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Context

→ →

Linear system Ax = b

Often a keystone in scientific computing applications
(discretization of PDEs, step of an optimization method, …)

Large, sparse matrices

Matrix A is sparse (many zeros) but also large (106–109 unknowns)

Direct methods
Factorize A = LU and solve LUx = b, Numerically reliable / Computational cost
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Structural sparsity

N n = Nd
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2D problem complexity
• Flops: O(n3) → O(n3/2)
• Storage: O(n2) → O(n logn)
3D problem complexity
• Flops: O(n3) → O(n2)
• Storage: O(n2) → O(n4/3)
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Data sparsity

In many cases of interest the matrix has a block low-rank structure

σ

τ

B
ρ σ

τ

kε ≪ b

kε ≃ b

A block B represents the interaction between two subdomains.
Far away subdomains ⇒ block of low numerical rank:

B ≈ X YT

b× b b× kε kε × b

with kε ≪ b such that ∥B− XYT∥ ≤ ε
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Flat vs hierarchical matrices

How to choose a good block partitioning of the matrix?

BLR matrix H-matrix

• Superlinear complexity
• Simple, flat structure

• Nearly linear complexity
• Complex, hierarchical
structure
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Complexity of LU factorization

P. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. On the Complexity of the
Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput. (2017).



Flop complexity (assuming r = O(1)):

BLR

ℓ = 2 ℓ = 3 ℓ = 4

Hierar.

Dense O(m2)

O(m1.66) O(m1.5) O(m1.4)

O(m log2m)
Sparse (3D) O(n1.33)

O(n1.11) O(n logn) O(n)

O(n)

Multilevel BLR (MBLR) format: refine full-rank
blocks up to a constant number of levels ℓ

P. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. Bridg-
ing the gap between flat and hierarchical low-rank matrix
formats: the multilevel BLR format. Submitted (2018).



With r = O(1) only 4 levels are enough (even fewer needed for
storage and sparse 2D complexities). With larger ranks more

levels needed but gain from adding more levels decreases rapidly
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Outline

This talk discusses several topics regarding the numerical
behavior of low-rank linear solvers in finite precision arithmetic:

1. Low-accuracy low-rank preconditioners

N. Higham and T. Mary. A New Preconditioner that Exploits Low-Rank
Approximations to Factorization Error. SIAM J. Sci. Comp (2018).



2. Rounding error analysis of BLR factorization

3. Probabilistic rounding error analysis

N. Higham and T. Mary. A New Approach to Probabilistic Rounding
Error Analysis. Submitted (2018).


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Low-accuracy low-rank
preconditioners



Low-accuracy BLR preconditioners: storage

BLR factorization + GMRES solve with stopping tolerance 10−9

Matrix n Time (s) Storage (GB)
ε = 10−2 ε = 10−8 ε = 10−2 ε = 10−8

audikw_1 1.0M 1163 69 5 10
Bump_2911 2.9M — 282 34 56
Emilia_923 0.9M 304 63 7 12
Fault_639 0.6M — 45 5 9
Ga41As41H72 0.3M — 76 12 17
Hook_1498 1.5M 902 75 6 11
Si87H76 0.2M — 62 10 14

Low-accuracy BLR solvers:/ are slower and less robust, but require much less storage
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Improved preconditioner: context

Objective

• Compute solution to linear system Ax = b
• A ∈ Rn×n is ill conditioned

LU-based preconditioner

1. Compute approximate factorization A = L̂Û+∆A
◦ Half-precision factorization
◦ Incomplete LU factorization
◦ Structured matrix factorization: Block Low-Rank, H, HSS,…

2. Solve ΠLUAx = ΠLUb with ΠLU = Û−1L̂−1 via some iterative
method

• Convergence to solution may be slow or fail

⇒ Objective: accelerate convergence
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Improved preconditioner: key observation

Matrix lund_a (n = 147, κ(A) = 2.8e+06)

0 50 100 150
10 1

10 2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

SVD of A
0 50 100 150

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

SVD of A−1

• Often, A is ill conditioned due to a small number of small
singular values

• Then, A−1 is numerically low-rank
11/44 Accuracy and Stability of Low-rank Solvers Theo Mary



Improved preconditioner: key idea

Factorization error might be low-rank?

Let the error E = Û−1L̂−1A− I = Û−1L̂−1(L̂Û+∆A)− I

= Û−1L̂−1∆A ≈ A−1∆A
Does E retain the low-rank property of A−1?

A novel preconditioner

Consider the preconditioner
ΠEk = (I+ Ek)−1ΠLU

with Ek a rank-k approximation to E.
• If E = Ek, ΠEk = A−1

• If E ≈ Ek for some small k, ΠEk can be computed cheaply
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Typical SV distributions of A−1 and E

0 100 200 300

10 -5

10 0

Matrix cz308
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Typical SV distributions of A−1 and E

0 50 100 150 200

10 -5

10 0

10 5

Matrix steam1
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Typical SV distributions of A−1 and E

0 50 100 150

10 -5

10 0

Matrix rajat14
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Typical SV distributions of A−1 and E
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We did not specifically select matrices for which A−1 is low-rank!
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Computing Ek

We need to compute a rank-k approximation of

E = Û−1L̂−1A− I

E cannot be built explicitly! ⇒ use randomized method

Algorithm 1 Randomized SVD via direct SVD of VTE.
1: Sample E: S = EΩ, with Ω a n× (k+ p) random matrix.
2: Orthonormalize S: V = qr(S). {⇒ E ≈ VVTE.}
3: Compute truncated SVD VTE ≈ XkΣkYTk .
4: Ek ≈ (VXk)ΣkYTk .
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Improved BLR preconditioners

Results for ε = 10−2:

Matrix ΠLU ΠEk
Iter. Time Iter. Time

audikw_1 691 1163 331 625
Bump_2911 — — 284 1708
Emilia_923 174 304 136 267
Fault_639 — — 294 345
Ga41As41H72 — — 135 143
Hook_1498 417 902 356 808
Si87H76 — — 131 116

⇒ performance and robustness improvement
with zero storage overhead
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Comparison with a hierarchical solver

Comparison with STRUMPACK solver (HSS format):

C. Gorman, G. Chavez, P .Ghysels, T. Mary, F.-H. Rouet, and X. S. Li. Matrix-free Construction of HSS Rep-
resentation Using Adaptive Randomized Sampling. Submitted (2018).


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Comparatively with BLR, HSS favors low-accuracy preconditioning
Applying improved preconditioner to HSS (or fully-structured

BLR) should have an even greater impact!
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Rounding error analysis of
BLR factorization



BLR factorization: standard FCU variant

• FCU

(Factor,

Compress,

Update)

• Easy to handle numerical pivoting
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Why we need an error analysis

Each off-diagonal block B is approximated by
a low-rank matrix B̃ such that ∥B− B̃∥ ≤ ε∥B∥
⇒ ∥A− Aε∥ ≤ ε∥A∥ with good norm choice
However:
∥A− LεUε∥ ̸= ε because of rounding errors
⇒ What is the overall accuracy ∥A− LεUε∥?

• Can we prove that ∥A− LεUε∥ = O(ε)? What is the role of the
unit roundoff u?

• What is the error growth, i.e., how does the error depend on the
matrix size n?

• How do the different variants (FCU, CFU, etc.) compare?

• Should we use an absolute threshold (∥B− B̃∥ ≤ ε) or a relative
one (∥B− B̃∥ ≤ ε∥B∥)?
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Main result: statement

Reminder
The full-rank LU factorization of A ∈ Rn×n satisfies

∥A− LU∥ ≤ nu∥L∥∥U∥+O(u2)

Main result
The FCU BLR factorization of A ∈ Rn×n with relative threshold ε
satisfies

∥A− LεUε∥ ≤ (nu+ ε)∥L∥∥U∥+O(uε) +O(u2)

The proof is quite technical and based on Stability of Block
Algorithms with Fast Level-3 BLAS (Demmel and Higham, 1992)
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Main result: comments

Main result
The FCU BLR factorization of A ∈ Rn×n with relative threshold ε
satisfies

∥A− LεUε∥ ≤ (nu+ ε)∥L∥∥U∥+O(uε) +O(u2)

• ∥L∥∥U∥ ≤ n2ρn∥A∥ where ρn is the growth factor
⇒ with partial pivoting, the BLR factorization is stable!

• Usually ε ≫ u:

⇒ Role of u is limited

⇒ Very slow error growth

⇒ Usage of fast matrix arithmetic

may be stable in BLR
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• Usually ε ≫ u:

⇒ Role of u is limited

⇒ Very slow error growth

⇒ Usage of fast matrix arithmetic

may be stable in BLR

For example with Strassen’s algo-
rithm, nu→ nlog2 12u ≈ n3.6u

Ongoing work with C.-P. Jeannerod, C. Per-

net, and D. Roche: Exploiting fast matrix

arithmetic within BLR factorizations:

O(n2) complexity → O(n(ω+1)/2)
(≈ O(n1.9) for Strassen)
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Relative vs absolute threshold

Theorem
The FCU BLR factorization of A ∈ Rn×n with absolute threshold ε
satisfies

∥A− LεUε∥ ≤ (nu+ θε)∥L∥∥U∥+O(uε) +O(u2)

where θ =
√
n/b− 1

∑n/b
i=1 ∥Lii∥+ ∥Uii∥

The BLR factorization with
absolute threshold

/ Has a faster error growth

/ Is scaling-dependent

, Is more efficient in practice
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CFU factorization variant

• CFU

(Compress,

Factor,

Update)

• Factor step is performed on compressed blocks ⇒ reduced
flops

• How can we handle numerical pivoting?

◦ Restricting pivot choice to diagonal block is acceptable (in
combination with a pivot delaying strategy)

◦ Must still check entries in off-diagonal blocks: can be estimated
from entries in low-rank blocks
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Error analysis: CFU variant

Theorem
The CFU BLR factorization of A ∈ Rn×n with relative threshold ε
satisfies

∥A− LεUε∥ ≤ (nu+ ε)∥L∥∥U∥+O(κ(A)uε) +O(u2)
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Probabilistic rounding error
analysis



Context and motivation
Floating-point arithmetic model

fl(a op b) = (a op b)(1 + δ), |δ| ≤ u, op ∈ {+,−,×, /}

fp64 fp32 fp16 fp8
(double) (single) (half) (quarter)

u
2−53 2−24 2−11 2−4

≈ 10−16 ≈ 10−8 ≈ 10−4 ≈ 10−2

• In many numerical linear algebra computations, traditional error
bounds are proportional to nu, e.g., for LU factorization:

|A− LU| ≤ nu|L||U|
⇒ No guarantees if nu is large: issue of growing importance with

the rise of large-scale, mixed-precision computations

• This issue is independent of low-rank solvers, but…
◦ Improved asymptotic complexity ⇒ larger n
◦ Error bound dominated by ε ⇒ larger u

⇒ nu > 1 will happen fast with low-rank solvers
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Traditional bounds are pessimistic
The issue is that traditional bounds are worst-case bounds, and
are thus pessimistic on average

⇒ Traditional bounds do not provide a realistic picture of the
typical behavior of numerical computations
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Key intuition

• Consider the accumulated effect of n rounding errors

s =
n∑
i=1

δi

• The worst-case bound |s| ≤ nu is attained when all δi have
identical sign and maximal magnitude, which intuitively seems
very unlikely

• Assume δi are random independent variables of mean zero
• Then, the central limit theorem states that if n is sufficiently
large, then

s/
√
n ∼ N (0,u)

⇒ |s| ≤ λ
√
nu, with λ a small constant, holds with high probability

(e.g., 99.7% with λ = 3 by the 3-sigma rule)
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The rule of thumb

This probabilistic approach had led to the following rule of thumb

In general, the statistical distribution of the rounding errors
will reduce considerably the function of n occurring in the
relative errors. We might expect in each case that this
function should be replaced by something which is no
bigger than its square root.

— James Wilkinson, 1961

However, no rigorous result along these lines exists for a wide
class of algorithms

Our contribution:
We provide the first rigorous foundation for this rule of thumb

by computing rigorous error bounds
that hold with probability at least a certain value
for a wide class of linear algebra algorithms
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Objective and assumptions

Fundamental lemma in backward error analysis

If |δi| ≤ u for i = 1 : n and nu < 1, then
n∏
i=1

(1 + δi) = 1 + θn, |θn| ≤ γn ≤ nu+O(u2)

We seek an anologous result by using the following model

Probabilistic model of rounding errors

In the computation of interest, the quantities δ in the model
fl(a op b) = (a op b)(1 + δ), |δ| ≤ u, op ∈ {+,−,×, /}

associated with every pair of operands are independent random
variables of mean zero.

There is no claim that ordinary rounding and chopping are random
processes, or that successive errors are independent. The question to be
decided is whether or not these particular probabilistic models of the
processes will adequately describe what actually happens.

— Hull and Swenson, 1966
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Proof sketch
First step: transform the product in a sum by taking the logarithm

S = log
n∏
i=1

(1 + δi) =

n∑
i=1

log(1 + δi)

Second step: apply Hoeffding’s concentration inequality:

Hoeffding’s inequality

Let X1, …, Xn be random independent variables satisfying |Xi| ≤ ci.
Then the sum S =

∑n
i=1 Xi satisfies

Pr(|S− E(S)| ≥ ξ) ≤ 2 exp
(
− ξ2

2
∑n

i=1 c
2
i

)

to Xi = log(1 + δi) ⇒ requires bounding log(1 + δi) and
E (log(1 + δi)) using Taylor expansions

Third step: retrieve the result by taking the exponential of S
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Our main result

Main result
Let δi, i = 1 : n, be independent random variables of mean zero
such that |δi| ≤ u. Then, for any constant λ > 0, the relation

n∏
i=1

(1 + δi) = 1 + θn, |θn| ≤ γ̃n(λ) := exp
(
λ
√
nu+

nu2

1− u

)
− 1

≤ λ
√
nu+O(u2)

holds with probability of failure P(λ) = 2 exp
(
−λ2(1− u)2/2

)

Key features:
• Exact bound, not first order
• nu < 1 not required
• No “n is sufficiently large” assumption (achieved by replacing
the central limit theorem by Hoeffding’s inequality)

• Small values of λ suffice: P(1) ≈ 0.27, P(5) ≤ 10−5
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Application to numerical linear algebra

Bounds for many numerical linear algebra algorithms are obtained
by the repeated application of our main result. For example:

Probabilistic bound for LU factorization
Let LU = A+∆A be the LU factors computed by Gaussian
elimination of A ∈ Rn×n. Then, for any constant λ > 0, the relation

|∆A| ≤ γ̃n(λ)|L||U|, |γ̃n(λ)| ≤ λ
√
nu+O(u2)

holds with probability of failure (n3/3 + n2/2 + 7n/6)P(λ)

We wish to keep the probabilities independent of n! Fortunately:

O(n3)P(λ) = O(1) ⇒ λ = O(
√

logn)

⇒ error grows no faster than
√
n lognu

Moreover the constant hidden in the big O is small:
P(13) ≤ 10−5 for n ≤ 1010
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Experimental setting

• We use MATLAB R2018b and set rng(1) for reproducibility

• fp16 and fp8 are simulated with the rounding function chop.m
from the Matrix Computation Toolbox

• We use both random matrices with entries drawn from the
uniform [−1, 1] or [0, 1] distribution and real-life matrices from
the SuiteSparse collection

• We compare the bounds γn and γ̃n(λ) with the componentwise
backward error εbwd measured as (Oettli–Prager):
◦ Matrix–vector product y = Ax: εbwd = maxi

|̂y−y|i
(|A||x|)i

◦ Solution to Ax = b via LU factorization: εbwd = maxi
|Ax̂−b|i

(|L̂||Û||̂x|)i

• Our codes are available online:
https://gitlab.com/theo.andreas.mary/proberranalysis
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Experimental results with [−1, 1] entries

Matrix–vector product (fp32)

10 1 10 2 10 3 10 4
10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

Solution of Ax = b (fp32)

10 1 10 2 10 3 10 4
10 -8

10 -6

10 -4

10 -2

• The probabilistic bound is much closer to the actual error
• However for [−1, 1] entries it is still pessimistic
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Experimental results with [0, 1] entries

Matrix–vector product (fp32)

10 1 10 2 10 3 10 4
10 -8
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10 -5
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10 -3

Solution of Ax = b (fp32)

10 1 10 2 10 3 10 4
10 -8

10 -6

10 -4

10 -2

• Probabilistic bound is plotted with λ = 1 ⇒ P(λ) is pessimistic…
• …but γ̃n bound itself can be sharp and successfully captures
the

√
n error growth

⇒ Therefore the bounds cannot be further improved without
further assumptions
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Experimental results with low precisions ([−1, 1] entries)

Matrix–vector product (fp16)

10 0 10 1 10 2 10 3
10 -4

10 -3

10 -2

10 -1

10 0

Matrix–vector product (fp8)

10 0 10 1 10 2 10 3
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10 0

• Importance of the probabilistic bound becomes even clearer
for lower precisions
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Experimental results with real-life matrices

Solution of Ax = b (fp64),
for 943 matrices from the SuiteSparse collection
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An example where rounding errors are not independent

Inner product of two constant
vectors:

si+1 = si + aibi = si + c

⇒ ŝi+1 = (ŝi + c)(1 + δi)

⇒ δi = θ is constant within
intervals [2q−1; 2q]
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ŝi ŝi+1 ŝi+2 ŝi+3
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××
θ
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××
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+c

××
θ
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+c

××
θ

+c

××
θ

+c

××
θ

40/44 Accuracy and Stability of Low-rank Solvers Theo Mary



An example where rounding errors are not independent

Inner product of two constant
vectors:

si+1 = si + aibi = si + c
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An example where rounding errors have nonzero mean

Inner product of two very large nonnegative vectors:

si+1 = si + aibi ⇒ ŝi+1 = (ŝi + aibi)(1 + δi)
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10
0

Top: 1 ≤ n ≤ 106

Bottom: 106 ≤ n ≤ 108

Explanation: si keeps increasing, at some point, it becomes so
large that ŝi+1 = ŝi ⇒ δi = −aibi/(ŝi + aibi) < 0
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Explanation: si keeps increasing, at some point, it becomes so
large that ŝi+1 = ŝi ⇒ δi = −aibi/(ŝi + aibi) < 0
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Conclusion

• Our analysis provides the first rigorous justification of the rule
of thumb that one can take the square root of the constant in
traditional error bounds to obtain a more realistic bound

• Our experiments show that the probabilistic bounds are in good
agreement with the actual error for both random and real-life
matrices, except in two very special situations, justifying that
The fact that rounding errors are neither random nor
uncorrelated will not in itself preclude the possibility of
modelling them usefully by uncorrelated random
variables.

— William Kahan, 1996
and answering Hull and Swenson’s question
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Conclusion



Conclusion
Takeaway messages

BLR solvers are numerically stable (with numerical pivoting) and
can efficiently exploit low-precision floating-point arithmetic when
used as low-accuracy preconditioners

Perspectives

• Apply improved preconditioner to fully-structured BLR (e.g.
PaStiX’s “minimal memory”) and HSS (e.g. STRUMPACK)

• Rounding error analysis of multilevel and hierarchical solvers
• Probabilistic error analysis of low-rank factorizations
• Exploiting half precision within low-rank preconditioners
• Error analysis of low-rank preconditioners with iterative
refinement

Slides and papers available here

bit.ly/theomary (list of references on next slide)
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Experiments on small matrices

Black-box setting: use p = 10 and k = num. rank at acc. 10−7
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Storage overhead: formula

We need to store Ek: two dense n× k matrices 
⇒ but only needed after factorization

Traditional multifrontal storage is SA + SLU + SCB
• SA = storage for matrix A
• SLU = storage for (BLR) LU factors
• SCB = storage for contribution blocks ⇒ temporary storage
during factorization

Thus, SCB and SEk do not overlap!
• Factorization storage: SA + SLU + SCB
• Solution storage: SA + SLU + SEk

⇒ Total storage: SA + SLU +max(SCB,SEk)

If SEk ≤ SCB, zero storage overhead!
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Storage overhead: results
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⇒ zero storage overhead on all matrices
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Some ingredients for the proof

The proof is based on Stability of Block Algorithms with Fast
Level-3 BLAS (Demmel and Higham, 1992)

A =

[
A11 A12

A21 A22

]
Inductive proof: easy to bound error of computing
S = A22 − L21U12 and error of S = L22U22 is obtained by induction

For BLR, several specific difficulties arise:
• Need to bound error of low-rank product kernel:
C = ÃB̃ = XA

(
YTAXB

)
YTB

• Choice of norm matters: to obtain best constants possible,
we need a consistent, unitarily invariant norm

• Global bound is obtained from blockwise bounds
⇒ we work with the Frobenius norm
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