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Abstract. Given A ∈ Rm×n and its singular value decomposition (SVD) UΣV T , the eigenvalue
decomposition (EVD) of the Gram matrix G = ATA is V Σ2V T . When m ≫ n, it is computationally
attractive to compute the truncated SVD of A from the truncated EVD of G. This idea has in
particular been used to efficiently compress low-rank tensors. In finite precision arithmetic, however,
there is a good reason to fear instability from this approach, since the Gram matrix G has condition
number κ(A)2. We carry out an error analysis of this approach that uses eigenvector perturbation
theory. We first explain that a naive application of standard results from this theory leads to an
error bound proportional to κ(Ā)2u, where u is the machine precision, Ā is the matrix truncated to
the target rank k, and κ(Ā) = σ1/σk is its generalized condition number. Importantly, this bound is
pessimistic and we prove that we can significantly improve it with a more careful analysis. Specifically,
we obtain two improvements: first, we show that the error bound is at most proportional to κ(Ā)u,
instead of κ(Ā)2u. Second, we show that regardless of how large κ(Ā) is, the error cannot exceed
a constant multiple of

√
u. Hence our final bound is of order min(κ(Ā)u,

√
u). Moreover, we also

propose the use of iterative refinement to further improve the accuracy in some cases. We illustrate
the unusual and attractive behavior of this algorithm with numerical experiments that showcase its
effectiveness, despite its partial instability. We believe that our results explain the success that this
approach has encountered in large scale tensor computations.
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1. Introduction. Let A ∈ Rm×n with m ≥ n and let UΣV T be its singular
value decomposition (SVD), where U ∈ Rm×m and V ∈ Rn×n are orthogonal and
Σ ∈ Rm×n is diagonal. A low-rank approximation (LRA) of A can be computed via
the truncated SVD

Ā = Ū Σ̄V̄ T , Ū ∈ Rm×k, Σ̄ ∈ Rk×k, V̄ ∈ Rn×k (1.1)

where Ū and V̄ correspond to the first k left and right singular vectors, respectively,
and Σ̄ to their associated singular values. For any given threshold ε > 0, an approx-
imation error satisfying ∥A − Ū Σ̄V̄ T ∥ ≤ ε∥A∥ can be obtained by suitably choosing
the rank k.

This article is concerned with a Gram LRA approach that consists in computing
the Gram matrix G = ATA, computing its eigenvalue decomposition (EVD) G =
WΛWT , and using it to recover the LRA (AW̄ )W̄T where W̄ are the truncated
eigenvectors of G, which in exact arithmetic are equal to the truncated right singular
vectors V̄ of A. This approach is described in Algorithm 1.1 where the truncation
rank k is determined based on the eigenvalues in Λ.

Note that if necessary the truncated left singular vectors Ū can be recovered with
the observation that

AW̄ Λ̄−1/2 = UΣV T V̄ Σ̄−1 = UΣIm,kΣ̄
−1 = UIm,k = Ū ,

where Im,k is the matrix composed of the first k columns of the m×m identity matrix.
This Gram LRA approach is computationally attractive when m ≫ n because

its bottleneck lies in the matrix–matrix product ATA, which requires O(mn2) flops,
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Algorithm 1.1 Gram low-rank approximation.

Input: A ∈ Rm×n, a truncation threshold ε.
Output: X̄Ȳ T , a rank-k approximation of A satisfying ∥A− X̄Ȳ T ∥ ≤ ε∥A∥.
1: Compute the Gram matrix G = ATA ∈ Rn×n.
2: Compute the EVD G = WΛWT .
3: Truncate W and Λ into W̄ ∈ Rn×k and Λ̄ ∈ Rk×k, where k is the smallest integer

such that ∥WΛWT − W̄ Λ̄W̄T ∥ ≤ ε2∥A∥2.
4: Compute X̄ = AW̄ and set Ȳ = W̄ .

whereas the EVD of G only requires O(n3) flops. Gram LRA has been shown to
be particularly useful for the rounding (or recompression) of tensors. It was initially
proposed for the compression of the tensor train (TT) format [16], and even though
a stable rounding approach was later proposed as an alternative [15], Gram LRA
remains highly efficient; the recent work of Al Daas, Ballard, and Manning [1] presents
a high performance parallel implementation where Gram LRA is a key component.
Gram LRA is also a central tool for the rounding of hierarchical Tucker tensors [12].
Indeed, in both of these contexts, we repeatedly compute truncated SVDs of various
matricizations A(i) ∈ Rmi×ni of third-order tensorsA ∈ Rr1×r2×r3 , withmi =

∏
j ̸=i rj

and ni = ri. We thus indeed havem≫ n (in particular if all the ri are equal, m = n2).
Unfortunately, in finite precision arithmetic, Gram LRA no longer provides an

exact truncated SVD and hence an optimal LRA, and can in fact be unstable. This
instability does not come as a surprise due to the computation of the Gram matrix
(whose condition number is κ(A)2). However, to the best of our knowledge, a thorough
error analysis of this approach in inexact arithmetic cannot be found in the literature.
The discussion has mainly been limited to experimental observations in the context
of the previously mentioned works on tensors [1, 16], which mention in particular the
rule of thumb that Gram LRA provides satisfactory results as long as the truncation
threshold ε does not exceed the square root of the machine precision,

√
u. Gram

SVD (untruncated) is also briefly discussed in the books of Demmel [4, p. 241] and
Trefethen and Bau [19, p. 234]; both references mention a loss of accuracy of order√
u, but neither provides a thorough analysis or precise error bounds, presumably

because this approach was at the time discarded for being too unstable. However,
since this approach has experienced a surge in popularity in the context of tensor
computing, we believe that a thorough analysis has become of wide interest. The
goal of this article is to provide such an analysis in order to determine precisely the
attainable accuracy of Gram LRA and to fully characterize its numerical behavior.

Our analysis is based on some basic fundamental results in eigenvector perturba-
tion theory. However, a naive application of these results leads to overly pessimistic
error bounds depending on κ(Ā)2, where κ(Ā) = σ1/σk denotes the generalized spec-
tral condition number of Ā. While such a dependence may seem at first sight inevitable
due to the computation of the Gram matrix, we actually show that with a careful
inspection of the algorithm, we can obtain an error bound that only grows as κ(Ā).
Even better, we show that regardless of how large κ(Ā) is, the error can never exceed
a constant multiple of

√
u, the square root of the machine precision, thereby prov-

ing the rule of thumb mentioned above. For example, in double precision arithmetic
(u ≈ 10−16), at least eight significant digits are thus always guaranteed. We believe
that this explains why this Gram LRA approach, which may seem at first sight quite
unstable, has encountered success in practical applications which use truncation.
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One weakness of Gram LRA is that it cannot reliably exploit low precision arith-
metics, which provide significant performance benefits on modern hardware. Indeed,
the relative error of order

√
u means that single precision (u ≈ 10−8) and especially

half precision (u ≈ 10−4) arithmetics are unlikely to be able to deliver satisfactory
results except for very crude truncation thresholds ε. Based on the conclusions of
our error analysis, we propose a mixed precision iterative refinement approach that
can improve the accuracy of the approximation in some cases. This improvement
is achieved at the price of some extra operations that must be applied in a higher
precision u2, but that only amount to O(mn) flops; the overhead cost is therefore
negligible. Moreover, we also show that the last step of the algorithm, the multipli-
cation of A and W̄ , is much less sensitive to rounding errors and can therefore be
performed in lower precision; thus, at least part of Gram LRA can benefit from the
speed of lower precisions.

The rest of this article is structured as follows. In Section 2, we begin with techni-
cal preliminaries on eigenvector perturbation theory and give a first pessimistic error
bound for Algorithm 1.1 resulting from the naive application of this theory to the
entire truncated decomposition. In Section 3, we carry out a refined blockwise error
analysis whose main conclusion, summarized in Theorem 3.1, is that the algorithm
is unexpectedly not so unstable. Moreover, in Section 4, we propose a mixed preci-
sion iterative refinement approach that can in some cases improve the accuracy. In
Section 5, we explain that the last step can be performed in lower precision without
affecting the accuracy. We provide numerical experiments in Section 6, that illustrate
the unusual and attractive behavior of Algorithm 1.1. We provide our concluding
remarks in Section 7.

Throughout this article, the unsubscripted norm ∥·∥ denotes the Frobenius norm.

2. Technical preliminaries and a naive bound.

2.1. Assumptions. For our analysis we will model the inexactness by assuming
that the computed EVD of G satisfies

WΛWT = G+∆G, ∥∆G∥ ≤ cm,nu∥A∥2, (2.1)

where cm,n is a constant that only depends on the dimensions and u is a precision
parameter. The error term ∆G can account both for the error incurred in the matrix–
matrix product G = ATA and in the eigendecomposition of G. The precise expression
of cm,n may vary depending on the specific implementation of matrix multiplication
and EVD. Throughout our analysis, we will similarly absorb all terms that only
depend on m, n, and the rank k under an unspecified constant cm,n,k. The precise
expression of these constants are not of great importance—they are known to be very
pessimistic in practice [10, 9].

We postpone taking into account the error incurred in the matrix product AW̄
to Section 5, in which we will show that this product can make use of lower precision
arithmetic.

We assume the eigenvectors W to be orthogonal. In finite precision arithmetic
W is stored inexactly and thus incurs a moderate loss of orthogonality of order
u. Denoting as Ŵ these inexactly orthogonal eigenvectors, (2.1) therefore becomes

ŴΛŴT = G + ∆G. However we can define an exactly orthogonal W such that
W = ŴZ and, for some suitable Z ∈ Rn×n arising for example from the polar de-
composition or QR factorization of Ŵ , we have ∥Ŵ −W∥ ≤ cm,nu [2]. Therefore
we can safely assume that (2.1) holds with exactly orthogonal eigenvectors for some
constant cm,n.
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Finally, we assume the perturbation ∆G to be symmetric. This assumption is
relatively weak, because the error coming from the matrix product ATA can certainly
be enforced to be symmetric, either by computing G via a symmetric rank-n update
(that is, only gij is computed and gji is implicitly considered equal to gij) or simply
by computing G via a general matrix product that uses the same summation ordering
for computing gij and gji (so that the errors in computing them are equal). As for
the error coming from the EVD of G, it can also be assumed to be symmetric [2]. We
nevertheless mention that our analysis extends to unsymmetric perturbations ∆G by
making a few adjustments: first, instead of computing the EVD of G, Algorithm 1.1
must compute its SVD G = TΛWT , with no other changes to the rest of the steps.
Second, in the analysis below, the symmetric matrix perturbation results (the Davis–
Kahan theorem [3]) must be replaced by their unsymmetric counterpart (the Wedin
theorem [20]).

2.2. Eigenvector perturbation theory. Since V T V̄ = In,k and so Ā = AV̄ V̄ T ,
it is natural to bound the error as

∥A−AW̄W̄T ∥ ≤ ∥A− Ā∥+ ∥A(V̄ V̄ T − W̄W̄T )∥
≤ ∥A− Ā∥+ ∥A∥∥V̄ V̄ T − W̄W̄T ∥.

We must therefore bound ∥V̄ V̄ T − W̄W̄T ∥, which measures the distance between the
subspaces spanned by the first k right singular vectors of A and the first k computed
eigenvectors of G. To do so the following classical result of eigenvector perturbation
theory will be helpful.

Theorem 2.1. Let A ∈ Rm×n and let UΣV T be its SVD, with σ1 ≥ . . . ≥ σn > 0.
Let G = ATA and let WΛWT = G + ∆G be its computed EVD, where ∆G is a
symmetric perturbation. Given two column indices s and r such that 1 ≤ s ≤ r ≤ n,
let Vi and Wi be the block-columns of V and W composed of columns s through r. Let

δ = min(σ2
r−1 − σ2

r , σ
2
s − σ2

s+1),

where we define σ2
0 =∞ and σ2

n+1 = −∞, and assume δ > 0. Then

∥ViV
T
i −WiW

T
i ∥ ≤ 23/2

∥∆G∥
δ

. (2.2)

Proof. This result is a consequence of [21, Thm. 2], which itself follows from the
Davis–Kahan theorem [3], [17, Thm. V.3.6], applied to the EVD of G+∆G = WΛWT

and the EVD of G = V Σ2V T . Bound (2.2) is usually stated as ∥ sinΘ(Vi,Wi)∥ ≤
2∥∆G∥/δ where Θ(Vi,Wi) is the canonical angle between the subspaces spanned by Vi

andWi. To conclude we use ∥ViV
T
i −WiW

T
i ∥ =

√
2∥ sinΘ(Vi,Wi)∥ [17, Eq. (II.4.11)].

Theorem 2.1 shows that the subspaces spanned by ViV
T
i and WiW

T
i will be close

under two conditions. First, the perturbation ∆G must be small. Second, the gap
δ between the eigenvalues σ2

i of G included in the block-column Vi and those not
included in it must not be too small, that is, the eigenvalues in this block-column
must be well separated from the rest.

2.3. A naive bound. To bound the error ∥A − AW̄W̄T ∥, we may think of
directly applying Theorem 2.1 to the entire vectors V̄ and W̄ , that is, with r = 1 and
s = k. Together with the bound on ∥∆G∥ in (2.1), this yields the bound

∥V̄ V̄ T − W̄W̄T ∥ ≤ 23/2cm,nu
∥A∥2

σ2
k − σ2

k+1

,

4



which is thus of order at least κ(Ā)2u. This readily yields the bound

∥A−AW̄W̄T ∥ ≤ ∥A−AV̄ V̄ T ∥+ ∥A(V̄ V̄ T − W̄W̄T )∥ (2.3)

≤
(
ε+ 23/2cm,nu

∥A∥2

σ2
k − σ2

k+1

)
∥A∥, (2.4)

where ε = ∥A − AV̄ V̄ T ∥ is the truncation threshold. This bound suggests the error
may be very large when the truncated matrix is ill-conditioned, that is, when σk is
small. In the worst possible case, σk may be of order ε∥A∥, yielding a relative error
of order at least u/ε2; thus, to recover the target accuracy ε would require setting the
machine precision to u = ε3, triple the target accuracy.

3. A refined blockwise error analysis.

3.1. Analysis. Fortunately, bound (2.4) is overly pessimistic and we may sig-
nificantly refine it through a more careful inspection. The key idea is to apply The-
orem 2.1 not directly on the entire vectors V̄ , but to individual blocks Vi that are
suitably chosen. Let us for now consider an arbitrary block partitioning into q blocks
of the form

Ū = [U1 . . . Uq], Σ̄ = diag(Σ1, . . . ,Σq), V̄ = [V1 . . . Vq], W̄ = [W1 . . .Wq].

We will later specify how to choose the blocks.
We can now write Ā as

Ā = Ū Σ̄V̄ T =

q∑
i=1

UiΣiV
T
i .

Defining Ei = ViV
T
i −WiW

T
i , we have

ĀW̄ W̄T =

q∑
i=1

UiΣiV
T
i

q∑
j=1

WjW
T
j

=

q∑
i=1

UiΣiV
T
i ViV

T
i

q∑
j=1

WjW
T
j

=

q∑
i=1

UiΣiV
T
i (WiW

T
i + Ei)

q∑
j=1

WjW
T
j

=

q∑
i=1

UiΣiV
T
i (WiW

T
i + EiW̄W̄T )

=

q∑
i=1

UiΣiV
T
i (ViV

T
i − Ei + EiW̄W̄T )

= Ā+

q∑
i=1

UiΣiV
T
i Ei(W̄W̄T − I),

where we have used V T
i Vi = I, WT

i Wi = I, and WT
i Wj = 0 for i ̸= j. We therefore

obtain the bound

∥Ā− ĀW̄ W̄T ∥ ≤ (
√
k + 1)

q∑
i=1

∥Σi∥∥Ei∥
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since the Frobenius norm is unitarily invariant and so ∥UiΣiV
T
i ∥ = ∥Σi∥ and ∥W̄W̄T ∥ =√

k. Together with the triangle inequality

∥A−AW̄W̄T ∥ ≤ ∥(A− Ā)(I − W̄W̄T )∥+ ∥Ā− ĀW̄ W̄T ∥

we finally obtain

∥A−AW̄W̄T ∥ ≤ (
√
k + 1)

(
ε∥A∥+

q∑
i=1

∥Σi∥∥Ei∥
)
. (3.1)

This is a significantly better bound than the bound of order κ(Ā)2u used in (2.4),
because the ∥Ei∥ terms (which we will soon be bounding using Theorem 2.1) are
deamplified by the ∥Σi∥ terms. We are thus able to exploit the structure of the
singular values of A to improve the bound.

In fact, it is now clear how the block partitioning should be defined. We want
the quantities ∥Σi∥∥Ei∥ to be as small as possible. Since ∥Σi∥ is at least equal to the
largest singular value in the block, to minimize ∥Σi∥ we should use blocks that are as
small as possible. On the other hand, to guarantee that ∥Ei∥ stays small, we want
to maintain a sufficiently large gap between the singular values of different blocks.
Hence, the goal is to build blocks that only regroup singular values that are tightly
clustered. The key to achieve this is to use gap parameters δi that are smaller for
blocks corresponding to smaller singular values.

Specifically, we define the blocks as follows: starting with r = 1, we define for
i = 1

S =

{
r ≤ s ≤ k : σ2

s − σ2
s+1 ≥ δi :=

σ2
r

2k

}
, s = min(k,minS), (3.2a)

Ui = [ur . . . us], Σi = diag(σr, . . . , σs), Vi = [vr . . . vs], Wi = [wr . . . ws], (3.2b)

and we recursively define the blocks for the next i by updating r ← s+ 1. Note that
in (3.2a), the set S may be empty, in which case s = k and this is the last block i = q.

Let us for now focus on the blocks 1 through q − 1 (we will handle the last block
later). With this definition, Theorem 2.1 yields for i = 1: q − 1

∥Ei∥ ≤ 23/2cm,nu
∥A∥2

δi
≤ 25/2kkicm,nu

∥A∥2

∥Σi∥2
, (3.3)

where ki is the size of block i. Therefore

∥Σi∥∥Ei∥ ≤ cm,n,ku
∥A∥2

∥Σi∥
≤ cm,n,kuκ(Ā)∥A∥ (3.4)

shows that we have reduced the relative error bound from κ(Ā)2u to κ(Ā)u.
We can further refine this bound by observing that

∥Ei∥ = ∥ViV
T
i −WiW

T
i ∥ ≤

√
2ki. (3.5)

This means that ∥Ei∥ cannot exceed a constant factor, and hence bound (3.3) is
pessimistic when u∥A∥2/∥Σi∥2 ≫ 1. Taking this into account, we can improve (3.4)
to

∥Σi∥∥Ei∥ ≤ cm,n,k min

(
u
∥A∥2

∥Σi∥
, ∥Σi∥

)
. (3.6)
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Since the first term in the minimum decreases when ∥Σi∥ increases, whereas the second
term has the opposite behavior, the worst case value of this bound is achieved when
both terms are equal, that is, when

u
∥A∥2

∥Σi∥
= ∥Σi∥ ⇔ ∥Σi∥ =

√
u∥A∥.

In this case the minimum in (3.6) becomes equal to
√
u∥A∥ and hence, combining

(3.6) with (3.4) we obtain, for i = 1: q − 1,

∥Σi∥∥Ei∥ ≤ cm,n,k min
(
κ(Ā)u,

√
u
)
∥A∥. (3.7)

All that remains is to handle the case of the last block Vq, which is different
because depending on the gap between σk and σk+1 the set S in (3.2a) may be empty.
In fact the gap between σk > ε and σk+1 ≤ ε may be arbitrarily small, so that in
general we cannot expect a better bound than (3.5), which unlike (3.3), also holds for
i = q. This is no reason for concern, however, because the construction of the block
partitioning (3.2) guarantees that if the gap condition is not met for the last block,
that is, if σ2

k − σ2
k+1 < δq, then ∥Σq∥ must be small. Indeed, let Vq = [vr . . . vk] and

thus δq = σ2
r/(2k). Then

ε2∥A∥2 ≥ σ2
k+1 ≥ σ2

k−δq ≥ σ2
k−1−2δq ≥ . . . ≥ σ2

r−(k−r+1)δq ≥ σ2
r−

k − r + 1

2k
σ2
r ≥

σ2
r

2
,

which shows that
∥Σq∥ ≤

√
kσr ≤

√
2kε∥A∥

and so
∥Σq∥∥Eq∥ ≤

√
2k

√
2kqε∥A∥ ≤ 2kε∥A∥. (3.8)

We are now ready to conclude. Going back to (3.1) and bounding each ∥Σi∥∥Ei∥
using (3.6) for i = 1: q − 1 and (3.8) for i = q, we obtain

∥A−AW̄W̄T ∥ ≤ cm,n,k

(
ε∥A∥+

q∑
i=1

min

(
u
∥A∥2

∥Σi∥
, ∥Σi∥

))
≤ cm,n,k

(
ε+min

(
κ(Ā)u,

√
u
))
∥A∥.

3.2. Summary and discussion. We summarize the conclusions of our analysis
in the following theorem.

Theorem 3.1. Let A ∈ Rm×n and let Ā be its rank-k truncated SVD. Consider a
block partitioning of the first k singular values of A, Σ̄ = diag(Σ1, . . . ,Σq), as defined
in (3.2) which produces blocks Σi regrouping singular values that are tightly clustered.
Let the approximate truncated SVD AW̄W̄T be computed with Algorithm 1.1 with
precision parameters ε and u controlling the truncation error and the rounding errors,
respectively. Then, under the assumptions described in Subsection 2.1, we have

∥A−AW̄W̄T ∥ ≤ cm,n,k

(
ε∥A∥+

q∑
i=1

min

(
u
∥A∥2

∥Σi∥
, ∥Σi∥

))
(3.9)

≤ cm,n,k

(
ε+min

(
κ(Ā)u,

√
u
))
∥A∥ (3.10)

where cm,n,k is a constant depending only on the dimensions m, n, and k, and κ(Ā) =
σ1/σk is the generalized condition number of Ā.
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The main conclusion of Theorem 3.1 is that compared with the relative error
of order ε introduced by truncation, the use of a finite precision u introduces an
additional relative error of order min(κ(Ā)u,

√
u). This represents a significant im-

provement compared with a bound of order κ(Ā)2u obtained in Subsection 2.3 via a
straightforward but naive application of eigenvector perturbation theory.

Bound (3.9) is sharp up to constants, as we will show via experiments in the
next section. However, note that this is not the case of (3.10), which can be a large
overestimate of (3.9) if there is a large gap between the large singular values (for which
the first term u∥A∥2/∥Σi∥ in the minimum is the smaller one) and the small singular
values (for which the second term ∥Σi∥ is the smaller one). To illustrate this remark,
consider an example with two blocks such that ∥Σ1∥ ≈ ∥A∥ and ∥Σ2∥ ≈ ε∥A∥. Then
κ(Ā)u ≈ u/ε is large and (3.10) thus gives a bound of order (ε+min(u/ε,

√
u))∥A∥.

Yet, in (3.9) the minimum is of order u∥A∥ for Σ1 and of order ϵ∥A∥ for Σ2, hence
(3.9) yields a much better bound of order (ε+ u)∥A∥.

From a practical point of view, bound (3.10) can be used as follows. Given a
prescribed truncation threshold ε, the goal is to decide which precision u is needed
to leave the accuracy of the truncated SVD unaffected by the use of finite precision
arithmetic. Thus, we should select u sufficiently small so that min(κ(Ā)u,

√
u) ≪ ε.

In general κ(Ā) may be hard to estimate, but we know at least that κ(Ā) ≤ 1/ε. In
fact, without specific knowledge on the singular values of A it is not unreasonable to
assume Ā will have singular values barely larger than ε, which means that to be safe
one could assume κ(Ā) ≈ 1/ε in any case. Then κ(Ā)u≪ ε translates to

√
u≪ ε. So

we can conclude that without specific knowledge
√
u≪ ε is about as good a condition

as we might get. This means that in general we should use a precision u that is double
the target accuracy ε. For example, with double precision arithmetic (u ≈ 10−16),
at least eight significant digits of accuracy are guaranteed, so that Algorithm 1.1
can handle truncation thresholds as small as ε = 10−8. Since truncation thresholds
in applications involving low-rank tensors are typically larger, we believe that this
explains the success that this algorithm has encountered for these applications.

4. Mixed precision iterative refinement. The analysis of the previous sec-
tion reveals one weakness of Gram LRA: it cannot reliably exploit low precision arith-
metics, which provide significant performance benefits on modern hardware. Indeed,
the relative error of order

√
u means that single precision (u ≈ 10−8) and especially

half precision (u ≈ 10−4) arithmetics are unlikely to be able to deliver satisfactory
results except for very crude truncation thresholds ε.

In this section, we explore the possibility of using iterative refinement to improve
the accuracy of the approximation. Indeed, as shown by the bound (3.10), an error
of order (at most)

√
u may be caused by only a small number of eigenvalues corre-

sponding to a group Σi such that ∥Σi∥ ≈
√
u. This suggests the idea of selectively

refining those eigenvalues causing a large error.
Here we will focus on iterative refinement for individual eigenpairs as originally

proposed by Dongarra, Moler, and Wilkinson [7, 5, 6]. We mention the recent work of
Ogita and Aishima [13, 14] that seeks to refine the entire eigendecomposition, which
could also be of interest in our context when most of the eigenvalues are close to

√
u.

Given an approximate eigenpair (w, λ) of ATA such that ∥w∥∞ = 1 = ws, itera-
tive refinement can be seen as Newton’s method applied to the function

F (x) = F

([
w
λ

])
=

[
(ATA− λI)w

eTs w − 1

]
8



whose Jacobian is

J(x) =

[
ATA− λI −w

eTs 0

]
.

Newton’s method then consists in iteratively repeating

x← x− J(x)−1F (x).

Note that J(x) is composed of the Gram matrix G = ATA. Since computing G in
higher precision would defeat the purpose of running the algorithm in lower precision,
we naturally use the G computed in precision u for J(x). In contrast, using higher
precision for evaluating F (x) is paramount and can fortunately be done inexpensively
since we only require the action of ATA on the vector w. Specifically, evaluating F (x)
only requires O(mn) flops per iteration. J(x) can be naively inverted for O(n3) flops,
which is already negligible when m ≫ n, and this cost can be further reduced to
O(n2) by exploiting the approximate eigendecomposition WΛWT of G [11, sect. 11].

Algorithm 4.1 Gram low-rank approximation, with iterative refinement.

Input: A ∈ Rm×n, a truncation threshold ε, a tolerance τ , a number of IR steps nIR.
Output: X̄Ȳ T , a rank-k approximation of A.

1: Compute the Gram matrix G = ATA ∈ Rn×n in precision u.
2: Compute the EVD G = WΛWT in precision u.
3: Truncate W and Λ into W̄ ∈ Rn×k and Λ̄ ∈ Rk×k, where k is the smallest integer

such that ∥WΛWT − W̄ Λ̄W̄T ∥ ≤ ε2∥A∥2.
4: for i = 1 to k do
5: if λi ≤ τ then

6: Let x =

[
wi

λi

]
.

7: for j = 1 to nIR do
8: Compute f = F (x) in precision u2.
9: Solve J(x)d = f for d in precision u.

10: Compute x = x+ d in precision u.
11: end for
12: end if
13: end for
14: Compute X̄ = AW̄ and set Ȳ = W̄ .

We summarize the proposed procedure in Algorithm 4.1. The Gram matrix and
its initial eigendecomposition are computed in precision u just like in Algorithm 1.1.
Then, we selectively refine eigenpairs, using precision u2 for evaluating F (x) and
precision u for the rest of the operations. The amount of refinement is controlled by
two parameters: the number of steps nIR, and the number of refined eigenpairs. The
latter is determined by a tolerance τ : we refine any eigenpair of G such that λi ≤ τ .

The error analysis of Tisseur [18] provides conditions for this form of iterative
refinement to converge. [18, Corollary 3.4] states that if (w, λ) is a simple eigenpair,
if J(x) is not too ill conditioned, if the initial approximation to (w, λ) is sufficiently
good, and if the solution d is computed with a stable linear solver, then iterative
refinement produces a refined eigenpair with relative accuracy of order u.

In our context, iterative refinement is therefore only applicable to eigenvalues λ
of G such that λu ≪ 1, because if λ is too close or smaller than u, it will be lost

9



to numerical noise when computing G in precision u. Eigenvalues λ candidate to be
refined thus correspond to singular values of A smaller than

√
u. Singular values of

order
√
u are precisely those that maximize the bound (3.9). Therefore, the potential

accuracy improvement achievable by iterative refinement completely depends on the
singular values of A: if the singular values for which the error bound (3.9) is maximal
are larger than

√
u, then the accuracy will be improved, but if they are smaller than√

u, iterative refinement will have no effect.

5. Computing AW̄ in lower precision. So far we have ignored the impact of
the computation of the final product X̄ = AW̄ on the accuracy of the approximation
∥A−AW̄W̄T ∥ = ∥A−X̄Ȳ T ∥. We now show that the accuracy is unsurprisingly much
less sensitive to this operation than the ones working on G. As a result, the product
AW̄ can be computed in lower precision arithmetic without affecting the error bound
in Theorem 3.1.

Indeed, denote uX the precision used for computing AW̄ . The computed X̄
satisfies [8]

X̄ = AW̄ +∆X, ∥∆X∥ ≤ kuX∥A∥∥W̄∥ = k3/2uX∥A∥.

Hence,

∥A− X̄Ȳ T ∥ = ∥A−AW̄W̄T −∆XW̄T ∥ ≤ ∥A−AW̄W̄T ∥+ ∥∆X∥.

The computation of AW̄ thus only adds an error of order uX∥A∥ to the error ∥A −
AW̄W̄T ∥ bounded in Theorem 3.1. Therefore, in view of (3.9), we can set

uX = ε+

q∑
i=1

min

(
u
∥A∥
∥Σi∥

,
∥Σi∥
∥A∥

)
to obtain, up to constants, the same bound on ∥A − X̄Ȳ T ∥ as (3.9). In particular,
when the upper bound (3.10) is sharp, this means that we can set uX as low as
min(κ(Ā)u,

√
u).

The observation that AW̄ can be computed in lower precision can be important,
because this product requires O(mnk) flops. Even though this is less than the O(mn2)
flops required for computing G = ATA, this is not completely negligible either, es-
pecially in contexts where the rank k is not much smaller than n. An important
situation where this arises is when A is the sum of two low-rank matrices (or tensors)
that we wish to recompress. In this context, if A is given as the sum of rank-k1 and
k2 matrices, then n = k1 + k2 and its rank k after recompression will often (though
not always) be larger than max(k1, k2), so that k ≥ n/2.

6. Experiments. In this section, we perform some numerical experiments that
illustrate the conclusions of our analysis. We begin in Subsection 6.1 by evaluating
the sharpness of bounds (3.9) and (3.10) and comparing the accuracy of Gram LRA
for various matrices with different singular value distributions and condition numbers.
Then, we investigate the impact of using iterative refinement in Subsection 6.2 and
that of performing AW̄ in lower precision in Subsection 6.3.

All our experiments are performed with MATLAB, version R2022b.
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6.1. Sharpness of the bounds. To illustrate the sharpness of the bound (3.9)
in Theorem 3.1, we use a matrix A generated as follows. We first generate random
orthogonal matrices U ∈ Rm×m and V ∈ Rn×n with m = 100 and n = 50. We then
define A = UΣV T with

Σ =

[
Σ1

Σ2

Σ3

]
=

[
Ik/2

κ−1Ik/2
εIn−k

]
,

where ε = 10−16 and k = 20. The rank-k approximation Ā of A is therefore equal to
U Σ̄V T , where Σ̄ is equal to Σ with Σ3 replaced by zero, and κ(Ā) = κ.

We then apply Algorithm 1.1 with a precision u = 10−8. For this matrix, bound
(3.9) gives an error of order

ε∥A∥+min

(
u
∥A∥2

∥Σ1∥
, ∥Σ1∥

)
+min

(
u
∥A∥2

∥Σ2∥
, ∥Σ2∥

)
.

We plot in Figure 6.1 the value of each of these quantities as a function of κ, as well
as the actual error ∥A−AW̄W̄T ∥. For this matrix:

• u∥A∥2/∥Σ1∥ is a constant of order u = 10−8 independent of κ;
• ∥Σ1∥ is a constant of order 1 independent of κ;
• u∥A∥2/∥Σ2∥ ≈ κu increases linearly with κ.
• ∥Σ2∥ ≈ 1/κ decreases linearly with κ;

Therefore, bound (3.9) follows u∥A∥2/∥Σ2∥ ≈ κu for κ ∈ [1, 104], ∥Σ2∥ ≈ 1/κ for
κ ∈ [104, 108], and u∥A∥2/∥Σ1∥ ≈ u for κ ≥ 108.

Figure 6.1 not only confirms that bound (3.9) is sharp, since the error closely
follows it, but also illustrates the unusual behavior of the error that prevents it from
exceeding

√
u and can even be much smaller, even when κ(Ā) is large. In particular,

the figure shows that the error, just like its bound (3.9), does not monotonically
increase with κ(Ā): in this case, the largest possible error is attained for κ(Ā) = 104.

Next, we perform another experiment to illustrate the difference between bounds
(3.9) and (3.10). We generate two matrices A, as previously described, but with
different singular values:

Mode 2: σ1 = . . . = σk−1 = 1, σk = κ−1

Mode 3: [σ1, . . . , σk] = logspace(1, κ−1, k),

where the MATLAB command logspace generates a vector with k logarithmically
spaced values decreasing from 1 to κ−1. Figure 6.2 compares bounds (3.9) and (3.10)
for these two matrices with the actual error. For both matrices bound (3.9) is sharp.
However, bound (3.10) is only sharp for the mode 3 matrix; for the mode 2 one, the
error when κ is large is much smaller than both

√
u and κu. The explanation lies in the

discussion following Theorem 3.1: for the mode 2 matrix, there is a large gap between
the large singular values of order 1 and the small singular value of order κ−1; for the
mode 3 one, there are singular values close to

√
u and so bound (3.10) is attained.

This experiment illustrates that, even though (3.10) is more easily interpretable than
(3.9), it is not as sharp and should be used with care.

Finally, we report in Figure 6.3 various results for the same mode 2 and mode 3
matrices for various values of the precision u and the condition number κ(Ā). The
results confirm once more the behavior of the algorithm expected from our analysis,
and in particular the fact that its accuracy is always at least

√
u.
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Fig. 6.1: Experimental illustration of bound (3.9).
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Fig. 6.2: Comparison between bounds (3.9) and (3.10) and the actual error for the
mode 2 and mode 3 matrices.

6.2. Results with iterative refinement. We now turn to the use of iterative
refinement proposed in Algorithm 4.1. In the following experiments, we compute the
Gram matrix G and its initial eigendecomposition in precision u = 10−8 and evaluate
the residual F (x) in the refinement loop in precision u2 = 10−16.

Figure 6.4 illustrates the accuracy improvement that can be achieved by refining
selected eigenpairs. We consider the same mode 2 and mode 3 matrices as before. For
the mode 2 matrix, a single eigenpair corresponding to λk = κ−2 is responsible for
the instability of the algorithm. Therefore, by refining this eigenpair, we can recover
stability with an error of order u. This is however only possible when the eigenpair
is not too ill-conditioned with respect to the precision u, that is, when κ−2u ≪ 1.
Thus, for u = 10−8, we can recover the full accuracy as long as κ(Ā) ≪ 104. As
κ(Ā) approaches this limit, more steps (larger nIR) are needed to ensure the eigenpair
is successfully refined. For larger κ(Ā), iterative refinement does not converge any
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Fig. 6.3: Accuracy for various matrices and values of κ(Ā) and u.

longer and is thus not helpful. For the mode 2 matrix, the tolerance τ does not play
any role since there is only one (very small) eigenpair that needs to be refined.

The same observations hold for the mode 3 matrix, with the difference that more
than one eigenpair must be refined. Setting τ = 0.9 refines almost all k eigenpairs,
and yields an accuracy of order u. Smaller values of τ mean less pairs are refined,
and the achievable accuracy is then determined by the smallest eigenvalue λi that is
not refined: thus, we achieve an accuracy of order u/

√
τ . In any case, even when

all k eigenpairs must be refined, the cost remains in O(mnk) flops, which may be
acceptable if k ≪ n.

6.3. Results with AW̄ in lower precision. We conclude this section by ex-
perimentally investigating the effect of the precision uX used to compute the product
X̄ = AW̄ . Figure 6.5 confirms the discussion in Section 5: computing X̄ inexactly
adds an error of order uX∥A∥. Therefore, depending on the singular values of the
matrix, it is possible to set uX to a much lower precision than u (as low as

√
u)

without affecting the overall accuracy.
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Fig. 6.4: Effect of iterative refinement on the accuracy (u = 10−8).
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7. Conclusion. We have analyzed a Gram low-rank approximation (Gram LRA)
approach, which has generated interest in the context of low-rank tensor computa-
tions. Despite the computation of the Gram matrix, we have shown that Gram LRA
is in fact much less unstable than one may think. We have obtained in Theorem 3.1 a
blockwise error bound that takes into account the structure of the singular values of
the matrix, which leads to a refined bound. In particular, the bound cannot exceed
the square root of the machine precision,

√
u, so that if the truncation threshold ε is

sufficiently larger than
√
u, the effect of finite precision arithmetic will go unnoticed.

We believe that this explains the success of this approach when using double precision
arithmetic, since ε is typically larger than

√
u ≈ 10−8 in applications.

We have also proposed two new ideas to improve the algorithm in a finite precision
setting. The first is to use mixed precision iterative refinement to refine the small
eigenvalues of the Gram matrix, which can lead to a significant accuracy improvement
in some cases. The second idea is to accelerate the final multiplication between the
original matrix and the computed eigenvectors by performing it in lower precision,
which can be done without affecting the accuracy because this operation is much less
sensitive to rounding errors than the operations involving the Gram matrix.

We have performed extensive numerical experiments that confirm that our er-
ror bounds are sharp and correctly describe the unusual numerical behavior of this
algorithm.
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