂Û+∆A
◦ Half-precision factorization
◦ Incomplete LU factorization
◦ Structured matrix factorization: Block Low-Rank, H, HSS,…

2. Solve ΠLUAx = ΠLUb with ΠLU = Û−1L̂−1 via some iterative
method

• Convergence to solution may be slow or fail

⇒ Objective: accelerate convergence
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Improved preconditioner: key observation

Matrix lund_a (n = 147, κ(A) = 2.8e+06)
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SVD of A−1

• Often, A is ill conditioned due to a small number of small
singular values

• Then, A−1 is numerically low-rank
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Improved preconditioner: key idea

Factorization error might be low-rank?

Let the error E = Û−1L̂−1A− I = Û−1L̂−1(L̂Û+∆A)− I

= Û−1L̂−1∆A ≈ A−1∆A
Does E retain the low-rank property of A−1?

A novel preconditioner

Consider the preconditioner
ΠEk = (I+ Ek)−1ΠLU

with Ek a rank-k approximation to E.
• If E = Ek, ΠEk = A−1

• If E ≈ Ek for some small k, ΠEk can be computed cheaply
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Typical SV distributions of A−1 and E

0 100 200 300

10 -5

10 0

Matrix cz308

33/39 Block Low-Rank Solvers Theo Mary



Typical SV distributions of A−1 and E
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Typical SV distributions of A−1 and E
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Typical SV distributions of A−1 and E
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We did not specifically select matrices for which A−1 is low-rank!
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Computing Ek

We need to compute a rank-k approximation of

E = Û−1L̂−1A− I

E cannot be built explicitly! ⇒ use randomized method

Algorithm 1 Randomized SVD via direct SVD of VTE.
1: Sample E: S = EΩ, with Ω a n× (k+ p) random matrix.
2: Orthonormalize S: V = qr(S). {⇒ E ≈ VVTE.}
3: Compute truncated SVD VTE ≈ XkΣkYTk .
4: Ek ≈ (VXk)ΣkYTk .
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Improved BLR preconditioners

Results for ε = 10−2:

Matrix ΠLU ΠEk
Iter. Time Iter. Time

audikw_1 691 1163 331 625
Bump_2911 — — 284 1708
Emilia_923 174 304 136 267
Fault_639 — — 294 345
Ga41As41H72 — — 135 143
Hook_1498 417 902 356 808
Si87H76 — — 131 116

⇒ performance and robustness improvement
with zero storage overhead
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Comparison with a hierarchical solver

Comparison with STRUMPACK solver (HSS format):

C. Gorman, G. Chavez, P .Ghysels, T. Mary, F.-H. Rouet, and X. S. Li. Matrix-free Construction of HSS Rep-
resentation Using Adaptive Randomized Sampling. Submitted (2018).


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Comparatively with BLR, HSS favors low-accuracy preconditioning
Applying improved preconditioner to HSS

should have an even greater impact!
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Conclusion



Takeaway messages

Complexity

BLR factorization achieves quadratic dense complexity but
(quasi-)linear sparse complexity with a small number of levels

Scalability

A large fraction of this theoretical reduction is converted into
actual time gains, even on large numbers of cores

Stability

It is numerically stable thanks to numerical pivoting and can
potentially exploit low-precision floating-point arithmetic

⇒ BLR solvers achieve a good compromise between asymptotic
complexity, parallel scalability, and numerical stability
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Perspectives

Complexity

• Can we exploit nested bases (H2, HSS) in BLR/MBLR?
• Exploiting fast matrix arithmetic (e.g. Strassen’s algorithm)
• Asymptotic complexity of the solution phase with sparse RHS

Scalability

• MBLR performance and scalability analysis
• Distributed-memory: need for specialized scheduling strategies
• How to achieve good memory scalability?

Stability

• Rounding error analysis of multilevel and hierarchical solvers
• Exploiting half precision within low-rank preconditioners
• Numerical pivoting strategies for BLR factorization
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Computing the BLR complexity
Assume all off-diagonal blocks are low-rank. Then:

getrf
trsm
gemm

Storage = costLR ∗ nbLR + costFR ∗ nbFR

= O(br) ∗O((m
b
)2) +O(b2) ∗O(m

b
)

= O(m2r/b+mb)

= O(m3/2r1/2) for b = (mr)1/2

FlopLU = costgetrf ∗ nbgetrf + costtrsm ∗ nbtrsm + costgemm ∗ nbgemm

= O(b3) ∗O(m
b
) +O(��@@b3b2r) ∗O((

m
b
)2) +O(br2) ∗O((m

b
)3)

= O(mb2 +m2
�Sbr+m3r2/b2)

= O(�����XXXXXm7/3r2/3m2r) for b =�����XXXXX(mr2)1/3(mr)1/2

CFU variant improves asymptotic complexity!

Result holds if a constant number of off-diag. blocks is full-rank.
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Nested dissection complexity formulas

In the 2D case:

Csparse =
logN∑
ℓ=0

4ℓCdense(
N
2ℓ

)

= Nα
logN∑
ℓ=0

2(2−α)ℓ

If Cdense = O(mα), Csparse is a geom. series of common ratio 22−α:

Csparse =


O(nα/2) if α > 2
O(n logn) if α = 2
O(n) if α < 2

Similar formulas in the 3D case:

Csparse =
logN∑
ℓ=0

8ℓCdense(
N2

4ℓ
) = N2α

logN∑
ℓ=0

2(3−2α)ℓ

Csparse =


O(n2α/3) if α > 1.5
O(n logn) if α = 1.5
O(n) if α < 1.5
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Complexity of the two-level BLR format

Assume all off-diagonal blocks are low-rank. Then:
Storage = costLR ∗ nbLR + costBLR ∗ nbBLR

= O(br) ∗O((m
b
)2) +O(b3/2r1/2) ∗O(m

b
)

= O(m2r/b+m(br)1/2)

= O(m4/3r2/3) for b = (m2r)1/3

Similarly, we can prove:
FlopLU = O(m5/3r4/3) for b = (m2r)1/3

Result holds if a constant number of off-diag. blocks is BLR.

FR BLR 2-BLR … H

storage
dense O(m2) O(m1.5) O(m1.33) … O(m logm)
sparse O(n1.33) O(n logn) O(n) … O(n)

flop LU
dense O(m3) O(m2) O(m1.66) … O(m log3m)
sparse O(n2) O(n1.33) O(n1.11) … O(n)
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Type of messages

P0

P1

P2

P3

LU messages

P0

P1

P2

P3

P4

P5

P0 P0

P1 P1
P2 P2
P3 P3
P4 P4
P5 P5

CB messages

• Volume of LUmessages is reduced by compressing the factors
, Reduces operation count, communications, and memory consumption

• Volume of CB messages can be reduced by compressing the CB
, Reduces communications and memory consumption/ Increases operation count unless assembly is done in LR
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Communication analysis

Front size #10 4
0 2 4 6 8

T
ot

al
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yt
es

 s
en

t

10 5

10 6

10 7

10 8

10 9

10 10

10 11

LU messages
CB messages

• FR case: LU messages dominate

• BLR case: CB messages
dominate ⇒ underwhelming
reduction of communications

⇒ CB compression allows for truly
reducing the communications

Theoretical communication bounds

WLU WCB Wtot

FR O
(
n4/3p

)
O
(
n4/3

)
O
(
n4/3p

)

BLR (CBFR) O
(
nr1/2p

)
O
(
n4/3

)
O
(
nr1/2p+ n4/3

)
BLR (CBLR) O

(
nr1/2p

)
O
(
nr1/2

)
O
(
nr1/2p

)
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Performance impact of the CB compression

matrix 10Hz 15Hz
order 17 M 58 M

factor flops (FR) 2.6 PF 29.6 PF
⇒ BLR (CBFR) 0.1 PF (5.3%) 1.0 PF (3.3%)
⇒ BLR (CBLR) 0.2 PF (6.1%) 1.1 PF (3.7%)

CBLR flops impact +15% +12%

factor time (FR) 601 5,206
⇒ BLR (CBFR) 123 (4.9) 838 (6.2)
⇒ BLR (CBLR) 213 (2.8) 856 (6.1)

CBLR time impact +73% +2%

comm. volume (FR) 5.3 TB 29.6 TB
comm. volume (CBFR) 1.7 TB (3.2) 13.3 TB ( 2.2)
comm. volume (CBLR) 0.6 TB (9.1) 1.2 TB (23.2)

⇒ CB compression becomes increasingly critical?
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Some ingredients for the proof

The proof is based on Stability of Block Algorithms with Fast
Level-3 BLAS (Demmel and Higham, 1992)

A =

[
A11 A12

A21 A22

]
Inductive proof: easy to bound error of computing
S = A22 − L21U12 and error of S = L22U22 is obtained by induction

For BLR, several specific difficulties arise:
• Need to bound error of low-rank product kernel:
C = ÃB̃ = XA

(
YTAXB

)
YTB

• Choice of norm matters: to obtain best constants possible,
we need a consistent, unitarily invariant norm

• Global bound is obtained from blockwise bounds
⇒ we work with the Frobenius norm
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Experiments on small matrices

Black-box setting: use p = 10 and k = num. rank at acc. 10−7
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Storage overhead: formula

We need to store Ek: two dense n× k matrices 
⇒ but only needed after factorization

Traditional multifrontal storage is SA + SLU + SCB
• SA = storage for matrix A
• SLU = storage for (BLR) LU factors
• SCB = storage for contribution blocks ⇒ temporary storage
during factorization

Thus, SCB and SEk do not overlap!
• Factorization storage: SA + SLU + SCB
• Solution storage: SA + SLU + SEk

⇒ Total storage: SA + SLU +max(SCB,SEk)

If SEk ≤ SCB, zero storage overhead!
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Storage overhead: results

audi Fault Hook Emilia Si87 Ga41 Bump
0

5

10

15

20

25

30

35

⇒ zero storage overhead on all matrices

51/39 Block Low-Rank Solvers Theo Mary



Storage overhead: results

audi Fault Hook Emilia Si87 Ga41 Bump
0

5

10

15

20

25

30

35

⇒ zero storage overhead on all matrices

51/39 Block Low-Rank Solvers Theo Mary


	Asymptotic complexity of BLR factorization
	Performance and scalability of BLR solvers
	Rounding error analysis of BLR factorization
	Low-accuracy BLR preconditioners
	Conclusion
	Backup slides

