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Context

Objective

• Compute solution to linear system Ax = b
• A ∈ Rn×n is ill conditioned

LU-based preconditioner

1. Compute approximate factorization A = L̂Û+∆A
◦ Half-precision factorization
◦ Incomplete LU factorization
◦ Structured matrix factorization: Block Low-Rank, H, HSS,…

2. Solve ΠLUAx = ΠLUb with ΠLU = Û−1L̂−1 via some iterative
method

• Convergence to solution may be slow or fail

⇒ Objective: accelerate convergence
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Key observation

Matrix lund_a (n = 147, κ(A) = 2.8e+06)
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• Often, A is ill conditioned due to a small number of small
singular values

• Then, A−1 is numerically low-rank
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Key idea

Factorization error might be low-rank?

Let the error E = Û−1L̂−1A− I = Û−1L̂−1(L̂Û+∆A)− I

= Û−1L̂−1∆A ≈ A−1∆A
Does E retain the low-rank property of A−1?

A novel preconditioner

Consider the preconditioner
ΠEk = (I+ Ek)−1ΠLU

with Ek a rank-k approximation to E.
• If E = Ek, ΠEk = A−1

• If E ≈ Ek for some small k, ΠEk can be computed cheaply

Preprint

N. J. Higham and T. Mary, A New Preconditioner that Exploits Low-Rank
Approximations to Factorization Error, MIMS EPrint 2018.10.
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Problem statement

Low-rank gap

εk(A) = min
Wk

{
∥A−Wk∥

∥A∥
: rank(Wk) ≤ k

}

Eckart-Young-Mirsky

εk(A) =
σk+1(A)
σ1(A)

Problem statement
Quantify worst-case reduction of the low-rank gap from A−1 to
E = Û−1L̂−1∆A, i.e find some β such that

εk(E) ≤ βεk(A−1)
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Bound on the low-rankness of E

Theorem

εk(E) ≤ β1β2εk(A−1)

with

εk(Û−1L̂−1) ≤ β1εk(A−1)

β1 =
(
1 + ∥A−1∆A∥

) (
1 + ∥Û−1L̂−1∆A∥

)

εk(E) = εk(Û−1L̂−1∆A) ≤ β2εk(Û−1L̂−1)

β2 =
∥Û−1L̂−1∥ ∥∆A∥
∥Û−1L̂−1∆A∥

• β1: maximal deviation of the sing. vals. by additive perturbation
• β2: should be small for typical ∆A
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The bound is pessimistic

Test case
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Typical SV distributions of A−1 and E
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Typical SV distributions of A−1 and E
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Typical SV distributions of A−1 and E
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Typical SV distributions of A−1 and E
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We did not specifically select matrices for which A−1 is low-rank!
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Computing Ek

We need to build

ΠEk = (I+ Ek)−1ΠLU = (I+ Ek)−1Û−1L̂−1

where Ek is a rank-k approximation of E = Û−1L̂−1A− I

E cannot be built explicitly! ⇒ Use randomized method

Algorithm 1 Randomized SVD via direct SVD of VTE.

1: {Input: the error matrix E = Û−1L̂−1A− I, stored implicitly.}
2: Sample E: S = EΩ, with Ω a n× (k+ p) random matrix.
3: Orthonormalize S: V = qr(S).
4: Compute SVD of VTE: XΣYT = VTE.
5: Truncate X, Σ, Y into Xk, Σk, Yk.
6: The SVD of Ek is given by (VXk)ΣkYTk .
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Computational cost analysis

Algorithm 1 Randomized SVD via direct SVD of VTE.
1: {Input: the error matrix E = Û−1L̂−1A− I, stored implicitly.}
2: Sample E: S = EΩ, with Ω a n× (k+ p) random matrix.
3: Orthonormalize S: V = qr(S).
4: Compute SVD of VTE: XΣYT = VTE.
5: Truncate X, Σ, Y into Xk, Σk, Yk.
6: The SVD of Ek is given by (VXk)ΣkYTk .

ℓ = k+ p

setup solve

ΠLU
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Computational cost analysis

Algorithm 1 Randomized SVD via row extraction.
1: {Input: the error matrix E = Û−1L̂−1A− I, stored implicitly.}
2: Sample E: S = EΩ, with Ω a n× (k+ p) random FFT matrix.
3: Orthonormalize S: V = qr(S).
4: Compute ID of V: V = (Ik W)TV(K,:).
5: Extract E(K,:) and compute a QR factorization ET(K,:) = QR.
6: Compute SVD of (Ik W)TRT: XΣYT = (Ik W)TRT.
7: Truncate X, Σ, Y into Xk, Σk, Yk.
8: The SVD of Ek is given by (VXk)ΣkYTk .

ℓ = k+ p
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Experimental setting

• Three types of approximate LU factorization:
◦ Half-precision
◦ Incomplete LU with drop tolerance 10−5 ≤ τ ≤ 10−1

◦ Block Low-Rank with low-rank threshold 10−9 ≤ τ ≤ 10−1

• Iterative solver is GMRES-based iterative refinement with three
precisions
◦ FP64 working precision and residual is computed in FP128
◦ Max nb of GMRES iterations per IR step is 100
◦ Max nb of IR steps is 10

• Large set of real-life matrices
◦ 53 ≤ n ≤ 494 and 103 ≤ κ(A) ≤ 1014

◦ Most are sparse, but treated as dense
◦ 149 tests on 40 different matrices

• MATLAB code running on laptop
◦ We measure nb of iterations and flops
◦ Time is only estimated, not measured
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Parameter tuning: oversampling p

Performance profile: ρ is the percentage of problems solved for
less than α × the cost of the best choice ⇒ higher is better
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Parameter tuning: oversampling p

Performance profile: ρ is the percentage of problems solved for
less than α × the cost of the best choice ⇒ higher is better
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We seek a compromise between number of iterations
and flops to minimize time, which we estimate
assuming BLAS-2 is 10× slower than BLAS-3

12/15 A New Preconditioner based on Low-Rank Error Theo Mary



Parameter tuning: oversampling p

Performance profile: ρ is the percentage of problems solved for
less than α × the cost of the best choice ⇒ higher is better
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Need to set oversampling p differently depending on
preconditioner variant
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Parameter tuning: ε threshold (∥E− Ek∥ ≤ ε)

Performance profile: ρ is the percentage of problems solved for
less than α × the cost of the best choice ⇒ higher is better
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Similar trend for low-rank threshold ε
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Results with black-box setting

Black-box setting: use Π
(3)
Ek with p = 10 and ε = 10−7
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Application to large-scale, sparse matrices

P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary, Performance and
Scalability of the Block Low-Rank Multifrontal Factorization on Multicore
Architectures.

Application to BLR-MUMPS sparse multifrontal solver
BLR threshold = 10−2, iterate until converged to accuracy 10−9

Matrix n ΠLU ΠEk
Iter. Time Iter. Time

audikw_1 1.0M 691 1163 331 625
Bump_2911 2.9M — — 284 1708
Emilia_923 0.9M 174 304 136 267
Fault_639 0.6M — — 294 345
Ga41As41H72 0.3M — — 135 143
Hook_1498 1.5M 417 902 356 808
Si87H76 0.2M — — 131 116

Good potential to improve low-precision, low-memory BLR solvers
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Conclusion

Summary

• Ill-conditioned matrices often have a numerically low-rank
inverse

• Theoretical justification of why the error E = Û−1L̂−1A− I
retains this property

• Novel preconditioner based on a low-rank approximation to the
error to accelerate linear systems solution

Future work
• High-performance implementation for FP16 and ILU
• Well suited for GPUs (FP16 8× faster than FP32!)

Slides and paper available here

http://personalpages.manchester.ac.uk/staff/theo.mary/
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Ingredient 1: Û−1L̂−1 is low-rank if A−1 is

Lemma

σi(X+∆X) ≤ σi(X)
(
1 + ∥X−1∆X∥

)
Apply lemma twice:

X = L̂Û and ∆X = ∆A ⇒ σi(A) ≤ σi(L̂Û)

Maximum growth(
1 + ∥Û−1L̂−1∆A∥

)
X = A and ∆X = −∆A ⇒ σi(L̂Û) ≤ σi(A)

(
1 + ∥A−1∆A∥

)
Maximum shrinkage

Theorem

εk(Û−1L̂−1) ≤ β1εk(A−1)

with
β1 =

(
1 + ∥A−1∆A∥

) (
1 + ∥Û−1L̂−1∆A∥

)
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Bound β1 is pessimistic
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Ingredient 2: Û−1L̂−1∆A is low-rank if Û−1L̂−1 is

Theorem

εk(Û−1L̂−1∆A) ≤ β2εk(Û−1L̂−1)

with
β2 =

∥Û−1L̂−1∥ ∥∆A∥
∥Û−1L̂−1∆A∥

Corollary

εk(E) ≤ β1β2εk(A−1)

Theorem

β2 ≤ β̄2 =
σn+1−k(L̂Û)

σn(L̂Û)

∥∆A∥
∥Pk∆A∥

with Pk = XkXTk and Xk the last k left singular vectors of L̂Û.
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Bound β2 is also pessimistic
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