
FIVE-PRECISION GMRES-BASED ITERATIVE REFINEMENT ∗

PATRICK AMESTOY† , ALFREDO BUTTARI‡ , NICHOLAS J. HIGHAM§ ,

JEAN-YVES L’EXCELLENT† , THEO MARY¶, AND BASTIEN VIEUBLÉ‖

Abstract. GMRES-based iterative refinement in three precisions (GMRES-IR3) uses a low pre-
cision LU factorization to accelerate the solution of a linear system without compromising numerical
stability or robustness. GMRES-IR3 solves the update equation using GMRES preconditioned by the
LU factors, where all operations within GMRES are carried out in the working precision u, except for
the matrix-vector products and the application of the preconditioner, which require the use of extra
precision u2. The use of extra precision can be expensive, and is especially unattractive if it is not
available in hardware; for this reason, existing implementations have not used extra precision, despite
the absence of an error analysis for this approach. We relax the requirements on the precisions used
within GMRES, allowing the use of arbitrary precisions up (for applying the preconditioner) and
ug (for the rest of the operations). We obtain the five-precision GMRES-based iterative refinement
(GMRES-IR5) algorithm. We carry out a rounding error analysis that generalizes that of GMRES-
IR3, obtaining conditions under which the forward and backward errors converge to their limiting
values. Our analysis makes use of a new result on the backward stability of MGS-GMRES in two pre-
cisions. On hardware where up to five arithmetics are available, the number of possible combinations
of precisions in GMRES-IR5 is extremely large, but our analysis identifies a small subset of relevant
combinations. By choosing from within this subset one can achieve different levels of tradeoff between
cost and robustness, which allows for a finer choice of precisions depending on the problem difficulty
and the available hardware. Our numerical experiments on both random dense matrices and real-life
sparse matrices from a wide range of applications show that the practical behavior of GMRES-IR5
is in good agreement with our theoretical analysis. GMRES-IR5 therefore has the potential to solve
relatively badly conditioned problems in less time and memory than GMRES-IR3, thanks to the use
of lower precision arithmetic in the GMRES iterations.

Key words. iterative refinement, GMRES, linear system, mixed precision, multiple precision,
rounding error analysis, floating-point arithmetic, backward error, forward error, preconditioning

AMS subject classifications. 65G50, 65F05, 65F08, 65F50, 65F10

1. Introduction. Modern hardware increasingly supports low precision floating-
point arithmetics that provide unprecedented speed, communication, and energy ben-
efits. This has generated renewed interest in mixed precision algorithms that combine
these lower precision arithmetics with higher precision ones to achieve both high
performance and high accuracy. Among such mixed precision algorithms, iterative
refinement for the solution of a linear system Ax = b is one of the oldest and most
successful [1], [12, Chap. 12], [20], [24].

We recall, in Algorithm 1.1, iterative refinement in the general form recently
proposed and analyzed by Carson and Higham [3]. Algorithm 1.1 includes and gen-
eralizes previous iterative refinement algorithms in two ways. First, each step of the
algorithm may be carried out in a different precision: the initial LU factorization of
A is performed in precision uf , the residual ri = b − Axi is computed in precision
ur, and the solution xi is updated in the target, working precision u. Second, the
correction term di is obtained by solving the system Adi = ri with a generic solver

∗Version of April 3, 2021.
†Mumps Technologies, ENS Lyon, 46 Allée d’Italie, F-69007 Lyon, France

(patrick.amestoy@mumps-tech.com; jean-yves.l.excellent@mumps-tech.com)
‡CNRS, IRIT, 2 Rue Charles Camichel, F-31071 Toulouse, France (alfredo.buttari@irit.fr)
§Department of Mathematics, The University of Manchester, Manchester, M13 9PL, UK

(nick.higham@manchester.ac.uk)
¶Sorbonne Université, CNRS, LIP6, Paris, F-75005, France (theo.mary@lip6.fr)
‖INPT, IRIT, 2 Rue Charles Camichel, F-31071 Toulouse, France (bastien.vieuble@irit.fr)

1

mailto:patrick.amestoy@mumps-tech.com
mailto:jean-yves.l.excellent@mumps-tech.com
mailto:alfredo.buttari@irit.fr
mailto:nick.higham@manchester.ac.uk
mailto:theo.mary@lip6.fr
mailto:bastien.vieuble@irit.fr

Algorithm 1.1 Iterative refinement

Input: an n× n matrix A and a right-hand side b.
Output: an approximate solution to Ax = b.

1: Compute the LU factorization A = LU . uf
2: Initialize x0 (to, e.g., U−1L−1b). uf
3: while not converged do
4: Compute ri = b−Axi. ur
5: Solve Adi = ri. us
6: Compute xi+1 = xi + di. u
7: end while

assumed to compute di with relative accuracy of order us ≥ u. The precision us is a
measure of the quality of the solution the solver produces rather than an input to the
solver.

The traditional choice of solver, which we call the LU solver, is to compute
di = U−1L−1ri by substitution in precision uf , so that di is computed at accuracy
us = O(uf). In this case, Algorithm 1.1 employs up to three precisions. We denote
this variant by LU-IR3. While LU-IR3 can be very attractive for well-conditioned ma-
trices, it is only guaranteed to converge when κ(A)uf � 1, where κ(A) = ‖A‖‖A−1‖
denotes the condition number of A. This condition can be quite restrictive, especially
when low precision arithmetic is used for the factorization: for example, the condition
becomes κ(A) � 2 × 103 with IEEE fp16 (half) precision, and κ(A) � 3 × 102 with
bfloat16.

Carson and Higham [2] take uf = u and solve Adi = ri by GMRES preconditioned
by the computed LU factors of A, with the preconditioner applied in higher precision
u2 and the residual also computed at higher precision, ur = u2. Their motivation
was to compute solutions with forward error of order u even when κ(A) is of order
u−1. Carson and Higham [3] subsequently generalized this algorithm in order to be
able to exploit lower precision arithmetic for the factorization. This algorithm, called
GMRES-based iterative refinement in three precisions (GMRES-IR3), is recalled in

Algorithm 1.2. On line 5, Ã is not explicitly formed, but its action on a vector is
obtained with a matrix multiplication followed by two triangular solves.

Algorithm 1.2 GMRES based iterative refinement in three precisions (GMRES-IR3)

Input: an n× n matrix A and a right-hand side b.
Output: Approximate solution x̂ to Ax = b

1: Compute the LU factorization A = LU . uf
2: Initialize x0 (e.g., to U−1L−1b). uf
3: while not converged do
4: Compute ri = b−Axi. ur
5: Solve U−1L−1Adi = U−1L−1ri by GMRES at precision u with matrix–vector

products with Ã = U−1L−1A computed at precision u2.
6: Compute xi+1 = xi + di. u
7: end while

GMRES-IR3 is shown in [3] to be guaranteed to converge as long as κ(A)2u2fu�
1, and it is therefore able to handle much more ill-conditioned matrices than LU-
IR3. However, the requirement that the preconditioner be applied in precision u2 is

2

a practical limitation, because this can be expensive; it is particularly inconvenient
if the target accuracy u is double precision, as it requires applying the precondi-
tioner in quadruple precision, an arithmetic that is not natively supported on most
modern hardware and is an order of magnitude slower than double precision when
implemented in software [13]. In fact, practical implementations of GMRES-IR3,
as developed in [8], [9], [10] and implemented in the MAGMA library [19] and the
NVIDIA cuSOLVER library [6], have relaxed this requirement by applying the pre-
conditioner in double rather than quadruple precision—even though the error analysis
of [3] does not cover this case. GMRES-IR variants for symmetric positive definite
systems and least squares problems have also allowed just two precisions to be used
[4], [17]. The question arises of whether we can use a lower precision to apply the
preconditioner within GMRES and still obtain a GMRES-IR solver able to handle
more ill-conditioned matrices than LU-IR.

These practical constraints and theoretical questions lead us to propose new vari-
ants of GMRES-based iterative refinement with relaxed requirements on the precisions
used within the GMRES solver. We allow the preconditioner (the LU factors) to be
applied in an arbitrary precision up, with up ≥ u2. We also allow the rest of the
GMRES computations to be performed in an arbitrary precision ug, with ug ≥ u.
We obtain Algorithm 3.1, which has up to five different precisions in play and which
we thus call GMRES-IR5. We generalize the rounding error analysis of Carson and
Higham [2], [3] to this new GMRES-IR5 variant and obtain several novel combina-
tions of precision parameters that achieve different levels of compromise between cost
and robustness. GMRES-IR5 therefore fills the gap between LU-IR3 and GMRES-
IR3, allowing for new variants that can be much faster than GMRES-IR3 but that
remain more robust than LU-IR3. When five different arithmetics are available (such
as bfloat16, fp16, fp32, fp64, and fp128), the number of possible combinations is ex-
tremely large, but our analysis identifies the small subset of these combinations that is
relevant. These include combinations where up = u and, therefore, our results provide
convergence guarantees for the existing implementations mentioned above. Moreover,
some relevant combinations result in new variants of iterative refinement that employ,
for the first time, four or even five different precisions.

The rest of this article is organized as follows. We begin, in section 2, by pro-
viding technical background on LU-IR3 and GMRES-IR3. In section 3, we present
the generalized error analysis of GMRES-IR5 in five precisions and its different com-
binations. In section 4, we support our analysis with numerical experiments on both
random dense matrices and on a wide range of real-life matrices from the SuiteSparse
collection [7]. We provide our concluding remarks in section 5.

2. Preliminaries on LU-IR3 and GMRES-IR3. In this section we sum-
marize our notation and assumptions for the analysis, and briefly recall the essen-
tial technical background on the LU-IR3 and GMRES-IR3 algorithms of Carson and
Higham [2, 3].

We use the standard model of floating-point arithmetic [12, sect. 2.2] and we use
the notation fl(·) to denote the computed value of a given expression. For any integer
k we define

γk =
ku

1− ku
.

A superscript on γ denotes that u carries that superscript as a subscript; thus γfk =
kuf/(1 − kuf), for example. We also use the notation γ̃k = γck to hide modest
constants c.

3

The error bounds obtained by our analysis depend on the problem dimension n,
the number of iterations k of GMRES, and the growth factor ρn of the LU factoriza-
tion. In parts of the analysis, we will gather these constants into a generic function
f(n, k, ρn). The constants depending on n are known to be pessimistic [5], [15], [16]
and, with standard pivoting strategies, ρn is almost always small in practice and of
order a constant [12, chap. 9] (for exceptions, see [11]). Therefore, for the sake of the
readability, we do not always keep track of the precise value of f(n, k, ρn). When we
drop constants f(n, k, ρn) from an inequality we write the inequality using “�”. A
convergence condition expressed as “κ(A) � θ” can be read as “κ(A) is sufficiently
less than θ”. Finally, we also use the notation . when dropping second order terms
in the error bounds.

We consider linear systems Ax = b, where A ∈ Rn×n is nonsingular and b ∈
Rn. The forward error of an approximation x̂ is ‖x − x̂‖/‖x‖, while the (normwise)
backward error of x̂ is [12, sec. 7.1]

min{ ε : (A+∆A)x̂ = b+∆b, ‖∆A‖ ≤ ε‖A‖, ‖∆b‖ ≤ ε‖b‖ } =
‖b−Ax̂‖

‖A‖ ‖x̂‖+ ‖b‖
.

We define the componentwise condition numbers

cond(A, x) =
‖|A−1||A||x|‖

‖x‖
, cond(A) = ‖|A−1||A|‖,

where |A| = (|aij |).
Our error analysis uses both the ∞-norm and the Frobenius norm, denoted by

‖ · ‖∞ and ‖ · ‖F , respectively, and we write κ∞(A) and κF (A) for the corresponding
condition numbers of A. We will use unsubscripted norms or condition numbers
when the constants depending on the problem dimensions have been dropped, since
the norms are equivalent.

We denote by q the maximum number of nonzeros in any row of [Ab]; thus
q = n + 1 for a dense matrix A and a vector b. As in [3], however, we do not make
any assumptions on the sparsity of the LU factors L and U .

Carson and Higham perform the error analysis of Algorithm 1.1 with a general
solver used at step 5. The solver is assumed to satisfy the conditions

d̂i = (I + usEi)di, us‖Ei‖∞ < 1, (2.1a)

‖r̂i −Ad̂i‖∞ ≤ us(c1‖A‖∞‖d̂i‖∞ + c2‖r̂i‖∞), (2.1b)

where d̂i and r̂i denote the computed di and ri, and where Ei, c1, and c2, are functions
of n, A, r̂i, and us. These conditions are needed for the normwise forward and
backward error analyses, respectively.

In analyzing iterative refinement we aim to show that the forward error and back-
ward error decrease until they reach a certain size called the limiting forward error or
backward error. We will informally refer to attainment of this level as “convergence”,
while recognizing that the error does not necessarily converge in the formal sense.

Corollary 3.3 of [3] shows that as long as

us‖Ei‖∞ < 1 (2.2)

for each i, the forward error converges to a limiting value of qur cond(A, x) +u. Here,
we have simplified the convergence condition by ignoring a term that is shown in [3]

4

Table 2.1
Convergence conditions and limiting backward and forward errors for the LU-IR3 and GMRES-

IR3 algorithms analyzed in [2], [3].

Convergence condition Limiting value
LU-IR3 GMRES-IR3

Backward error κ(A)� u−1
f κ(A)� u−1/2u

−1/2
f qur + u

Forward error κ(A)� u−1
f κ(A)� u−1/2u

−1
f qurcond(A, x) + u

to be dominated in practice by the left-hand side of (2.2). Corollary 4.2 of [3] shows
that if

us(c1κ∞(A) + c2)� 1, (2.3)

then the backward error converges to a limiting value of qur + u. The convergence
conditions of Algorithm 1.1 therefore depend only on us, whereas the limiting accuracy
and backward errors depend on u and ur.

In the case of LU-IR3, we have us ≡ uf , ‖Ei‖∞ ≡ f(n, ρn)κ∞(A), and c1 = c2 =
f(n, ρn), so the convergence condition is

κ(A)� u−1f , (2.4)

for both the forward and backward errors.
In the case of GMRES-IR3, that is, Algorithm 1.2, we have instead us ≡ u and

‖Ei‖∞ ≡ f(n, k, ρn)κ∞(Ã) [2, sec. 3], where Ã = Û−1L̂−1A is the matrix precondi-

tioned by the computed LU factors L̂ and Û . Using the bound

κ∞(Ã)� κ∞(A)2u2f (2.5)

from [3, Eq. (8.3)], which shows that Ã is usually better conditioned than A, (2.2)
yields the condition

κ(A)� u−1/2u−1f , (2.6)

for the forward error to converge. This is a significantly less restrictive condition than
(2.4) for LU-IR3. Similarly, for GMRES-IR3 we can show that c1 = f(n, k, ρn)‖Ã‖∞
and c2 = f(n, k, ρn)κ∞(A), so that after bounding ‖Ã‖∞ with [2, Eq. (3.2)] the
convergence condition (2.3) for the backward error becomes

κ(A)� u−1/2u
−1/2
f , (2.7)

which is also less restrictive than (2.4) when u < uf .
We summarize in Table 2.1 convergence conditions and limiting backward and

forward errors for LU-IR3 and GMRES-IR3. Since the limiting backward error and
forward error are solver independent (as long as the conditions (2.1) are satisfied),
they are the same for LU-IR3 and GMRES-IR3.

3. Error analysis of GMRES-IR5. In this section we generalize the error
analysis of GMRES-IR3 (Algorithm 1.2) [2], [3] to GMRES-IR5, which is defined in
Algorithm 3.1. First, we extend in section 3.1 the analysis of Paige, Rozložńık, and
Strakoš [22] on the backward stability of MGS-GMRES to arbitrary matrix–vector
products satisfying a generic error bound. Second, we use this generalized analysis
in section 3.2 to show that GMRES-IR5 provides a backward stable solution for the
problem Ãdi = si, where Ã = Û−1L̂−1A and si = Û−1L̂−1ri. We then use this new

5

analysis in section 3.3 to obtain conditions on κ(A) for GMRES-IR5 to converge (note
that the limiting backward error and forward error are left unchanged because they
only depend on u and ur). Finally, we use these generalized convergence conditions
in section 3.4 to identify which combinations of precisions are meaningful.

Algorithm 3.1 GMRES based iterative refinement in five precisions (GMRES-IR5)

Input: an n× n matrix A and a right-hand side b.
Output: Approximate solution x̂ to Ax = b

1: Compute the LU factorization A = LU . uf
2: Initialize x0 (to, e.g., U−1L−1b). uf
3: while not converged do
4: Compute ri = b−Axi. ur
5: Solve U−1L−1Adi = U−1L−1ri by GMRES at precision ug with matrix–vector

products with Ã = U−1L−1A computed at precision up.
6: Compute xi+1 = xi + di. u
7: end while

Our analysis makes use of the following two assumptions on the precisions:
• ug ≥ u: since the solution computed by GMRES is stored in the working

precision u, we do not expect running GMRES in precision ug < u to give a
significant benefit.

• κ(A) max(u, up) < 1: the assumption κ(A)u < 1 is already present in the
three-precision analysis [3]; here, we also require κ(A)up < 1.

3.1. Error analysis of MGS-GMRES with arbitrary matrix–vector prod-
ucts. We assume that the MGS-GMRES variant of GMRES is used in GMRES-IR5,
so we need to bound the backward error of two-precision MGS-GMRES for the solu-
tion of the preconditioned system Ãdi = si. The analysis of Paige et al. [22] is for fixed
precision, unpreconditioned MGS-GMRES, and therefore is not directly applicable.
Note that in the analysis of [2] the preconditioner is applied in precision u2, and using

the assumption κ(A)u < 1 it is shown that the products with Ã in precision u2 are at
least as accurate as the products with A in precision u, so that the backward stability
result of [22] still holds. In our case, the same argument does not apply, and so we
must generalize the backward stability result [22, Eq. (8.15)] to the case of arbitrary
matrix–vector products satisfying a generic error bound. We state the conclusion of
our analysis in the next theorem.

Theorem 3.1. Consider the solution of a linear system

Bx = d, B ∈ Rn×n, 0 6= d ∈ Rn (3.1)

with an MGS-GMRES solver carrying out its operations in precision ug, except for
the products with B, which satisfy instead

f l(Bv) = Bv + f, ‖f‖2 . εp‖B‖F ‖v‖2, (3.2)

where εp > 0 is a parameter quantifying the stability of the matrix–vector products.
Provided that

σmin(B) & (k1/2εp + γ̃gkn)‖B‖F , (3.3)

6

there is a step k ≤ n such that the algorithm produces a computed x̂k satisfying

(B +∆B)x̂k = d+∆d, (3.4a)

‖∆B‖F . (k1/2εp + γ̃gkn)‖B‖F , (3.4b)

‖∆d‖2 . γ̃gkn‖d‖2. (3.4c)

Proof. The proof of Theorem 3.1 relies on the analysis of [22] and, more precisely,
on [22, sec. 8] and [22, Eq. (4.3)] therein. For the sake of readability, we will not
attempt to make this proof self-contained but, rather, we will highlight the differences
with the analysis in [22] and refer the reader to that work for the full details. The
original notation has been slightly adapted to be consistent with the notation of this
article inherited from [2] and [3].

In our version of MGS-GMRES we consider a product with B satisfying (3.2). We
now show that considering (3.2) with εp 6= γgn mainly changes [22, Eq. (4.3)]. Let us

consider V̂k = [v̂1, . . . , v̂k], the matrix of computed basis vectors, and V̇k = [v̇1, . . . , v̇k]
the same matrix but with its columns correctly normalized; that is, for j ≤ k,

v̂j = v̇j +∆v
(1)
j , ‖∆v(1)j ‖2 ≤ γ̃

g
n, (3.5)

V̂k = V̇k +∆V
(1)
k , ∆V

(1)
k = [∆v

(1)
1 , . . . ,∆v

(1)
k],

where ∆v
(1)
j is the error for the normalization of v̂j and ∆V

(1)
k is the accumulated

error for the normalization of the basis at step k. By (3.2) and (3.5), we obtain

fl(Bv̂j) = B(v̇j +∆v
(1)
j) + fj

= Bv̇j +∆v
(2)
j ,

where ∆v
(2)
j = B∆v

(1)
j + fj satisfies ‖∆v(2)j ‖2 . (εp + γ̃gn)‖B‖F since ‖v̇j‖2 = 1 and

‖fj‖2 . εp‖B‖F ‖v̇j +∆v
(1)
j ‖2. We therefore obtain

fl(BV̂k) ≈ BV̇k +∆V
(2)
k , ‖∆V (2)

k ‖F . k1/2(εp + γ̃gn)‖B‖F , (3.6)

where ∆V
(2)
k contains the error for both the product and the normalization at the kth

iteration. Equation (3.6) is our new version of [22, Eq. (4.3)]; adapting the remainder
of [22, sec. 8] to take this change into account is straightforward. Consequently, we
show that at the (m̄− 1)st iteration, MGS-GMRES has computed a backward stable
solution of the system, where m̄ satisfies [22, Eq. (6.1)]. From now on, we set k such
that k ≡ m̄− 1 ≤ n, and rewrite [22, Eq. (8.2)] as

rk(ŷk) ≡ dk −Bkŷk, dk ≡ d+∆dk(ŷk), Bk ≡ BV̇k +∆V
(3)
k (ŷk),

‖∆dk(ŷk)‖2 ≤ γ̃gkn‖d‖2, ∆V
(3)
k (y) ≡ ∆V (2)

k +∆Ck(y),

‖∆V (3)
k ‖F . (k1/2εp + γ̃gkn)‖B‖F ,

(3.7)

where ∆Ck(y) and ∆dk(y) are the errors in the MGS least squares solution [22, sec. 7].
Using the scaling invariance of MGS to scale the right-hand side dk by φ′ and making
use of [22, Thm. 2.4] gives a bound on the residual [22, Eq. (8.9)]

‖rk(ŷk)‖22 ≤ (γ̃gkn)2(‖dkφ′‖22 + ‖Bk‖2F)2(φ′)−2. (3.8)

7

In addition to bounding ‖Bk‖2F and ‖dkφ′‖22, we use the nonsingularity condition (3.3)
in the same fashion as [22, Eq. (8.11)] to compute a bound for (φ′)−2, which allows
us to rewrite [22, Eq. (8.12)] as

‖rk(ŷk)‖2 . γ̃gkn(‖B‖F ‖ŷk‖2 + ‖d‖2). (3.9)

Since εp appears in second order terms and higher, they have been dropped, making

(3.9) equivalent to [22, Eq. (8.12)]. Considering now x̂k = fl(V̂kŷk) = (V̂k +∆V
(4)
k)ŷk

and using a standard matrix–vector product in precision ug satisfying ‖∆V (4)
k ‖F ≤

γ̃gk‖V̂k‖F and ∆Bk ≡ [∆V
(3)
k (ŷk) − B(∆V

(4)
k + V̂k − V̇k)]ŷk

x̂T
k

‖x̂k‖22
, we can rewrite [22,

Eq. (8.15)] as

rk(ŷk) = d+∆dk(ŷk)− (B +∆Bk)x̂k, (3.10)

‖rk(ŷk)‖2 . γ̃gkn(‖B‖F ‖x̂k‖2 + ‖d‖2),

‖∆dk(ŷk)‖2 ≤ γ̃gkn‖d‖2,
‖∆Bk‖F . (k1/2εp + γ̃gkn)‖B‖F .

This leads to (3.4) and completes the proof of the theorem.

In the original analysis, f l(Bv) is a standard matrix–vector product operation and
up = ug, so f l(Bv) = (B+∆B)v holds where ‖∆B‖F ≤ γgq ‖B‖F [12, sec. 3.5]. In this
case we can set f = ∆Bv and apply Theorem 3.1 with εp = γgq , recovering the result
of [22] for an unpreconditioned MGS-GMRES in uniform precision, which produces a
solution x̂k of the system Bx = d satisfying

(B +∆B)x̂k = d+∆d, ‖∆B‖F . γ̃gkn‖B‖F , ‖∆d‖2 . γ̃gkn‖d‖2.

3.2. Error analysis of GMRES-IR5 with general ug and up precisions.

We proceed in three steps. First, we bound the error in ŝi = fl(Û−1 f l(L̂−1r̂i)).
Second, we use our analysis of three-precision MGS-GMRES of the previous section
to prove the backward stability of the solution to the system Ãdi = ŝi. Third, we
combine the previous two results to derive bounds of the type (2.1a)–(2.1b) for the

solution of Ãdi = si.
We begin by bounding the error introduced in forming the preconditioned right-

hand side si = Û−1L̂−1r̂i in precision up. The computed ŝi satisfies [12, Thm. 8.5]

(L̂+∆L)(Û +∆U)ŝi = r̂i, |∆L| ≤ γpn|L̂|, |∆U | ≤ γpn|Û |. (3.11)

Also, considering [12, Thm. 9.3] the LU factors computed at precision uf satisfy

L̂Û = A+∆A(1), |∆A(1)| ≤ γfn|L̂||Û |, (3.12)

so

si − ŝi = Û−1L̂−1(∆LÛ + L̂∆U +∆L∆U)ŝi

= (A+∆A(1))−1(∆LÛ + L̂∆U +∆L∆U)ŝi

≈ (A−1 −A−1∆A(1)A−1)(∆LÛ + L̂∆U +∆L∆U)ŝi

and dropping second-order terms we obtain

‖si − ŝi‖∞ . γp2n‖|A−1||L̂||Û |‖∞‖ŝi‖∞
≤ n2ρnγ̃pnκ∞(A)‖ŝi‖∞ . n2ρnγ̃

p
nκ∞(A)‖si‖∞. (3.13)

8

where the second inequality comes from [12, Lem. 9.6].
Next, we show that this new version of GMRES (with general up and ug pre-

cisions) provides a backward stable solution to the system Ãdi = si, where Ã =

Û−1L̂−1A and si = Û−1L̂−1ri. We rely on Theorem 3.1, which provides backward
error bounds for MGS-GMRES with general matrix–vector products. Our aim is
therefore to prove that (3.2) holds for some εp when the matrix–vector products are

computed with matrix Ã = Û−1L̂−1A and in precision up. Let zj = Ãv̂j be computed
in precision up by a matrix product followed by two triangular solves. Then

(A+∆A(2))v̂j = ŵj , |∆A(2)| ≤ γpq |A|,

(L̂+∆L)ŷj = ŵj , |∆L| ≤ γpn|L̂|,

(Û +∆U)ẑj = ŷj , |∆U | ≤ γpn|Û |.

The computed vector ẑj can therefore be written as

ẑj = (Û +∆U)−1(L̂+∆L)−1(A+∆A(2))v̂j

≈ (Û−1 − Û−1∆UÛ−1)(L̂−1 − L̂−1∆LL̂−1)(A+∆A(2))v̂j

= Ãv̂j + fj ,

where

fj ≈
(
Û−1L̂−1∆A(2) − Û−1L̂−1∆LL̂−1A− Û−1∆UÛ−1L̂−1A

)
v̂j

=
(
ÃA−1∆A(2) − Û−1L̂−1∆LÛÃ− Û−1∆UÃ

)
v̂j ,

and so
‖fj‖2 . γpn(κF (A) + κF (Û)κF (L̂) + κF (Û))‖Ã‖F ‖v̂j‖2.

Since we can expect κF (L̂) to be of modest size (because L̂ is a unit triangular matrix
with off-diagonal elements bounded by 1 if, for example, partial pivoting is used in
the factorization), and since κF (Û) . κF (A)κF (L̂), we obtain

‖fj‖2 . γ̃pnκF (A)‖Ã‖F ‖v̂j‖2 ≤ nγ̃pnκ∞(A)‖Ã‖F ‖v̂j‖2. (3.14)

Condition (3.2) is thus satisfied for εp = nγ̃pnκ∞(A), and Theorem 3.1 is therefore
applicable. From (3.4) we obtain

(Ã+∆Ã)d̂i = ŝi +∆ŝi, (3.15a)

‖∆Ã‖F . (γ̃gkn + nγ̃p
k1/2n

κ∞(A))‖Ã‖F , (3.15b)

‖∆ŝi‖2 . γ̃gkn‖ŝi‖2 . n1/2γ̃gkn‖si‖∞. (3.15c)

Rewriting (3.15a) as

si − Ãd̂i = ∆Ãd̂i − (ŝi − si)−∆ŝi (3.16)

and using (3.15b), (3.13), and (3.15c) to bound the three terms on the right-hand
side, we obtain

‖si − Ãd̂i‖∞ ≤ ‖∆Ã‖∞‖d̂i‖∞ + ‖ŝi − si‖∞ + ‖∆ŝi‖∞
. n

(
γ̃gkn + nγ̃p

k1/2n
κ∞(A)

)
‖Ã‖∞‖d̂i‖∞

+ n2ρnγ̃
p
nκ∞(A)‖si‖∞ + n1/2γ̃gkn‖si‖∞

. n3 max(k1/2, ρn)
(
γ̃g1 + γ̃p1κ∞(A)

)(
‖Ã‖∞‖d̂i‖∞ + ‖si‖∞

)
.

9

In conclusion, the normwise relative backward error of the system Ãd̂i = si is bounded
by

‖si − Ãd̂i‖∞
‖Ã‖∞‖d̂i‖∞ + ‖si‖∞

. f(n, k, ρn)
(
γ̃g1 + γ̃p1κ∞(A)

)
(3.17)

and the relative error of the computed d̂i therefore satisfies

‖di − d̂i‖∞
‖di‖∞

. f(n, k, ρn)
(
γ̃g1 + γ̃p1κ∞(A)

)
κ∞(Ã), (3.18)

where f(n, k, ρn) = n3 max(k1/2, ρn).

3.3. Convergence conditions on κ(A). We can now use this analysis together
with (2.2) and (2.3) to determine sufficient conditions for the convergence of the
forward and backward errors for general up and ug parameters.

Beginning with the forward error, (3.18) shows that (2.1a) holds with

us‖Ei‖∞ ≡ f(n, k, ρn)
(
γ̃g1 + γ̃p1κ∞(A)

)
κ∞(Ã),

and so, dropping constants, (2.2) becomes

(ug + upκ(A))κ(Ã)� 1. (3.19)

By using the bound (2.5) on κ(Ã), we obtain the condition

(ug + upκ(A))κ(A)2u2f � 1 (3.20)

for the forward error to converge to its limiting value of order qur cond(A, x) + u.
Next we determine a condition for the backward error to converge. First we

need to bound the backward error of the original correction equation Adi = ri. By
observing that the computed residual r̂i satisfies r̂i − Ad̂i = L̂Û(si − Ãd̂i), since

si = Û−1L̂−1r̂i, and using the bound (3.17) and the relation (3.12) we obtain

‖r̂i −Ad̂i‖∞ . f(n, k, ρn)
(
γ̃g1 + γ̃p1κ∞(A)

)
‖L̂Û‖∞(‖Ã‖∞‖d̂i‖∞ + ‖si‖∞)

. f(n, k, ρn)
(
γ̃g1 + γ̃p1κ∞(A)

)
(‖Ã‖∞‖A‖∞‖d̂i‖∞ + κ∞(A)‖r̂i‖∞).

We have thus shown that (2.1b) holds with us = ug+upκ∞(A), c1 = f(n, k, ρn)‖Ã‖∞,
and c2 = f(n, k, ρn)κ∞(A). Dropping constants, condition (2.3) then becomes(

ug + upκ(A)
)
(‖Ã‖+ 1)κ(A)� 1.

Using (3.12) we have

Ã = Û−1L̂−1A = (A+∆A(1))−1A ≈ I −A−1∆A(1)

and using [12, Lem. 9.6] we obtain the bound

‖Ã‖∞ ≤ 1 + ‖A−1‖∞‖∆A(1)‖∞ � 1 + ufκ∞(A).

We finally obtain the condition(
ug + upκ(A)

)(
1 + κ(A)uf

)
κ(A)� 1 (3.21)

10

Table 3.1
Parameters for floating-point arithmetics: symbol used in this paper, number of bits in signifi-

cand, number of bits in exponent, unit roundoff, and range.

Arithmetic Symbol Significand Exponent Unit roundoff Range

bfloat16 b 8 8 3.91× 10−3 10±38

fp16 h 11 5 4.88× 10−4 10±5

fp32 s 24 8 5.96× 10−8 10±38

fp64 d 53 11 1.11× 10−16 10±308

fp128 q 113 15 9.63× 10−35 10±4932

for the backward error to converge to its limiting value of order qur + u.
Curiously, condition (3.21) is stricter than the condition for the forward error,

since (3.20) has an extra uf term. However, note that since the backward error is
bounded by the forward error (see, for example, [12, Prob. 7.2]), (3.20) is also an
obvious condition for the backward error to converge to the limiting value of the
forward error, of order q cond(A, x)ur + u. In particular, if ur = u2, condition (3.21)
is not useful because (3.20) also guarantees a backward error of order u with a less
restrictive condition on κ(A), since by assumption κ(A)u < 1.

As a check, we compare our results with [14], which analyzes the case up = ug =
ur = u, that is, GMRES-IR in two precisions, and uses a different argument to that
here. Our condition (3.20) for convergence of the forward error is κ(A)3uu2f � 1 and

our condition (3.21) for convergence of the backward error is κ(A)2u(1+κ(A)uf)� 1.
These conditions agree with [14, Eqs (3.8), (3.6)].

We also compare with the analysis of [3] for GMRES-IR3, the conclusions from
which we summarized in section 2. For uf = ug = u and up = u2, our condition (3.20)
for convergence of the forward error is (u+κ(A)u2)κ(A)2u2f � 1, that is, κ(A)2uu2f �
1, since we are assuming κ(A)u < 1. This agrees with (2.6). Our condition (3.21)
for convergence of the backward error is, similarly, κ(A)u(1 + κ(A)uf) � 1, which
is weaker than the condition κ(A)u � 1 of (2.7). The reason for this discrepancy is
that in [3] the assumption is made that c1 in (2.3) is of order f(n, k, ρn), which is too
optimistic in general.

3.4. Identifying meaningful combinations of precisions. Table 3.1 shows
the five most widely used floating-point arithmetics. If all these arithmetics are avail-
able then GMRES-IR5 has over three thousand different combinations of its five
precision parameters. It is therefore important to identify the subset of meaningful
combinations. We say a combination is meaningful if none of the precisions it employs
can be reduced without degrading the numerical properties (convergence condition or
limiting accuracy). Every meaningful combination attains a tradeoff between per-
formance, robustness (ability to converge for ill-conditioned matrices), and accuracy
(ability to converge to small errors).

As an example, the meaningful combinations for LU-IR3 must satisfy u2 ≤ ur ≤
u ≤ uf . Indeed, the limiting backward and forward errors (recalled in Table 2.1) show
that we should have ur ≤ u and that setting ur < u2 is not useful since ur = u2 is
already enough to ensure a forward error of order u (since by assumption κ(A)u < 1).

Meaningful combinations for GMRES-IR5 also satisfy u2 ≤ ur ≤ u ≤ uf , so our
aim now is to discuss the choice of the two new precision parameters ug ≥ u and
up ≥ u2. To compute the bounds on κ(A) given by the conditions (3.20) and (3.21),
we solve the equalities (ug +upx)u2fx

2 = 1 and (ug +upx)(1+ufx)x = 1, respectively.
We now state some observations that can be deduced from our analysis, in particular

11

from condition (3.20).
• up ≤ ug. This first observation comes from the term ug+upκ(A) that appears

in the convergence conditions. We would like the components of this term to
be balanced, so that up ≈ ug/κ(A) ≤ ug. So up < ug may be required, but
up > ug is not meaningful. We also note that there is no advantage to taking
up < ug/κ(A).

• up < uf . This second observation comes from the fact that if up = uf ,

condition (3.19) requires κ(A)ufκ(Ã)� 1, which is worse than the condition
κ(A)uf � 1 for LU-IR3.

• up < u, up = u, and up > u are all meaningful. This is one of the main
conclusions of our analysis. We know from [3] (in which up = u2 and ug = u)
that setting up = u2 provides the least restrictive convergence conditions (2.6)
and (2.7), but the precise role of up in the convergence was not analyzed. With
the new conditions (3.20) and (3.21) obtained from our generalized analysis,
we can now understand what the conditions become if up is taken larger
than u2. Crucially, setting up = u and even up > u can potentially yield
conditions that remain less restrictive than the LU-IR3 condition κ(A)uf �
1, and therefore represent meaningful combinations. Let us illustrate this
observation with a practical example. Assume uf is set to fp16 and u = ug,
with ug set to fp64. Then the condition for the forward error to converge
with LU-IR3 is κ(A)� 2× 103. Instead, with GMRES-IR5:

– If up is set to fp128 (as in [3]), condition (3.20) becomes κ(A)� 2×1011.
We recover the same condition as in [3].

– If up is set to fp64 (and thus up = u), condition (3.20) becomes κ(A)�
3 × 107, which is still much better than the LU-IR3 condition. This
version of GMRES-IR was analyzed in [14] and has been successfully
used in practice, for example in [9], [10].

– If up is set to fp32 (and thus up > u), condition (3.20) becomes κ(A)�
4×104, which is still over an order of magnitude better than the LU-IR3
condition. Note that this variant uses up to four different precisions if
ur is set to fp128.

These examples illustrate how the up precision can be tuned to achieve dif-
ferent levels of tradeoff between robustness (ability to handle ill-conditioned
matrices) and performance (cost of the application of LU factors within GM-
RES).

• ug = u and ug > u are both meaningful. This is also an important conclusion
of our analysis. Whereas in [3], ug is set to u to obtain the least restrictive
convergence condition, our analysis reveals that setting ug > u can also be
meaningful. In fact, as long as ug < 1, condition (3.20) is better than the
LU-IR3 condition κ(A)uf � 1, so we have much flexibility in choosing ug.
Let us again illustrate this with a practical example. Assume uf is set to
fp16 and u = up are set to fp64. With ug = u, as previously stated the
condition (3.20) is κ(A)� 3×107. However, if ug is set to fp32, the condition
is κ(A)� 8×106, which is only slightly worse and remains much better than
the LU-IR3 condition. Note that with ug set to fp32, setting up to fp128
instead of fp64 does not improve the condition κ(A) � 8 × 106: this shows
that the meaningful values of up can be influenced by the choice of ug, and
vice versa. In conclusion the ug precision can also be tuned to achieve different
levels of tradeoff between robustness and performance (the cost of GMRES

12

and, in particular, the memory footprint of the Krylov basis).
• ug < uf , ug = uf , and ug > uf are all meaningful. This final observation is

that ug and uf can be independent. We have already illustrated in previous
examples where uf is fp16 that ug < uf and ug = uf are both meaningful.
This final observation states that even ug > uf can be meaningful. To see
why, let us take another example with uf set to fp32 and u = up set to
fp64. Then setting ug to fp16 yields the condition κ(A) � 7 × 108, which
is better than any combination with the same u and up but with uf set to
fp16 (the best possible condition being κ(A) � 3 × 107 for ug at least in
fp64). Usually, one would expect an fp16 LU factorization and fp32 GMRES
to be faster than the converse (fp32 factorization and fp16 GMRES), so in
practice the combinations with ug > uf are only relevant for a narrow range
of κ(A) (in this example, for κ(A) such that κ(A) � 3 × 107 is not satisfied
but κ(A)� 7× 108 is).

In Table 3.2, we summarize all the possible combinations of up and ug when uf
is set to bfloat16, fp16, or fp32 (these three precisions being the ones that determine
the convergence conditions). The underlined, red terms correspond to combinations
of these three precisions that are not meaningful. Interestingly, when the working
precision u is fp64 and the residual precision ur is fp128, Table 3.2 contains thirteen
meaningful variants that use at least four different arithmetics, including two that use
all five (bhs and hbs).

All the observations made in this part reduce the number of meaningful combina-
tions of the five precision parameters to a subset of 112 combinations, corresponding
to 3.5% of all the possibilities. We summarize the numerical properties (convergence
condition and limiting accuracy, for both the forward and backward errors) of a se-
lected subset of 42 GMRES-IR5 variants in Table 3.3. Importantly, the table includes
variants used in existing implementations, for which our analysis provides new the-
oretical guarantees. It also includes new combinations of precisions not proposed
previously that achieve new, finer tradeoffs between the convergence conditions and
the precisions used.

4. Numerical experiments. We now perform numerical experiments to assess
the validity of the convergence conditions of GMRES-IR5 derived in the previous
section. Throughout our experiments, we focus on the forward error convergence
(condition (3.20)) and we fix u = d and ur = q and analyze the role of the factorization
precision uf and that of the newly introduced precisions up (preconditioner precision)
and ug (GMRES precision).

We have written a Julia code that implements GMRES-IR5 and LU-IR3, where
half precision arithmetics (fp16 and blfoat16) are simulated. We have made this code
publicly available1.

4.1. Random dense matrices. We first use random dense matrices with spec-
ified condition 2-norm number κ(A), which are generated in Julia with the command
matrixdepot(’randsvd’, n, kappa, mode) where mode = 2. Note that this class
of matrices leads to unusually large growth factors ρn of order n [11]. However, we
use only small matrices (n = 50), for which ρn does not exceed 20.

We take κ(A) = 10c, for c = 0: 17 and, for each value of κ(A), we generate
100 random 50× 50 matrices of corresponding condition number. Then, we run LU-
IR3 and GMRES-IR5 on each matrix and compute their success rate, that is, the

1https://github.com/bvieuble/Itref.jl

13

https://github.com/bvieuble/Itref.jl

Table 3.2
Bound on κ(A), rounded to one significant figure, given by conditions (3.20) and (3.21) for the

forward and backward errors to converge with GMRES-IR5, depending on the precisions uf , ug, and
up, and assuming the working precision u is double. We recall that the forward error convergence
condition for LU-IR3 is κ(A)� 3×102 for uf = b, κ(A)� 2×103 for uf = h, and κ(A)� 2×107

for uf = s. The red, underlined terms denote combinations of precisions that are not meaningful.
Each variant is presented in the form of a triplet (uf , ug , up), hence hdq means uf = h, ug = d,
and up = q. We recall that ur does not play a role in the convergence bounds.

Variants (uf , ug , up) Forward Backward

uf = b

bbh bhh bsh bdh 5× 102 4× 101 §
bbs bbd bbq 4× 103 2× 102

bhs 8× 103 6× 102

bhd bhq 1× 104 6× 102

bss bds 1× 104 2× 103

bsd bdq 1× 106 7× 104

bdd 8× 106 1× 106

bdq 2× 1010 2× 109

uf = h

hbs hbd hbq 3× 104 2× 102

hhs 4× 104 1× 103

hss hds 4× 104 3× 103

hhd hhq 9× 104 1× 103

hsd hsq 8× 106 2× 105

hdd 3× 107 3× 106

hdq 2× 1011 4× 109

uf = s

sbd sbq 3× 108 3× 102

shd shq 7× 108 2× 103

ssd 1× 1010 1× 107

sdd 1× 1010 5× 107

ssq 7× 1010 1× 107

sdq 2× 1015 4× 1011

§ bhh is slightly better than bbh on Forward and Backward before rounding.

percentage of matrices for which a forward error ‖x − x̂‖2/‖x‖2 ≤ 4.44 × 10−16 is
achieved, since with u = d and ur = q the forward error should reach full double
precision with no dependency on cond(A, x).

Figure 4.1 reports the success rate of LU-IR3 and nine variants of GMRES-IR5,
corresponding to all possible combinations of the up and ug parameters over the values
up = s,d,q and ug = b,s,d, with uf = b fixed for all variants. This experiment allows
us to obtain an empirical bound on the value of κ(A) at which each variant stops
being able to converge. For example, the success rate of LU-IR3 is 100% as long as
κ(A) ≤ 102, but starts decreasing for larger κ(A), and quickly becomes 0%. This
experimentally confirms the theoretical condition κ(A)� 2× 103 given by (2.4).

Let us now analyze the GMRES-IR5 variants, starting with the role of the pre-
conditioner precision up with fixed ug = D (top graph of Figure 4.1). We can observe
that convergence is achieved with 100% success rate as long as κ(A) is smaller than
107 for up = s and 1015 for up = d or q. The relative robustness of each method is
therefore consistent with the theoretical bounds of Table 3.2. However, the variants
with up = s and up = d both perform much better than expected. This is not en-
tirely surprising since the analysis can be pessimistic, especially in the bound (2.5)

on κ(Ã), which in practice has been observed to often be of order κ(A)uf rather than
the worst-case bound (κ(A)uf)2 [2], [21], [23].

Next we analyze the role of the GMRES precision ug by comparing the top graph
of Figure 4.1 with the middle and bottom ones. When up = s, switching from ug = d

14

Table 3.3
Bounds on κ(A), rounded to one significant figure, such that GMRES-IR5 with the precisions

in the first five columns is guaranteed to converge to the indicated limiting error values.

Forward error Backward error

u ur uf ug up κ(A) Limit κ(A) Limit

s s b b s 4× 103 cond(A, x)× s 2× 102 s
s s b h s 8× 103 cond(A, x)× s 6× 102 s
s s b s s 1× 104 cond(A, x)× s 2× 103 s
s s h h s 4× 104 cond(A, x)× s 1× 103 s
s s h s s 4× 104 cond(A, x)× s 3× 103 s
s s b s d 1× 106 cond(A, x)× s 7× 104 s
s s h s d 8× 106 cond(A, x)× s 2× 105 s

s d b b s 4× 103 s 2× 102 s
s d b h s 8× 103 s 6× 102 s
s d b s s 1× 104 s 2× 103 s
s d h h s 4× 104 s 1× 103 s
s d h s s 4× 104 s 3× 103 s
s d b s d 1× 106 s 7× 104 s
s d h s d 8× 106 s 2× 105 s

d d b b s 4× 103 cond(A, x)× d 2× 102 d
d d b h s 8× 103 cond(A, x)× d 6× 102 d
d d b s s 1× 104 cond(A, x)× d 2× 103 d
d d h h s 4× 104 cond(A, x)× d 1× 103 d
d d h s s 4× 104 cond(A, x)× d 3× 103 d
d d b s d 1× 106 cond(A, x)× d 7× 104 d
d d h s d 8× 106 cond(A, x)× d 2× 105 d
d d b d d 8× 106 cond(A, x)× d 1× 106 d
d d h d d 3× 107 cond(A, x)× d 3× 106 d
d d s h d 7× 108 cond(A, x)× d 2× 103 d
d d s d d 1× 1010 cond(A, x)× d 5× 107 d
d d b d q 2× 1010 cond(A, x)× d 2× 109 d
d d h d q 2× 1011 cond(A, x)× d 4× 109 d
d d s d q 2× 1015 cond(A, x)× d 4× 1011 d

d q b b s 4× 103 d 2× 102 d
d q b h s 8× 103 d 6× 102 d
d q b s s 1× 104 d 2× 103 d
d q h h s 4× 104 d 1× 103 d
d q h s s 4× 104 d 3× 103 d
d q b s d 1× 106 d 7× 104 d
d q b d d 8× 106 d 1× 106 d
d q h s d 8× 106 d 2× 105 d
d q h d d 3× 107 d 3× 106 d
d q s h d 7× 108 d 2× 103 d
d q s d d 1× 1010 d 5× 107 d
d q b d q 2× 1010 d 2× 109 d
d q h d q 2× 1011 d 4× 109 d
d q s d q 2× 1015 d 4× 1011 d

(top) to ug = s (middle) has no impact on the success rate, which equals 100% as long
as κ(A) ≤ 107; reducing the precision even further by setting ug = b (bottom) only
has a slight impact: the success rate remains at 100% for κ(A) ≤ 105. When up = d
or q, reducing the GMRES precision has a much more visible impact: a 100% success
rate is achieved only when κ(A) ≤ 109 (ug = s, middle) or κ(A) ≤ 105 (ug = b,
bottom).

These experiments also show that the success rate is independent of up when

15

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

Su
cc

es
s

ra
te

ug = d

LU-IR3
up = s
up = d
up = q

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

Su
cc

es
s

ra
te

ug = s

LU-IR3
up = s
up = d
up = q

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

Su
cc

es
s

ra
te

ug = b

LU-IR3
up = s
up = d
up = q

Fig. 4.1. Proportion of matrices for which LU-IR3 and GMRES-IR5 with varying up and ug
converged to double precision forward error as a function of κ(A). For all variants, uf = b, u = d,
and ur = q.

ug = B, and almost independent of ug when up = S. This illustrates that the
meaningful choices of up depend on the choice of ug, and vice versa. Overall, the
experiments of Figure 4.1 are therefore in good agreement with the theoretical bounds.
Importantly, they confirm that even with relaxed requirements on the precisions up
and ug, GMRES-IR5 can still handle matrices that are much more ill-conditioned
than LU-IR3.

Finally, we evaluate in Figure 4.2 the two meaningful variants of Table 3.2 that
use five different precisions: bhs (uf = b, ug = h, up = s) and hbs (uf = h,
ug = b, up = s). We compare these two variants with LU-IR3 with uf = b or
h, and with the bbs and hhs GMRES-IR5 variants (uf = b, ug = b, up = s and
uf = h, ug = h, up = s), which are the four-precision variants right below and above
in terms of convergence condition. The figure experimentally confirms that both of
these five-precision variants are in between bbs and hhs and are able to handle more

16

100 102 104 106 108 1010 1012 1014 1016

0.2
0.4
0.6
0.8
1.0

κ(A)

Su
cc

es
s

ra
te

LU: uf = b
LU: uf = h

bbs
hbs
bhs
hhs

Fig. 4.2. Proportion of matrices for which LU-IR and GMRES-IR variants (including five
meaningful precisions combinations, with uf , ug, up as specified in the legend) converged to double
precision forward error as a function of κ(A). For all variants u = d and ur = q.

ill-conditioned matrices than LU-IR3, showing that they are meaningful not only
theoretically but also in practice.

4.2. Real-life matrices from SuiteSparse. It is also important to check
whether reducing the preconditioner and/or GMRES precisions impacts the num-
ber of iterations required to converge. To answer this question, we use a set of
230 matrices from the SuiteSparse collection. These matrices are all real, square,
and of dimension between 500 and 3000. We compare LU-IR3 with the meaningful
GMRES-IR5 variants over the values uf = b,h, s. Rather than counting the number
of iterations, we count the number of calls to LU triangular solves: this is because in
the case of GMRES-IR5, an extra LU solve is required at the start of each IR step
(external iterations).

For the experiments that use an LU factorization in fp16 arithmetic, we must pay
attention to the narrow range of this arithmetic (see Table 3.1). Many matrices in our
set have entries outside of this range, and so it is essential to address this issue. We
use the diagonal scaling method of [18], which first normalizes every row and column
by its maximum value (preventing overflow), and then scales the matrix by a quantity
λ close to the maximum representable value (to minimize underflow).

One difficulty is that the number of iterations is very sensitive to the choice of the
GMRES stopping criterion τ and the scaling factor λ, and that the optimal choice of
τ and λ is different for each variant and matrix. For the comparison to be as fair as
possible, for each variant and each matrix, we have tested eight different values of τ
(10−10, 10−8, 10−6, 10−4, 10−3, 10−2, 10−1, and 5× 10−1) and five different values of
λ (104, 103, 102, 101, and 100), and taken the values that leads to the lowest number
of iterations. We note in passing that the parameter τ could be taken into account
in the error analysis. Indeed, τ provides a bound on the backward error (3.15) of the

solution of the system Ãdi = si by GMRES, which readily affects the convergence
conditions.

We present in Figure 4.3 performance profiles for uf = b,h, s, which plot the
percentage φ of matrices for which a given variant converges in less than α times the
number of LU solves required by the best variant. We also provide detailed results
on a representative sample of these matrices for the case uf = b in Table 4.1.

These results are in agreement with our theoretical study and with the previous
experiments of section 4.1, and provide a confirmation of the relative robustness of
each variant on a dataset of real-life applications matrices. For example, with uf = b,

17

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

α

ϕ

uf = b

bdq
bdd
bsd
bss
bbd
bbs

LU: uf = b

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

α

ϕ

uf = h

hdq
hdd
hsd
hss
hhd
hhs

LU: uf = h

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

α

ϕ

uf = s

sdq
sdd
ssd
sbd

LU: uf = s

Fig. 4.3. Performance profile of LU-IR3 and GMRES-IR5 variants (with uf , ug, up as specified
in the legend) on 230 SuiteSparse matrices. φ (y-axis) indicates the percentage of matrices for which
a given variant requires less than α (x-axis) times the number of LU solves required by the best
variant.

18

Table 4.1
Number of LU solves on a sample of SuiteSparse matrices for LU-IR3 and GMRES-IR5 variants

with uf = b. κ(A) is the original condition number, κ(As) is the condition number after scaling.
The matrices are sorted by increasing κ(As). A “—” indicates failure to converge.

Name n κ(A) κ(As) LU-IR3 bbs bbd bss bsd bdd bdq

dw256B 512 3.7E+00 1.8E+00 8 24 24 10 10 10 10
gre 512 512 1.6E+02 1.7E+02 16 28 28 17 17 14 14

mahindas 1258 2.1E+13 9.8E+02 12 34 36 14 12 12 12
dw1024 2048 2.1E+03 1.9E+03 18 36 36 20 20 19 19
fs 541 4 541 1.2E+10 6.9E+03 — 48 48 33 35 28 28
rajat12 1879 6.9E+05 8.1E+03 — 94 69 29 29 24 24

sherman1 1000 1.6E+04 9.3E+03 — 78 78 30 26 26 26
watt 2 1856 1.4E+11 3.0E+04 — 522 497 32 32 26 26
bp 600 822 1.5E+06 6.6E+04 — 56 54 23 25 19 19

bwm2000 2000 2.4E+05 2.0E+05 — — — 237 197 148 148
meg1 2904 1.4E+12 3.4E+05 13 28 26 17 17 14 14

lnsp 511 511 3.3E+15 5.8E+05 — 302 268 39 30 23 23
hangGlider 2 1647 1.4E+09 1.2E+06 — 52 56 32 33 31 31

tub1000 1000 1.3E+06 1.3E+06 — — — 354 254 114 114
1138 bus 1138 8.6E+06 2.4E+06 — — — 238 163 83 83
gre 1107 1107 3.2E+07 2.3E+07 — — — 244 185 75 75
rajat19 1157 1.1E+10 1.4E+08 — — — — — 70 69

spaceStation 7 1134 3.9E+11 1.7E+08 — — — — 220 127 127
bcsstk19 817 1.3E+11 1.2E+09 — — — — — 307 209

reorientation 3 2513 1.5E+21 8.9E+11 — — — — — 144 188
fs 760 3 760 9.8E+19 2.6E+12 — — — — — — —
nnc1374 1374 3.7E+14 5.2E+12 — — — — — 85 92

lung1 1650 5.1E+19 1.1E+13 — — — — — 27 27

LU-IR3 only converges for about 35% f the matrices, whereas with GMRES-IR3 (bdq
variant), we are able to process about 95% of the matrices (the 5% remaining being
highly ill-conditioned matrices). Crucially, the new GMRES-IR5 variants (with re-
laxed up and/or ug) are all more robust than LU-IR3, converging for a much larger
percentage of matrices. In particular, on this set of matrices, the bdd variant is as
robust as bdq and requires the same number of LU solves. Therefore, these experi-
ments show that, in practice, we can switch from up = q to up = d with no impact
on the convergence of GMRES-IR.

The other two performance profiles with uf = h and s show similar trends.
Unsurprisingly, as we increase the precision of the factorization, LU-IR3 is able to
converge on a wider range of matrices and so the range of matrices where GMRES-IR
is relevant is narrower. This is especially the case for an fp32 factorization, where
LU-IR3 is able to converge on almost 90% of the matrices. Note that this observation
heavily depends on the dataset: for these matrices, the distribution of the κ(A) is not
uniform and is mainly concentrated between 103 and 106, which explains why LU-IR3
performs well with an fp32 factorization.

A performance comparison of the actual runtime of the variants is outside our
scope, but we can nevertheless extrapolate some performance trends based on Fig-
ure 4.3 and on the assumptions that (1) the LU solves dominate the overall runtime
of the iterative phase of the solver; and (2) a bfloat16 LU solve is twice faster than an
fp32 one, which is itself twice faster than an fp64 one. With this performance model
and considering for example uf = b, we can expect LU-IR3 (which uses bfloat16 LU
solves) to be the fastest method as long as it does not require more than twice the
number of LU solves of a variant with up = S, that is, for about 30% of the matri-

19

ces. Similarly, the bss variant should outperform bdd for over 70% of the matrices,
making it the best variant for about 70 − 30 = 40% of the matrices. Finally, on our
set of matrices, the bdd variant never requires more LU solves than the bdq one
and therefore it should be the best variant for the remaining 30% of the matrices.
An high performance implementation of GMRES-IR5 is necessary to confirm these
predictions, and will be the object of future work.

5. Conclusions. We have addressed the solution of linear systems of equations
by means of iterative refinement in mixed precision. The renewed interest in this
method stems from the trend for computer hardware to support fast low precision
floating-point arithmetic. Our baseline is the work by Carson and Higham [3], who
propose a method, GMRES-IR3, that employs up to three precisions and in which
a preconditioned mixed precision GMRES method is used for solving the correction
equation in order to converge on badly conditioned problems. In its original form, this
method requires the use of a precision higher than the working precision, which can
be expensive, especially when the working precision is double precision. By relaxing
the assumptions on the precision of the operations within the GMRES solver we have
proposed a GMRES-based iterative refinement method with up to five different pre-
cisions in play, which we call GMRES-IR5. We extended the rounding error analysis
of Carson and Higham to cover GMRES-IR5. As a key component of this analysis,
we extended the work of Paige et al. [22] to prove the backward stability of a mixed
precision GMRES method. Based on this result we derived conditions on κ(A) that
guarantee the convergence of GMRES-IR5.

Our results show that GMRES-IR5 can accurately and reliably solve relatively
badly conditioned problems in potentially lower time and memory than GMRES-IR3
thanks to the use of lower precision arithmetic in the GMRES iterations. Although the
combined use of five different precisions results in thousands of different variants, we
provided a list of rules that we used to identify a much smaller set of practical interest;
these include variants for which only an experimental evaluation was available prior
to this work. Finally, we presented a rich experimental analysis of the GMRES-IR5
method on randomly generated matrices as well as matrices from real life applications.
The experimental results are in good agreement with our theoretical analysis and
show that GMRES-IR5 is a robust and versatile method for solving linear systems of
equations.

REFERENCES

[1] A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek, and J. Kurzak, Mixed
precision iterative refinement techniques for the solution of dense linear systems, Interna-
tional Journal of High Performance Computing Applications, 21 (2007), https://doi.org/
10.1177/1094342007084026.

[2] E. Carson and N. J. Higham, A new analysis of iterative refinement and its application to
accurate solution of ill-conditioned sparse linear systems, SIAM J. Sci. Comput., 39 (2017),
pp. A2834–A2856, https://doi.org/10.1137/17M1122918.

[3] E. Carson and N. J. Higham, Accelerating the solution of linear systems by iterative re-
finement in three precisions, SIAM J. Sci. Comput., 40 (2018), pp. A817–A847, https:
//doi.org/10.1137/17M1140819.

[4] E. Carson, N. J. Higham, and S. Pranesh, Three-precision GMRES-based iterative refine-
ment for least squares problems, SIAM J. Sci. Comput., 42 (2020), pp. A4063–A4083,
https://doi.org/10.1137/20m1316822.

[5] M. P. Connolly, N. J. Higham, and T. Mary, Stochastic rounding and its probabilistic
backward error analysis, SIAM J. Sci. Comput., 43 (2021), pp. A566–A585, https://doi.
org/10.1137/20m1334796.

20

https://doi.org/10.1177/1094342007084026
https://doi.org/10.1177/1094342007084026
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/20m1316822
https://doi.org/10.1137/20m1334796
https://doi.org/10.1137/20m1334796

[6] cuSOLVER: Direct Linear Solvers on NVIDIA GPUs. https://developer.nvidia.com/cusolver.
[7] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans.

Math. Software, 38 (2011), pp. 1:1–1:25, https://doi.org/10.1145/2049662.2049663.
[8] A. Haidar, A. Abdelfattah, M. Zounon, P. Wu, S. Pranesh, S. Tomov, and J. Don-

garra, The design of fast and energy-efficient linear solvers: On the potential of half-
precision arithmetic and iterative refinement techniques, in Computational Science—
ICCS 2018, Y. Shi, H. Fu, Y. Tian, V. V. Krzhizhanovskaya, M. H. Lees, J. Don-
garra, and P. M. A. Sloot, eds., Springer, Cham, Switzerland, 2018, pp. 586–600,
https://doi.org/10.1007/978-3-319-93698-7 45.

[9] A. Haidar, H. Bayraktar, S. Tomov, J. Dongarra, and N. J. Higham, Mixed-precision
iterative refinement using tensor cores on GPUs to accelerate solution of linear systems,
Proc. Roy. Soc. London Ser. A, 476 (2020), p. 20200110, https://doi.org/10.1098/rspa.
2020.0110.

[10] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU tensor cores for fast
FP16 arithmetic to speed up mixed-precision iterative refinement solvers, in Proceedings
of the International Conference for High Performance Computing, Networking, Storage,
and Analysis, SC18 (Dallas, TX), Piscataway, NJ, USA, 2018, pp. 47:1–47:11, https://doi.
org/10.1109/SC.2018.00050.

[11] D. J. Higham, N. J. Higham, and S. Pranesh, Random matrices generating large growth
in LU factorization with pivoting, SIAM J. Matrix Anal. Appl., 42 (2021), p. 185–201,
https://doi.org/10.1137/20M1338149.

[12] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, second ed., 2002, https://doi.org/10.1137/
1.9780898718027.

[13] N. J. Higham, How fast is quadruple precision arithmetic? https://nhigham.com/2017/08/
31/how-fast-is-quadruple-precision-arithmetic/, June 2016.

[14] N. J. Higham, Error analysis for standard and GMRES-based iterative refinement in two and
three-precisions, MIMS EPrint 2019.19, Manchester Institute for Mathematical Sciences,
The University of Manchester, UK, Nov. 2019, http://eprints.maths.manchester.ac.uk/
2735/.

[15] N. J. Higham and T. Mary, A new approach to probabilistic rounding error analysis, SIAM
J. Sci. Comput., 41 (2019), pp. A2815–A2835, https://doi.org/10.1137/18M1226312.

[16] N. J. Higham and T. Mary, Sharper probabilistic backward error analysis for basic linear
algebra kernels with random data, SIAM J. Sci. Comput., 42 (2020), pp. A3427–A3446,
https://doi.org/10.1137/20M1314355.

[17] N. J. Higham and S. Pranesh, Exploiting lower precision arithmetic in solving symmetric
positive definite linear systems and least squares problems, SIAM J. Sci. Comput., 43
(2021), pp. A258–A277, https://doi.org/10.1137/19M1298263.

[18] N. J. Higham, S. Pranesh, and M. Zounon, Squeezing a matrix into half precision, with an
application to solving linear systems, SIAM J. Sci. Comput., 41 (2019), pp. A2536–A2551,
https://doi.org/10.1137/18M1229511.

[19] Matrix algebra on GPU and multicore architectures (MAGMA). http://icl.cs.utk.edu/magma/.
[20] C. B. Moler, Iterative refinement in floating point, J. ACM, 14 (1967), p. 316–321, https:

//doi.org/10.1145/321386.321394, https://doi.org/10.1145/321386.321394.
[21] T. Ogita, Accurate matrix factorization: Inverse LU and inverse QR factorizations, SIAM J.

Matrix Anal. Appl., 31 (2010), pp. 2477–2497, https://doi.org/10.1137/090754376.
[22] C. C. Paige, M. Rozložńık, and Z. Strakoš, Modified Gram-Schmidt (MGS), least squares,

and backward stability of MGS-GMRES, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 264–
284, https://doi.org/10.1137/050630416.

[23] S. M. Rump, Inversion of extremely ill-conditioned matrices in floating-point, Japan Journal
of Industrial and Applied Mathematics, 26 (2009), pp. 249–277.

[24] J. H. Wilkinson, Rounding Errors in Algebraic Processes, Notes on Applied Science No. 32,
Her Majesty’s Stationery Office, London, 1963. Also published by Prentice-Hall, Englewood
Cliffs, NJ, USA. Reprinted by Dover, New York, 1994.

21

https://developer.nvidia.com/cusolver
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/978-3-319-93698-7_45
https://doi.org/10.1098/rspa.2020.0110
https://doi.org/10.1098/rspa.2020.0110
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1137/20M1338149
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/1.9780898718027
https://nhigham.com/2017/08/31/how-fast-is-quadruple-precision-arithmetic/
https://nhigham.com/2017/08/31/how-fast-is-quadruple-precision-arithmetic/
http://eprints.maths.manchester.ac.uk/2735/
http://eprints.maths.manchester.ac.uk/2735/
https://doi.org/10.1137/18M1226312
https://doi.org/10.1137/20M1314355
https://doi.org/10.1137/19M1298263
https://doi.org/10.1137/18M1229511
http://icl.cs.utk.edu/magma/
https://doi.org/10.1145/321386.321394
https://doi.org/10.1145/321386.321394
https://doi.org/10.1145/321386.321394
https://doi.org/10.1137/090754376
https://doi.org/10.1137/050630416

	Introduction
	Preliminaries on LU-IR3 and GMRES-IR3
	Error analysis of GMRES-IR5
	Error analysis of MGS-GMRES with arbitrary matrix–vector products
	Error analysis of GMRES-IR5 with general ug and up precisions
	Convergence conditions on (A)
	Identifying meaningful combinations of precisions

	Numerical experiments
	Random dense matrices
	Real-life matrices from SuiteSparse

	Conclusions
	References

