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Marine CSEM survey

Seabed EM receiver:
• measures Ex, Ey, Hx, Hy

• 2D grid, typically ~100 receivers

Horizontal electric dipole source:
• current up to 7200 Amp
• frequency up to ~20 Hz
• tow-distance ~1,000 km i.e. ~10,000 source positions

3D subsurface resistivity distribution:
• inverted from the measured data

High-resistive anomaly indicating 
a possible oil/gas accumulation:
impact on drilling decision



Marine CSEM survey



EMGS

• 2 – 4 vessels

• ~ 200 employees

• ~1000 surveys

• ~ 100,000 km2 data library
(10-20% area of France)

• R&D group: ~10 people



CSEM Forward & Inverse problems



Forward problem

EMGS 
forward 

modelling

Time-domain
Frequency-

domain

Direct Solver
(MUMPS)

Iterative 
Solver

This study: 

• VTI

• Finite-difference based on Yee grid

• Unknowns: 𝐸𝑥, 𝐸𝑦 , 𝐸𝑧

• 13 non-zero elements in each row of  A
• Symmetric  A

Can be the preferred choice 
for very large number of RHSs

Equation to solve:
(without displacement current)



CSEM data

E amplitude [V/(Аm2)] E phase [deg]

Source position [km] Source position [km]

Data from one receiver at one frequency

• ~200 datapoints per line (for 100 m sampling, 20 km line)
• ~5 source lines for each receiver
• Amplitude + phase
• 3 – 5  frequencies
• 2 – 4  field components (Ex,Ey) 
• ~100 receivers

• Total: a few millions of data samples

𝑁𝑟 ~ 100

𝑁𝑠 ~ 10,000

Number of receivers:

Number of source positions:



Electric mag. [V/(Аm2)] Phase [deg]
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RHSs
(reciprocity )
~𝑁𝑟

RHSs    
for quasi-Newton update
~𝑁𝑟

RHSs
for Gauss-Newton update

~ 𝑁𝑠 + 𝑁𝑟



Quasi-Newton and Gauss-Newton inversion

• Cost function to be minimized:         𝜀 𝐦 = 𝜀data 𝐦 + 𝜆 𝜀reg 𝐦 =  𝑘=1
𝑁 𝑟𝑘𝑟𝑘

∗ + 𝜆 𝜀reg 𝐦

• Model update 𝚫𝐦 is found from: 

• The Hessian matrix is   𝐻data ≈ 𝐽
†𝐽 + c. c.

𝐽 =

𝜕𝑟1
𝜕𝜎1

⋯
𝜕𝑟1
𝜕𝜎𝑀

⋮ ⋱ ⋮
𝜕𝑟𝑁
𝜕𝜎1

⋯
𝜕𝑟𝑁
𝜕𝜎𝑀

𝐠 =

𝜕𝜀

𝜕𝜎1
⋮
𝜕𝜀

𝜕𝜎𝑀

Gradient vector Jacobian (sensitivity) matrix

𝐻data + 𝜆𝐻reg 𝚫𝐦 = − 𝐠

Number of model parameters

Number of 
data samples,
~ 𝑁𝑟 × 𝑁𝑠

Hessian 𝑯 Number of RHSs in forward problem

Quasi-Newton (e.g. BFGS) approximated using successive gradients 𝐠 ~𝑁𝑟 ~ 100

Gauss-Newton computed from Jacobian 𝐻data ≈ 𝐽
†𝐽 + c. c. ~ 𝑁𝑠 + 𝑁𝑟 ~ 10,000



Gauss-Newton is better

Conventional 3D inversion

Gauss-Newton 3D inversion

“Stacked resistor” model

True model

Gauss-Newton 3D invBFGS 3D inv

• Gauss - Newton is more expensive, but a much powerful method
• It will take over in the future:

• 2008: Launch BFGS
• 2016: Launch Gauss-Newton

SEG 2016:
Comparing large-scale 3D Gauss–Newton and BFGS 
CSEM inversions. Anh Kiet Nguyen, Janniche Iren 
Nordskag, Torgeir Wiik, Astrid Kornberg Bjørke, Linus 
Boman, Ole Martin Pedersen, Joseph Ribaudo, and 
Rune Mittet (2016) Comparing large-scale 3D Gauss–
Newton and BFGS CSEM inversions. SEG Technical 
Program Expanded Abstracts 2016: pp. 872-877. doi: 
10.1190/segam2016-13858633.1 



MUMPS for CSEM



MUMPS for CSEM: previous studies

Number of unknowns

Streich Geophysics 2009 0.9 millions

da Silva et al.  Geophysics 2012 4.2 millions

Puzyrev et al. Comp & Geos. 2016 7.8 millions

Goals of the present study : 

• Use BLR for factorization of CSEM matrices

• Test problems with >20 millions unknowns

• Compare MUMPS vs Iterative solver



Models and Matrices

Half-space + Target H-model

Grid Matrix 𝐝𝐱 = 𝐝𝐲 𝐝𝐳 𝐍𝐱 = 𝐍𝐲 𝐍𝐳
Number of 

unknowns

Number of non-

zero elements

𝐺1 𝐇𝟏 400 200 64 74 909,312 11,658644

𝐺2 𝐇𝟑 / 𝐃𝟑 200 200 114 74 2,885,112 37,148,644

𝐺3 𝐇𝟏𝟕 100 100 214 127 17,448,276 225,626,874

SEAM S-model

Grid Matrix 𝐝𝐱 = 𝐝𝐲 𝐝𝐳 𝐍𝐱 𝐍𝐲 𝐍𝐳
Number of

unknowns

Number of non-

zero elements

𝐺4 𝐒𝟑 480 80 98 87 130 3,325,140 42,836,538

𝐺5 𝐒𝟐𝟏 240 40 181 160 237 20,590,560 266,361,112
0
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SEAM model:
• Created by SEG Advanced Modelling
• Salt body 
• Representative for Gulf of Mexico



Block-low-rank (BLR) algorithm
• BLR format is used to compress fronts

• The compression accuracy is 
controlled by the BLR threshold 
that varied from 10-4 to 10-16

• Block size: 256 
(or 416 for largest matrix, S21)

BLR-compressed matrix structure. 
Block darkness = Compression rate
Figures from Amestoy et al. 2015



BLR threshold  & Solution accuracy

𝟏𝐞–𝟏
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Relative residual L2 norm:

𝑰𝑹 = 𝟎

𝑰𝑹 = 𝟑

𝑰𝑹 = 𝟐

𝑰𝑹 = 𝟏

Iterative 
refinement (IR)

 = 𝟏𝟎−𝟕
Optimal BLR threshold: 

< 10−6



BLR savings

𝟏𝟎−𝟏𝟏 𝟏𝟎−𝟎𝟗 𝟏𝟎−𝟎𝟕 𝟏𝟎−𝟎𝟓

BLR threshold 𝝐

𝟏𝟎−𝟏𝟎 𝟏𝟎−𝟎𝟖 𝟏𝟎−𝟎𝟔

BLR factor storage (% of FR) BLR factorization flops (% of FR)

𝟏𝟎−𝟏𝟏 𝟏𝟎−𝟎𝟗 𝟏𝟎−𝟎𝟕 𝟏𝟎−𝟎𝟓

BLR threshold 𝝐

𝟏𝟎−𝟏𝟎 𝟏𝟎−𝟎𝟖 𝟏𝟎−𝟎𝟔

Weak dependence: 
• Choice of the BLR threshold is not critical
• Large gains even for strict accuracy requirements



BLR savings
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BLR with 𝜖 = 10−7

Hardware:
• EOS supercomputer
• 90 MPI tasks × 10 threads

Hardware details:
CALMIP supercomputer EOS – a BULLx DLC system, 612 nodes, 
each composed of two Intel Ivybridge processors with 10 cores 
(total 12 240 cores) running at 2.8 GHz per node and 64 
GB/node, https://www.calmip.univ-toulouse.fr/

NB:
Memory reduction due to storage savings has 
not yet been implemented for these tests, 
hence, the potential gains in run-time are even 
larger

10%

30%

https://www.calmip.univ-toulouse.fr/


Scalability

BLR factorization time (% of FR)

𝟗𝟎 × 𝟏𝟎 𝟏𝟐𝟖 × 𝟏𝟎 𝟏𝟗𝟐 × 𝟏𝟎

Number of cores
(𝐌𝐏𝐈 × 𝐭𝐡𝐫𝐞𝐚𝐝𝐬)

𝐇𝟏𝟕

𝐒𝟐𝟏

LR with 𝜖 = 10−7

Robust BLR-gains 
independent of the number of cores



Air effects



Air-wave

Air

1 − 100 Ωm

0.25 Ωm

106 Ωm

Water

Formation

In marine CSEM variations of properties 
(resistivity is extreme)

• Air has almost infinite resistivity

• EM waves propagate there fast (speed of 
light) and without attenuation

• Air effectively connects distant parts of the 
model

low – rank
good compression

high – rank
poor compression

BLR- compressed matrix 
structure. 
Figure from Amestoy et 
al. 2015



Shallow-water & Deep-water models

100 m

Air

1 − 100 Ωm

0.25 Ωm

106 Ωm

Water

Formation

1 − 100 Ωm

0.25 Ωm Water

Formation

0.25 Ωm
3 km

The number of cells is the same for both models, 
i.e. the matrices have identical structure

Shallow Deep

15 cells

15 cells



BLR & Full Rank (FR) flops

FR - Shallow

FR - Deep

BLR - Shallow

BLR - Deep

162 ∙ 1012 162 ∙ 1012 24 ∙ 1012 14 ∙ 1012

100 % 15 % 9 %

Matrix size: 4.9·106



Flops complexity

5 6 6. .

𝑁𝑓𝑙𝑜𝑝𝑠 ∝ 𝑁𝑚

Number of flops for 
matrix factorization

Matrix size   
(number of unknowns)

Consistent with (or better than):

• Theory: 𝑚 = 1.7
Amestoy et al. SIAM J. Sci. Comput 2017

• 3D Seismic: 𝑚 = 1.78
Amestoy et al. SIAM J. Sci. Comput 2015



5 6 6. .

Factor storage complexity

𝑁𝑏𝑦𝑡𝑒𝑠 ∝ 𝑁𝑚

Memory needed to
store factors

Matrix size   
(number of unknowns)

Consistent with:

• Theory: 
𝑚 = 1.33 (FR), 𝑚 = 1.17 (BLR)
Amestoy et al. SIAM J. Sci. Comput 2017

• 3D Seismic:
𝑚 = 1.36 (FR), 𝑚 = 1.19 (BLR)
Amestoy et al. SIAM J. Sci. Comput 2015



Conclusions



Number of RHS estimates

Example CSEM survey over the SEAM model
• 𝑁𝑟 = 11 × 11 = 121 receiver
• 22 towlines
• each towline has 150 shot points (30 km / 200 m)
• Source positions in total: 𝑁𝑠 = 22 × 150 = 3300
• Field components: 𝑁𝑓𝑖𝑒𝑙𝑑𝑠 = 4 (Ex, Ey, Hx, Hy)

BFGS inversion:

𝑁𝑅𝐻𝑆 = 𝑁𝑟 × 𝑁𝑓𝑖𝑒𝑙𝑑𝑠 × 2 = 986

Gauss-Newton inversion:

𝑁𝑅𝐻𝑆 = 𝑁𝑠 + 𝑁𝑟 × 𝑁𝑓𝑖𝑒𝑙𝑑𝑠 = 3784



MUMPS-BLR vs Iterative solver

Inversion
Number of 

RHS

FR solver

times (sec)

BLR solver

times (sec)

Iterative 

solver

Analysis Factoriz Solution Total Analysis Factoriz Solution Total Total

BFGS 968 87 2803 965 3856 103 1113 965 2181 803

Gauss-

Newton
3784 87 2803 3772 6663 103 1113 3772 4988 3141

• Iterative solver always wins for BFGS inversion (<1000 RHSs)

• Iterative solver always wins for full-rank MUMPS

• Gauss-Newton: due to BLR factorization became faster than iterative solver! 

• MUMPS solution time (1 sec / RHS) is currently slower than iterative solver 

• BLR can also be applied to the solution phase, and MUMPS may win at the end 

S21 matrix with 21×106 unknowns



Thank you


