Asymptotic Complexity of Low-rank Sparse Direct Solvers with Sparse Right-hand Sides

Theo Mary, CNRS Joint work with P. Amestoy, A. Buttari, J.-Y. L'Excellent, and G. Moreau

SIAM CSC, 2020

Introduction

Systems of linear equations:

Ax = b, where A is sparse. In direct methods, 3 phases:

- analysis: nested dissection;
- factorization: $A \rightarrow LU$;
- solve: Ly = b and Ux = y.

	2D (N × N)	3D (N × N × N)
\mathcal{C}_{fac}	$\Theta(N^3)$	$\Theta(N^6)$
\mathcal{C}_{col} (per RHS)	$\Theta(N^2 \log N)$	$\Theta(N^4)$

Complexities on regular 2D/3D problems (N is the grid size)

Factorization is usually the most expensive part, however...

Applications with many RHS

Several important applications possess **many RHS**, e.g., exploration geophysics: FWI (Helmholtz), CSEM (Maxwell)

In 3D domains,
$$\Theta(N^2)$$
 sources
 $\Rightarrow C_{sol} = \Theta(N^4) \times \Theta(N^2) = \Theta(N^6) \equiv C_{fac}$

Practical AX = B example, matrix S21 (CSEM application):

n	n _{rhs}	nnz(A)/n	$nnz(B)/n_{rhs}$	\mathcal{T}_{fac}	\mathcal{T}_{sol}
20.6 M	12340	13	9.5	10825	15029
Run on EOS computer (90 MPI)					

To tackle large scale problems,

crucial to exploit **all types** of sparsity of the problem

Exploiting the sparsity of A: nested dissection

- Factorization (A = LU): bottom up traversal, dense factorization at each node
- Forward solve (Ly = b): bottom up traversal, dense solve
- Backward solve (Ux = y): top down traversal, dense solve

Exploiting the data sparsity of separators

A block *B* represents the interaction between two subdomains. Far away subdomains \Rightarrow block of low numerical rank:

$$\begin{array}{ccc} B &\approx & X & Y^{T} \\ b \times b & b \times r(\varepsilon) & r(\varepsilon) \times b \end{array}$$

with $r(\varepsilon) \ll b$ such that $||B - XY^T|| \leq \varepsilon$

For all formats, the gain in flops $\mathcal{G}_{\text{flops}}$ is asymptotically greater than the gain in space $\mathcal{G}_{\text{space}}$ (to be precise $\mathcal{G}_{\text{flops}} = \mathcal{G}_{\text{space}}^2$)

Complexity of sparse low-rank direct solvers

Sparsity and data sparsity can be combined by using low-rank formats to approximate the dense separators

2D regular problem				
$\mathcal{C}_{\sf fac}$ $\mathcal{C}_{\sf sol}$ (per RHS				
FR	$\Theta(N^3)$	$\Theta(N^2 \log N)$		
BLR	$\Theta(N^2 \log N)$	$\Theta(N^2)$		
${\cal H}$, MBLR	$\Theta(N^2)$	$\Theta(N^2)$		

Complexity of sparse low-rank direct solvers

Sparsity and data sparsity can be combined by using low-rank formats to approximate the dense separators

	\mathcal{C}_{fac}	\mathcal{C}_{sol} (per RHS)				
FR	$\Theta(N^6)$	$\Theta(N^4)$				
BLR	$\Theta(N^4)$	$\Theta(N^3 \log N)$				
MBLR ($\ell = 2$)	$\Theta(N^{10/3})$	$\Theta(N^3)$				
$MBLR\ (\ell=3)$	$\Theta(N^3 \log N)$	$\Theta(N^3)$				
${\cal H}$, MBLR ($\ell > 3$)	$\Theta(N^3)$	$\Theta(N^3)$				

3D regular problem

Complexity of sparse low-rank direct solvers

Sparsity and data sparsity can be combined by using low-rank formats to approximate the dense separators

eb regular problem						
	\mathcal{C}_{fac}	\mathcal{C}_{sol} (per RHS)				
FR	$\Theta(N^6)$	$\Theta(N^4)$				
BLR	$\Theta(N^4)$	$\Theta(N^3 \log N)$				
MBLR ($\ell = 2$)	$\Theta(N^{10/3})$	$\Theta(N^3)$				
MBLR ($\ell = 3$)	$\Theta(N^3 \log N)$	$\Theta(N^3)$				
\mathcal{H} , MBLR ($\ell > 3$)	$\Theta(N^3)$	$\Theta(N^3)$				

3D regular problem

Back to the CSEM example (S21 matrix):

	\mathcal{T}_{fac}	\mathcal{T}_{sol}
FR	10825	15029
BLR	1568	7046

\Rightarrow With data sparsity and many RHS, the solve phase becomes asymptotically dominant!

LR Sparse Solvers with Sparse RHS

Exploiting the sparsity of B (the RHS)

Gilbert and Liu

- Forward solve: nodes associated with RHS zeros can be pruned ⇒ only need to traverse branches from RHS nonzeros to root
- If X is also sparse (only part of the solution needed), then same thing applies to backward solve

Complexity reduction achieved by sparsity and data sparsity of A well known BUT reduction from sparsity of B never analyzed! ⇒ What asymptotic gain can we obtain by exploiting sparse RHS?

RHS sparsity model

Consider a RHS with nnz nonzeros:

 If nnz = Θ(1), then the forward solve amounts to traverse Θ(1) branches ⇒ its complexity is that of the critical path

The gain from exploiting RHS sparsity then is

$$\mathcal{G}_{spRHS}(N) = rac{\mathcal{C}_{fwd}(N)}{\mathcal{C}_{fwd}^{c}(N)}$$

where

- $C_{fwd}(N)$ is the complexity of the forward solve
- $\circ \ \mathcal{C}^{\mathsf{c}}_{\mathsf{fwd}}(N)$ is the complexity of its critical path
- Applications where nnz = $\Theta(1)$ are actually very common (cf. our CSEM example, FWI, ...)
- \Rightarrow Let us first assume $nnz = \Theta(1)$ (will generalize later)

Complexity analysis

Consider a separator tree with *L* levels and n_{ℓ} separators of order m_{ℓ} at level ℓ . Then

$$\begin{split} \mathcal{C}_{\mathsf{fwd}}(N) &= \sum_{\ell}^{L} n_{\ell} \times \mathcal{C}_{\mathsf{dense}}(m_{\ell}) \\ \mathcal{C}_{\mathsf{fwd}}^{c}(N) &= \sum_{\ell}^{L} \varkappa \times \mathcal{C}_{\mathsf{dense}}(m_{\ell}) \end{split}$$

where $\mathcal{C}_{dense}(m_{\ell}) = \Theta(m_{\ell}^{\alpha})$ is the complexity of the dense solve.

Complexity analysis

Consider a separator tree with *L* levels and n_{ℓ} separators of order m_{ℓ} at level ℓ . Then

$$\begin{split} \mathcal{C}_{\text{fwd}}(N) &= \sum_{\ell}^{L} n_{\ell} \times \mathcal{C}_{\text{dense}}(m_{\ell}) \\ \mathcal{C}_{\text{fwd}}^{c}(N) &= \sum_{\ell}^{L} \varkappa \times \mathcal{C}_{\text{dense}}(m_{\ell}) \end{split}$$

where $C_{dense}(m_{\ell}) = \Theta(m_{\ell}^{\alpha})$ is the complexity of the dense solve.

In the 2D case (with cross separators), $L=\log_2 N,$ $n\ell=4^\ell,$ and $m_\ell=\Theta(N/2^\ell)$

Complexity analysis, cont'd

$$\begin{split} \mathcal{C}_{\mathsf{fwd}}(N) &= \sum_{\ell=0}^{\log_2 N} \Theta(4^\ell \times (N/2^\ell)^\alpha) = \Theta(N^\alpha \sum_{\ell=0}^{\log_2 N} 2^{(2-\alpha)\ell}) \\ &= \begin{cases} \Theta(N^2 \log N) & \text{if } \alpha = 2\\ \Theta(N^\alpha) \times \frac{2^{(2-\alpha)\log_2 N} - 1}{2^{2-\alpha} - 1} = \Theta(N^2) & \text{if } \alpha < 2 \end{cases} \end{split}$$

Complexity analysis, cont'd

$$\begin{split} \mathcal{C}_{\mathsf{fwd}}(N) &= \sum_{\ell=0}^{\log_2 N} \Theta(4^\ell \times (N/2^\ell)^\alpha) = \Theta(N^\alpha \sum_{\ell=0}^{\log_2 N} 2^{(2-\alpha)\ell}) \\ &= \begin{cases} \Theta(N^2 \log N) & \text{if } \alpha = 2\\ \Theta(N^\alpha) \times \frac{2^{(2-\alpha)\log_2 N} - 1}{2^{2-\alpha} - 1} = \Theta(N^2) & \text{if } \alpha < 2 \end{cases} \end{split}$$

$$\begin{split} \mathcal{C}_{\mathsf{fwd}}^c(N) &= \sum_{\ell=0}^{\log_2 N} \Theta(\swarrow \times (N/2^\ell)^\alpha) = \Theta(N^\alpha \sum_{\ell=0}^{\log_2 N} 2^{-\alpha\ell}) \\ &= \Theta(N^\alpha) \times \underbrace{\frac{1 - 2^{-\alpha \log_2 N}}{1 - 2^{-\alpha}}}_{\Theta(1)} = \Theta(N^\alpha) \end{split}$$

Complexity analysis, cont'd

$$\begin{split} \mathcal{C}_{\mathsf{fwd}}(N) &= \sum_{\ell=0}^{\log_2 N} \Theta(4^\ell \times (N/2^\ell)^\alpha) = \Theta(N^\alpha \sum_{\ell=0}^{\log_2 N} 2^{(2-\alpha)\ell}) \\ &= \begin{cases} \Theta(N^2 \log N) & \text{if } \alpha = 2\\ \Theta(N^\alpha) \times \frac{2^{(2-\alpha)\log_2 N} - 1}{2^{2-\alpha} - 1} = \Theta(N^2) & \text{if } \alpha < 2 \end{cases} \end{split}$$

$$\begin{split} \mathcal{C}_{\mathsf{fwd}}^c(N) &= \sum_{\ell=0}^{\log_2 N} \Theta(\swarrow \times (N/2^\ell)^\alpha) = \Theta(N^\alpha \sum_{\ell=0}^{\log_2 N} 2^{-\alpha\ell}) \\ &= \Theta(N^\alpha) \times \underbrace{\frac{1 - 2^{-\alpha \log_2 N}}{1 - 2^{-\alpha}}}_{\Theta(1)} = \Theta(N^\alpha) \end{split}$$

Conclusion: $\mathcal{G}_{\text{spRHS}}^{2D}(N) = \begin{cases} \Theta(\log N) & \text{if } \alpha = 2 \text{ (FR)} \\ \Theta(N^{2-\alpha}) & \text{if } \alpha < 2 \text{ (LR)} \end{cases}$

LR Sparse Solvers with Sparse RHS

Complexity bounds and interpretation

Same applies for 3D problems.

	$\mathcal{G}^{2D}_{\mathrm{spRHS}}(N)$	$\mathcal{G}^{3D}_{\mathrm{spRHS}}(N)$
FR ($\alpha = 2$)	$\Theta(\log N)$	$\Theta(1)$
BLR ($\alpha = 1.5$)	$\Theta(N^{\frac{1}{2}})$	$\Theta(\log N)$
MBLR ($\alpha = \frac{\ell+2}{\ell+1}$)	$\Theta(N^{\frac{\ell}{\ell+1}})$	$\Theta(N^{\frac{\ell-1}{\ell+1}})$
Hierarchical ($\alpha = 1$)	$\Theta(N)$	$\Theta(N)$

Asymptotic value of $\mathcal{G}_{spRHS}(N)$ increases as α decreases \Leftrightarrow

Gain from exploiting RHS sparsity increases with data sparsity

$$rac{\mathcal{C}_{LR}}{\mathcal{C}_{LR+spRHS}} \gg rac{\mathcal{C}_{FR}}{\mathcal{C}_{FR+spRHS}}$$

LR Sparse Solvers with Sparse RHS

Same applies for 3D problems.

	$\left \ \mathcal{G}^{2D}_{\mathrm{spRHS}}(N) \right.$	$\mathcal{G}^{3D}_{\mathrm{spRHS}}(N)$
FR ($\alpha = 2$)	$\Theta(\log N)$	$\Theta(1)$
BLR ($lpha=1.5$)	$\Theta(N^{\frac{1}{2}})$	$\Theta(\log N)$
MBLR ($\alpha = \frac{\ell+2}{\ell+1}$)	$\Theta(N^{\frac{\ell}{\ell+1}})$	$\Theta(N^{\frac{\ell-1}{\ell+1}})$
Hierarchical ($\alpha = 1$)	$\Theta(N)$	$\Theta(N)$

Asymptotic value of $\mathcal{G}_{\text{spRHS}}(N)$ increases as α decreases \Leftrightarrow

Gain from exploiting RHS sparsity increases with data sparsity

$$\frac{\mathcal{C}_{LR}}{\mathcal{C}_{LR+spRHS}} \gg \frac{\mathcal{C}_{FR}}{\mathcal{C}_{FR+spRHS}} \quad \Leftrightarrow \quad \frac{\mathcal{C}_{FR+spRHS}}{\mathcal{C}_{LR+spRHS}} \gg \frac{\mathcal{C}_{FR}}{\mathcal{C}_{LR}}$$

LR Sparse Solvers with Sparse RHS

Same applies for 3D problems.

	$\mathcal{G}^{2D}_{\mathrm{spRHS}}(N)$	$\mathcal{G}^{3D}_{\mathrm{spRHS}}(N)$
FR ($\alpha = 2$)	$\Theta(\log N)$	$\Theta(1)$
BLR ($lpha=1.5$)	$\Theta(N^{\frac{1}{2}})$	$\Theta(\log N)$
MBLR ($\alpha = \frac{\ell+2}{\ell+1}$)	$\Theta(N^{\frac{\ell}{\ell+1}})$	$\Theta(N^{\frac{\ell-1}{\ell+1}})$
Hierarchical ($\alpha = 1$)	$\Theta(N)$	$\Theta(N)$

Asymptotic value of $\mathcal{G}_{spRHS}(N)$ increases as α decreases \Leftrightarrow Gain from exploiting RHS sparsity increases with data sparsity \Leftrightarrow Gain from exploiting data sparsity increases with RHS sparsity

$$\frac{\mathcal{C}_{LR}}{\mathcal{C}_{LR+spRHS}} \gg \frac{\mathcal{C}_{FR}}{\mathcal{C}_{FR+spRHS}} \quad \Leftrightarrow \quad \frac{\mathcal{C}_{FR+spRHS}}{\mathcal{C}_{LR+spRHS}} \gg \frac{\mathcal{C}_{FR}}{\mathcal{C}_{LR}}$$

Generalization to RHS with nnz(B) not in $\Theta(1)$

If nnz(B) is not in $\Theta(1)$, the complexity of the forward solve depends on the distribution of the nonzeros in the tree:

Generalization to RHS with nnz(B) not in $\Theta(1)$

If nnz(B) is not in $\Theta(1)$, the complexity of the forward solve depends on the distribution of the nonzeros in the tree:

• Spread nonzeros: maximizes total flops for a fixed nnz. For $\alpha < 2$, $\mathcal{G}_{\text{spRHS}}(N, \alpha, \text{nnz}) = \Theta\left(\frac{\mathcal{G}_{\text{spRHS}}(N, \alpha, 1)}{\text{nnz}^{\alpha/2-1}}\right) \Rightarrow$ gain decreases when nnz increases, but nonconstant $\mathcal{G}_{\text{spRHS}}$ is maintained as long as nnz = $o(N^2)$ (2D) or nnz = $o(N^3)$

Generalization to RHS with nnz(B) not in $\Theta(1)$

If nnz(B) is not in $\Theta(1)$, the complexity of the forward solve depends on the distribution of the nonzeros in the tree:

- Spread nonzeros: maximizes total flops for a fixed nnz. For $\alpha < 2$, $\mathcal{G}_{\text{spRHS}}(N, \alpha, \text{nnz}) = \Theta\left(\frac{\mathcal{G}_{\text{spRHS}}(N, \alpha, 1)}{\text{nnz}^{\alpha/2-1}}\right) \Rightarrow$ gain decreases when nnz increases, but nonconstant $\mathcal{G}_{\text{spRHS}}$ is maintained as long as nnz = $o(N^2)$ (2D) or nnz = $o(N^3)$
- Clustered nonzeros: more favourable case, and more realistic of typical applications where sources are localized in the domain. $\mathcal{G}_{\text{spRHS}}(N, \alpha, \text{nnz}) = \Theta(\mathcal{G}_{\text{spRHS}}(N, \alpha, 1))$ is maintained as long as nnz = $O(N^{\alpha})$ (2D) or nnz = $O(N^{2\alpha})$ (3D)

Results on synthetic problems

Poisson equation, one RHS with one nonzero (placed on a leaf)

2D Poisson problem

3D Poisson problem

	$ \mathcal{G}^{2D}_{spRHS} $ FR	BLR	FR g	G ^{3D} spRHS BLR
Theoretical Experimental	$ \begin{array}{c} \Theta(\log N) \\ \Theta(N^{0.3} \log N) \end{array} $	$\begin{array}{l} \Theta(N^{0.5}) \\ \Theta(N^{1.2}) \end{array}$	$\begin{array}{c} \Theta(1) \\ \Theta(N^{0.1}) \end{array}$	$ \begin{array}{c} \Theta(\log N) \\ \Theta(N^{0.6} \log N) \end{array} \end{array} $

Results on real-life problems (CSEM application)

Flop results ($\times 10^{12}$)

	Small problem (2.9M)			Large	problem	(17.4M)
	FR BLR \mathcal{G}_{BLR}			FR	BLR	\mathcal{G}_{BLR}
Dense RHS	70	35	2.0	777	405	1.9
Sparse RHS	8	3	2.6	73	4	18.7
\mathcal{G}_{spRHS}	8.7	11.1		10.7	103.8	

$\Rightarrow G_{spRHS}$ is higher with BLR and G_{BLR} is higher with sparse RHS (and trend becomes more and more visible as problem gets larger)

Results on real-life problems (CSEM application)

Flop results ($\times 10^{12}$)

	Smal FR	l probler BLR	m (2.9M) \mathcal{G}_{BLR}	Large FR	problem BLR	(17.4M) \mathcal{G}_{BLR}
Dense RHS Sparse RHS	70 8	35 3	2.0 2.6	777 73	405 4	1.9 18.7
\mathcal{G}_{spRHS}	8.7	11.1		10.7	103.8	
Time results (EOS computer, 90 MPI)						
	Small FR	problen BLR	n (2.9M) \mathcal{G}_{BLR}	Large FR	problem (BLR	17.4M) \mathcal{G}_{BLR}
Dense RHS Sparse RHS \mathcal{G}_{spRHS}	377 105 <u>3.6</u>	273 76 <u>3.6</u>	1.4 1.4	5449 845 <u>6.4</u>	3097 386 <u>8.0</u>	1.8 2.2

 $\Rightarrow \mathcal{G}_{spRHS}$ is higher with BLR and \mathcal{G}_{BLR} is higher with sparse RHS (and trend becomes more and more visible as problem gets larger) Time results follow same trend as flops, but less pronounced

Results on real-life problems (CSEM application)

Flop results ($\times 10^{12}$)

	Smal FR	l probler BLR	m (2.9M) \mathcal{G}_{BLR}	Large FR	problem BLR	(17.4M) \mathcal{G}_{BLR}
Dense RHS Sparse RHS	70	35	2.0 2.6	777	405 4	1.9 187
\mathcal{G}_{spRHS}	8.7	11.1	22.5	10.7	103.8	199.2
Time results (EOS computer, 90 MPI)						
	Small problem (2.9M) FR BLR \mathcal{G}_{BLR}			Large problem (17.4M) FR BLR \mathcal{G}_{BLR}		
Dense RHS Sparse RHS \mathcal{G}_{spRHS}	377 105 <u>3.6</u>	273 76 <u>3.6</u>	1.4 1.4 5.0	5449 845 <u>6.4</u>	3097 386 <u>8.0</u>	1.8 2.2 14.1

 $\Rightarrow \mathcal{G}_{spRHS} \text{ is higher with BLR and } \mathcal{G}_{BLR} \text{ is higher with sparse RHS}$ (and trend becomes more and more visible as problem gets larger)
Time results follow same trend as flops, but less pronounced
Cumulated gain from RHS sparsity and BLR very significant! $LR \text{ Sparse Solvers with Sparse RHS} \qquad \text{Theo Mary}$

Conclusion

Exploit three types of sparsity to accelerate AX = B:

- Sparsity of matrix A (e.g., nested dissection)
- Data sparsity of separators (low-rank matrix formats: BLR, H, ...)
- Sparsity of right-hand side *B* (pruned tree)

Take-home message: Gain from exploiting RHS sparsity increases with data sparsity, and vice versa

• Conclusions apply to forward solve only, except...

Conclusion

Exploit three types of sparsity to accelerate AX = B:

- Sparsity of matrix A (e.g., nested dissection)
- Data sparsity of separators (low-rank matrix formats: BLR, H, ...)
- Sparsity of right-hand side *B* (pruned tree)

Take-home message: Gain from exploiting RHS sparsity increases with data sparsity, and vice versa

- Conclusions apply to forward solve only, except...
- Fourth type of sparsity: sparsity of solution X If only part of X is of interest, our complexity bounds also apply to backward solve and hence to the overall solve phase!
- Examples: augmented systems, Schur complement approaches, inversion of selected entries, ...

- P. R. Amestoy, J.-Y. L'Excellent, and G. Moreau, On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers, SIAM J. Sci. Comput., 41(1), A269–A291 (2019).
- P. R. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary, On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM J. Sci. Comput., 39(4), A1710–A1740 (2017).
- P. R. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary, Bridging the Gap between Flat and Hierarchical Low-rank Matrix Formats: the Multilevel Block Low-Rank Format, SIAM J. Sci. Comput., 41(3), A1414–A1442 (2019).
- P. R. Amestoy, S. de la Kéthulle de Ryhove, J.-Y. L'Excellent, G. Moreau, and D. V. Shantsev, Efficient use of sparsity by direct solvers applied to 3D controlled-source EM problems, Comput. Geosci., 23, 1237–1258 (2019).