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Introduction



Sparse direct solvers

Discretization of a physical problem
(e.g. Code_Aster, finite elements)

⇓

A X = B, A large and sparse, B dense or sparse
Sparse direct methods : A = LU (LDLT)

Often a significant part of simulation cost

Objective discussed in this talk:
how to reduce the cost of sparse direct solvers?

Focus on multicore architectures
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Multifrontal Factorization with Nested Dissection

N n = Nd

3D problem complexity

→ Flops: O(n2), mem: O(n4/3)
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H and BLR matrices

H-matrix BLR matrix
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H and BLR matrices

H-matrix BLR matrix

A block B represents the interaction between two subdomains. If
they have a small diameter and are far away their interaction is
weak ⇒ rank is low.
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H and BLR matrices

H-matrix BLR matrix

A block B represents the interaction between two subdomains. If
they have a small diameter and are far away their interaction is
weak ⇒ rank is low.

B̃ = XYT such that rank(B̃) = kε and ∥B− B̃∥ ≤ ε

If kε ≪ size(B) ⇒ memory and flops can be reduced with a
controlled loss of accuracy (≤ ε)
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H and BLR matrices

H-matrix BLR matrix

• Theoretical complexity can be
as low as O(n)

• Complex, hierarchical
structure

• Theoretical complexity can be
as low as O(n4/3)

• Simple structure

Find a good comprise between complexity and performance
⇒ Ongoing collaboration with STRUMPACK team (LBNL) to

compare BLR and hierarchical formats
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Complexity of the BLR
factorization



H vs. BLR complexity

Until recently, BLR complexity was unknown.
Can we use H theory on BLR matrices?

cmin

Complexity mainly depends on rmax,
the maximal rank of the blocks
With H partitioning, rmax is small

• Problem: in H formalism, the maxrank of the blocks of a BLR
matrix is rmax = b (due to full-rank blocks)

• H theory applied to BLR does not give a satisfying result
• Solution: extend the theory by bounding the number of
full-rank blocks
▶ Amestoy, Buttari, L’Excellent, and Mary. On the Complexity of the Block Low-Rank

Multifrontal Factorization, under review, SIAM SISC, 2016.
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Complexity of multifrontal BLR factorization

operations (OPC) factor size (NNZ)

r = O(1) r = O(N) r = O(1) r = O(N)

FR O(n2) O(n2) O(n
4
3 ) O(n

4
3 )
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4
3 )−O(n
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3 ) O(n

5
3 )−O(n
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H O(n
4
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5
3 ) O(n) O(n

7
6 )

H (fully structured) O(n) O(n
4
3 ) O(n) O(n

7
6 )

in the 3D case (similar analysis possible for 2D)

Important properties: with both r = O(1) or r = O(N)
• Complexity depends on how the BLR factorization is performed
• The BLR complexity exponent is always lower than the FR one
• The best BLR complexity is not so far from the H-case

How to convert complexity reduction into performance gain?
⇒ answer in the rest of this talk
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Experimental setting



Experimental Setting: Machines

Experiments are done on the shared-memory machines of the
LIP laboratory of Lyon:

1. brunch
◦ Four Intel(r) 24-cores Broadwell @ 2,2 GHz
◦ Peak per core is 35.2 GF/s
◦ Total memory is 1.5 TB

2. grunch
◦ Two Intel(r) 14-cores Haswell @ 2,3 GHz
◦ Peak per core is 36.8 GF/s
◦ Total memory is 768 GB
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Experimental Setting: Matrices (1/3)
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3D Seismic Modeling
Helmholtz equation
Single complex (c) arithmetic
Unsymmetric LU factorization
Required accuracy: ε = 10−3

Credits: SEISCOPE

matrix n nnz flops storage

5Hz 2.9M 70M 65.0 TF 59.7 GB
7Hz 7.2M 177M 404.2 TF 205.0 GB
10Hz 17.2M 446M 2.6 PF 710.8 GB

Full-Rank statistics

▶ Amestoy, Brossier, Buttari, L’Excellent, Mary, Métivier, Miniussi, and Operto. Fast 3D
frequency-domain full waveform inversion with a parallel Block Low-Rank multifrontal
direct solver: application to OBC data from the North Sea, Geophysics, 2016.
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Experimental Setting: Matrices (2/3)
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3D Electromagnetic Modeling
Maxwell equation
Double complex (z) arithmetic
Symmetric LDLT factorization
Required accuracy: ε = 10−7

Credits: EMGS

matrix n nnz flops storage

E3 2.9M 37M 57.9 TF 77.5 GB
S3 3.3M 43M 78.0 TF 94.6 GB
E4 17.4M 226M 1.8 PF 837.0 GB
S4 20.6M 266M 2.6 PF 1.0 TB

Full-Rank statistics

▶ Shantsev, Jaysaval, de la Kethulle de Ryhove, Amestoy, Buttari, L’Excellent, and Mary.
Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver,
submitted to Geophysical Journal International, 2016.12/32 Journée Lyon Calcul, Lyon, December 15, 2016



Experimental Setting: Matrices (3/3)

3D Structural Mechanics
Double real (d) arithmetic 
Symmetric LDLT factorization
Required accuracy: ε = 10−9

Credits: Code_Aster (EDF)

matrix n nnz flops storage

perf008d 1.9M 81M 101.0 TF 52.6 GB
perf008ar 3.9M 159M 377.5 TF 129.8 GB
perf009ar 5.4M 209M 23.4 TF 40.2 GB
perf008cr 7.9M 321M 1.6 PF 341.1 GB

Full-Rank statistics
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Sequential performance
analysis of the BLR
factorization



Standard BLR factorization: FSCU

++

• FSCU

(Factor,

Solve,

Compress,

Update)
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Sequential result

FR BLR
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7.7 gain in flops only translated to a 3.3 gain in time: why?
• lower granularity of the Update
• higher relative weight of the FR parts
• inefficient Compress
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Multithreading the BLR
factorization



Multithreaded result on 24 threads
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3.3 gain in sequential becomes 1.7 in multithreaded: why?
• LAI parts have become critical
• Update and Compress are memory-bound
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Exploiting tree-based multithreading in MF solvers

thr0-3 thr0-3 thr0-3 thr0-3

Node
parallelism

L0 layer

thr0-3 thr0-3

thr0-3

• Work based on W. M. Sid-Lakhdar’s PhD thesis
◦ L0 layer computed with a variant of the Geist-Ng algorithm
◦ NUMA-aware implementation
◦ use of Idle Core Recycling technique (variant of work-stealing)

▶ L’Excellent and Sid-Lakhdar. A study of shared-memory parallelism in a
multifrontal solver, Parallel Computing.

⇒ how big an impact can tree-based multithreading make?
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Impact of tree-based multithreading on BLR

%hai

%lai

Higher AI

Lower AI

24 threads 24 threads
+ tree MT

time %lai time %lai

FR 509 21%

424 13%

BLR

307 35% 221 24%

⇒ 1.7 gain becomes 1.9 thanks to tree-based MT

20/32 Journée Lyon Calcul, Lyon, December 15, 2016



Impact of tree-based multithreading on BLR

%hai

%lai

Higher AI

Lower AI

24 threads 24 threads
+ tree MT

time %lai time %lai

FR 509 21%

424 13%

BLR 307 35%

221 24%

⇒ 1.7 gain becomes 1.9 thanks to tree-based MT

20/32 Journée Lyon Calcul, Lyon, December 15, 2016



Impact of tree-based multithreading on BLR

%hai

%lai

Higher AI

Lower AI

24 threads 24 threads
+ tree MT

time %lai time %lai

FR 509 21% 424 13%
BLR 307 35%

221 24%

⇒ 1.7 gain becomes 1.9 thanks to tree-based MT

20/32 Journée Lyon Calcul, Lyon, December 15, 2016



Impact of tree-based multithreading on BLR

%hai

%lai

Higher AI

Lower AI

24 threads 24 threads
+ tree MT

time %lai time %lai

FR 509 21% 424 13%
BLR 307 35% 221 24%

⇒ 1.7 gain becomes 1.9 thanks to tree-based MT

20/32 Journée Lyon Calcul, Lyon, December 15, 2016



Right Looking Vs. Left-Looking analysis

FR BLR
RL LL RL LL

1 thread
Update 6467 1064
Total 7390 2242

24 threads
Update 338 336 110 67
Total 424 421 221 175

read once

written at each step

RL factorization

read at each step

written once

LL factorization

⇒ Lower volume of memory transfers in LL (more critical in MT)

Update is now less memory-bound: 1.9 gain becomes 2.4 in LL
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Improving the BLR
factorization with
algorithmic variants



LUAR variant: accumulation and recompression

+

• FSCU (Factor, Solve, Compress, Update)
• FSCU+LUAR

◦ Better granularity in Update operations
◦ Potential recompression ⇒ complexity reduction: O(n

5
3 ) → O(n

11
6 )

▶ Anton, Ashcraft, and Weisbecker. A Block Low-Rank multithreaded factorization
for dense BEM operators, presented at SIAM PP’16.
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Performance of Outer Product with LUA(R) (24 threads)
Double complex (z) performance
benchmark of Outer Product

Avg. size of Out. Prod.
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G
flo

ps
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b=256
b=512

LL LUA LUAR∗

average size of Outer Product 16.5 61.0 32.8

flops (×1012)
Outer Product 3.76 3.76 1.59
Total 10.19 10.19 8.15

time (s)
Outer Product 21 14 6
Total 175 167 160

∗ All metrics include the Recompression overhead

⇒ Higher granularity and lower flops in Update: 2.4 gain becomes 2.6
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FCSU variant: compress before solve

• FSCU (Factor, Solve, Compress, Update)
• FSCU+LUAR

◦ Better granularity in Update operations
◦ Potential recompression ⇒ complexity reduction: O(n

5
3 ) → O(n

11
6 )

▶ Anton, Ashcraft, and Weisbecker. A Block Low-Rank multithreaded factorization
for dense BEM operators, presented at SIAM PP’16.

• FCSU(+LUAR)

◦ Restricted pivoting, e.g. to diagonal blocks
◦ Low-rank Solve ⇒ complexity reduction: O(n

11
6 ) → O(n

4
3 )

◦ Better BLAS-3/BLAS-2 ratio in Solve operations
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Performance and accuracy of FCSU vs FSCU

full pivoting restricted pivoting
FR FSCU FR FSCU FCSU

+LUAR +LUAR +LUAR

flops (×1012) 77.97 8.15 77.97 8.15 3.95
time (s) 424 160 404 143 111
scaled residual 4.5e-16 1.5e-09 5.0e-16 1.9e-09 2.7e-09

• In many cases…
◦ restricted pivoting is enough ⇒ better BLAS-3/BLAS-2 ratio
◦ compressing before the Solve has little impact ⇒ flop reduction
⇒ 2.6 gain becomes 3.7

• When pivoting cannot be restricted…
◦ Solve step remains in BLAS-2
◦ but Compress before Solve is possible by extending pivoting

strategy to low-rank blocks
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Results on complete set of problems on 24 threads
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Impact of machine properties on BLR

specs time (s) for
peak bw BLR factorization

(GF/s) (GB/s) RL LL LUA

grunch (28 threads) 37 57 248 228 196
brunch (24 threads) 46 102 221 175 167

S3 matrix

Arithmetic Intensity in BLR:
• LL > RL (lower volume of
memory transfers)

• LUA > LL (higher granularities
⇒ more efficient cache use)
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Conclusion and
perspectives



Multicore performance of MF BLR factorization

Summary

• Flop reduction is not fully translated into performance gain,
especially with multithreading

• Revisited implementation choices: tree-based multithreading
and left-looking factorization become critical in BLR

• Introduced BLR variants with better properties
• Improved BLR leads to speedups up to 3 w.r.t. standard BLR
and up to 4 w.r.t FR on 24 threads

Perspectives

• Efficient strategies to recompress LR updates
• Extension of pivoting strategy to low-rank blocks (FCSU variant)
• Task-based multithreading
• Reduction of the cost of the Compress
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⇒ Bigger recompression overhead, when is it worth it?
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