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Sparse direct solvers

A X = B, A large and sparse, B dense or sparse

Sparse direct methods : A = LU (LDLT)

on multiprocessor architectures
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Sparse direct solvers

Discretization of a physical problem
(e.g. Code_Aster, finite elements)

=⇒ Solution of sparse systems
A X = B

Often a significant part of simulation cost

Main steps:
- Preprocess A and B
- Factor A = LU (LDLT if A symmetric)

- Triangular solve: LY = B, then UX = Y

Preferred to iterative methods for their robustness, accuracy, and
capacity to solve efficiently multiple/successive right-hand sides

4/31 78th EAGE Conference, Vienna 2016



Sparse direct solvers: black boxes?

Matrix properties and preprocessing influence:
◦ Size of L,U and memory
◦ Operation count and time
◦ Numerical accuracy

Original (A =lhr01) Preprocessed matrix (A′(lhr01))
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Multifrontal method [Duff Reid ’83]
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3D Full-Wave Inversion complexity

• Assume:
◦ n = N3 degrees of freedom,
◦ N2 seismic sources
◦ N time steps

• Time domain FWI scales to O(N6) (Plessix, 2007)
• Frequency domain FWI…

◦ Factorization of one matrix (one frequency) scales to O(N6)
◦ Size of LU factors scales to O(N4) and N2 sources/RHS

=⇒ Solution scales to O(N6)

…if only few discrete frequencies required (case of
wide-azimuth long-offset (OBC/OBN) surveys) then
frequency domain FWI scales to O(N6)
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Questions addressed in this talk

• How to reduce the complexity of direct methods?
(i.e., in O(Nα), with α < 6)

• How to translate complexity reduction into a performance gain
in a parallel setting (shared and/or distributed)?

• How to efficiently process multiple sparse right-hand sides?
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Application specific solvers: BLR feature

• Applicative context: discretized PDEs, integral equations
• BLR factorization computes an approximation A = LεUε at
accuracy ε controlled by the user

• Operations and factor size reduction

Work supported by PhD thesis: C. Weisbecker (2010-2013, supported by

EDF) and T. Mary (2014-ongoing)

Main features of Block Low Rank (BLR ) format

• Algebraic robust solver; flat and simple format
• Compatibility with numerical pivoting
• Variants of BLR can reach complexity as low as non-fully
structured H format

⇒ Many representations: Recursive H,H2 [Bebendof, Börm, Hackbush,
Grasedyck,…], HSS/SSS [Chandrasekaran, Dewilde, Gu, Li, Xia,…], BLR …



H and BLR matrices

H-matrix BLR matrix

A block B represents the interaction between two subdomains. If
they have a small diameter and are far away, their interaction is
weak ⇒ rank is low.

B̃ = XYT such that rank(B̃) = kε and ∥B− B̃∥ ≤ ε

If kε ≪ size(B) ⇒ memory and flops can be reduced with a
controlled loss of accuracy (≤ ε)
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Block Low Rank multifrontal solver

⇒
Elimination tree

B

⇒
Singular value decomposition (SVD) of each
block B ⇒ B = X1S1Y1 + X2S2Y2
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Block Low Rank multifrontal solver

⇒
Elimination tree

B

⇒
rank k(ε): B = X1S1Y1 +X2S2Y2
∥E∥2 = ∥X2S2Y2∥2 = σk+1 ≤ ε
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Application to frequency-domain seismic modeling
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from left to right: FR, ε = 10−5 , ε = 10−4 , ε = 10−3 (overthrust model)

ops memory

ε fqcy factors active mem.

(10−5) 2 Hz 41.8 % 61.8 % 32.3%
4 Hz 27.4 % 50.0 % 24.4%
8 Hz 21.8 % 41.6 % 23.9%

(10−4) 2 Hz 32.9 % 53.4 % 23.9%
4 Hz 20.0 % 42.2 % 21.7%
8 Hz 15.2 % 28.9 % 19.4%

% : percentage of standard (full-rank) sparse solver, [SEG’13 proceedings]
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Complexity of multifrontal BLR factorization

Context of the study:
• Extended theoretical work on H-matrices by Hackbush and

Bebendorf (2003) and Bebendorf (2005, 2007) to the BLR case
▶ Amestoy, Buttari, L’Excellent and Mary. On the Complexity of the Block
Low-Rank Multifrontal Factorization, sumitted to SIAM SISC, 2016.

• Discretized elliptic PDEs on a cubic domain of size N (i.e., n = N3)

• Two BLR variants:
◦ BLR: original version (Phd of C. Weisbecker (2013))
◦ BLR+: new variants, more efficient and with lower complexity

• Two families of equations:
◦ r = O(1): rank of off-diagonal blocks bound by a constant.

Example: the Poisson equation
◦ r = O(N): rank of off-diagonal blocks bound by N.

Example: the Helmholtz equation
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Complexity of multifrontal BLR factorization

operations (OPC) factor size (NNZ)

r = O(1) r = O(N) r = O(1) r = O(N)

FR O(N6) O(N6) O(N4) O(N4)

BLR O(N5) O(N5.5) O(N3 logN) O(N3.5 logN)
BLR+ O(N4) O(N5) O(N3 logN) O(N3.5 logN)

H O(N4) O(N5) O(N3) O(N3.5)
H (fully struct.) O(N3) O(N4) O(N3) O(N3.5)

in the 3D case (similar analysis possible for 2D)

Important properties: with both r = O(1) or r = O(N)

• Complexity of the orginal BLR has a lower exponent than the full-rank

• Variants improves complexity, (BLR+) being not so far from the H-case
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Experimental MF flop complexity: Helmholtz (ε = 10−4)
Nested Dissection

ordering (geometric)

Mesh size N
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fit: 12 N 6.03

BLR

fit: 32 N 5.53

BLR+

fit: 63 N 5.27

METIS ordering
(purely algebraic)
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fit: 32 N 5.42

• Good agreement with theoretical complexity
(O(N6), O(N5.5), and O(N5))

• Purely algebraic approach (METIS) achieves comparable
complexity to geometric (ND)
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Experimental Setting

1. MUMPS sparse solver used for all the experiments
(http://mumps-solver.org/)

2. Distributed memory experiments are done on the eos
supercomputer at the CALMIP center of Toulouse (grant
2014-P0989):
◦ Two Intel(r) 10-cores Ivy Bridge @ 2.8 GHz
◦ Peak per core is 22.4 GF/s (real, double precision)
◦ 64 GB memory per node
◦ Infiniband FDR interconnect

3. Shared memory experiments are done on grunch at the LIP
laboratory of Lyon:
◦ Two Intel(r) 14-cores Haswell @ 2.3 GHz
◦ Peak per core is 36.8 GF/s (real, double precision)
◦ Total memory is 768 GB
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Performance on seismic modeling on 640 cores
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3D seismic Modeling

North Sea case study

(Simple) Complex matrix

Helmholtz equation

SEISCOPE project

Matrix from 3D FWI for seismic modeling (credits: SEISCOPE)

matrix n nnz
MUMPS (Full-Rank) BLR∗

time sp-up∗∗ %peak time

10Hz/35m 17M 446M 1132s 295 35% 324s
∗ε = 10−3; ∗∗estimated speedup on 64× 10 cores
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Performance on 3D EM application on 900 cores
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3D Electromagnetic Modeling

(Double) Complex matrix

Matrix D4 requires:

3 TBytes of storage, 3 PetaFlops

Matrix from 3D EM problems (credits: EMGS)

matrix n nnz
MUMPS-(Full-Rank) BLR∗

time sp-up∗∗ %peak time

D4 30M 384M 2221s 373 33% 566s
∗ε = 10−7; ∗∗estimated speedup on 90× 10 cores
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Gains due to BLR (distributed, MPI+OpenMP)

Poisson (ε = 10−6)
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Helmholtz (ε = 10−4)
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• gains increase with problem size
• gain in flops does not fully translate into gain in time
• multithreaded efficiency lower with BLR than with Full-Rank
(FR)

• same remarks apply to Helmoltz, to a lesser extent
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Gains due to BLR (distributed, MPI+OpenMP)

Poisson (ε = 10−6)
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• gains increase with problem size
• gain in flops does not fully translate into gain in time
• multithreaded efficiency lower with BLR than with Full-Rank
(FR)

• same remarks apply to Helmoltz, to a lesser extent
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Performance analysis (shared memory, 28 threads)

%ci

%nci

Computationally

Intensive

Not Computationally

Intensive

1 thread

28 threads 28 threads
+ L0 OMP∗

time %nci

time %nci time %nci

FR 62660s ( 1) 1%

3805s (1) 9% 3430s ( 1) 0%
BLR 7823s ( 8) 11% 1356s (3) 26% 1160s ( 3) 14%
BLR+ 2464s (25) 38% 557s (7) 68% 310s (11) 42%

3D Poisson; n = 2563 (16M); ε = 10−6 ;

∗PhD W. Sid Lakhdar (2014)
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Improved multithreading and BLR variants (shared memory, 28
threads)

Improved performance relies on new BLR variants and improved multithreading
based on Sid-Lakhdar’s PhD (2011-2014) so called L0 OMP thread

time in seconds
application matrix L0 OMPa FR BLRb BLR+c

E3
no 451 265 184

Electro- yes 393 199 114
magnetism†

S3
no 585 324 223
yes 519 239 136

perf008d
no 249 177 137

Structural yes 208 140∗ 100∗

mechanics‡
perf008ar

no 831 574 331
yes 787 531∗ 287∗

∗estimated (ongoing work)

† Credits: EMGS (ε = 10−7)
‡ Credits: Code_Aster (ε = 10−9)

a W. Sid-Lakhdar’s PhD (2011-2014)
b C. Weisbecker’s PhD (2010-2013)
c T. Mary’s PhD (2014-ongoing)

24/31 78th EAGE Conference, Vienna 2016



Outline

Sparse direct solver - introduction

Block Low-rank to reduce complexity of direct methods?

Complexity of Block Low-Rank factorization

Performance analysis

Exploiting large sparse RHS

Concluding remarks

25/31 78th EAGE Conference, Vienna 2016



Exploiting sparsity of right-hand sides

Context

• LUx = b,Ly = b,Ux = y
• Sparse y→ not all of the tree/factors need be used [Gilbert,1994]
(similar property for partial solution)

• Typically found in electromagnetism, geophysics, explicit Schur,
refactoring …



Tree pruning to minimize flops

• Group columns ”close in the tree” to limit flops

• Questions:
◦ Columns ”close in the tree”?
◦ How to expose parallelism?
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Exploiting tree parallelism and sparsity of RHS

• Need for grouping / permuting columns:
◦ ”Close in the tree”? dependent on the application and on the tree

structure
◦ Combinatorial problem → similarity with computing entries in A−1

• On going work, Phd thesis of Gilles Moreau (ENS-Lyon) with
applications from seismic modeling and electromagnetism
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Concluding remarks

3D Frequency domain Full-Wave Inversion

• Theoretical gains: (not yet fully exploited)
◦ Factorization O(N6) ⇒ O(N5)
◦ Solution Phase (N2 sources/RHS) O(N6) ⇒ O(N5.5logN)

• North Sea case study (680 cores):
◦ BLR (ε = 10−4) accelerates factorization by a factor of 3

Full FWI : 49hr ⇒ 36hr (MUMPS-SEISCOPE research work submitted to Geophysics) [2015]
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Perspectives for further improvement:
◦ Complexity: BLR+ and BLR solution phase
◦ Exploit sparsity of multiple RHS
◦ Improve efficiency (MPI and multithreading)
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? Questions?
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