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Introduction

Systems of linear equations:

Ax = b, where A is sparse. In direct methods, 3 phases:
• analysis: nested dissection;
• factorization: A→ LU;
• solve: Ly = b and Ux = y.

2D 3D
(N× N) (N× N× N)

Cfac Θ(N3) Θ(N6)
Csol (per RHS) Θ(N2 logN) Θ(N4)

Complexities on regular 2D/3D problems (N is the grid size)

Factorization is usually the most expensive part, however…
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Applications with many RHS
Several important applications possess many RHS, e.g.,
exploration geophysics: FWI (Helmholtz), CSEM (Maxwell)
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��In 3D domains, Θ(N2) sources 
⇒ Csol = Θ(N4)×Θ(N2) = Θ(N6) ≡ Cfac

Practical AX = B example, matrix S21 (CSEM application):

n nrhs nnz(A)/n nnz(B)/nrhs Tfac Tsol
20.6 M 12340 13 9.5 10825 15029

Run on EOS computer (90 MPI)

To tackle large scale problems,
crucial to exploit all types of sparsity of the problem

3/16 LR Sparse Solvers with Sparse RHS Theo Mary



Exploiting the sparsity of A: nested dissection
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• Factorization (A = LU): bottom
up traversal, dense factorization
at each node

• Forward solve (Ly = b): bottom
up traversal, dense solve

• Backward solve (Ux = y): top
down traversal, dense solve
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Exploiting the data sparsity of separators

σ

τ

B
ρ σ

τ

r(ε) ≪ b

r(ε) ≃ b

A block B represents the interaction between two subdomains.
Far away subdomains ⇒ block of low numerical rank:

B ≈ X YT

b× b b× r(ε) r(ε)× b

with r(ε) ≪ b such that ∥B− XYT∥ ≤ ε
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Low-rank matrix formats

Block low-rank (BLR)

Θ(m3) → Θ(m2) flops
Θ(m2) → Θ(m3/2) space

Multilevel BLR (MBLR)

Θ(m3) → Θ(m
ℓ+3
ℓ+1 ) flops

Θ(m2) → Θ(m
ℓ+2
ℓ+1 ) space

Hierarchical (H, HSS, …)

Θ(m3) → Θ̃(m) flops
Θ(m2) → Θ̃(m) space

For all formats, the gain in flops Gflops is asymptotically greater
than the gain in space Gspace (to be precise Gflops = G2

space)
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Complexity of sparse low-rank direct solvers
Sparsity and data sparsity can be combined by using low-rank
formats to approximate the dense separators

2D regular problem

Cfac Csol (per RHS)

FR Θ(N3) Θ(N2 logN)
BLR Θ(N2 logN) Θ(N2)
H, MBLR Θ(N2) Θ(N2)

Back to the CSEM example (S21 matrix):

Tfac Tsol
FR 10825 15029
BLR 1568 7046

⇒ With data sparsity and many RHS,
the solve phase becomes asymptotically dominant!
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Exploiting the sparsity of B (the RHS)

Gilbert and Liu
• Forward solve: nodes associated with RHS zeros can be pruned
⇒ only need to traverse branches from RHS nonzeros to root

• If X is also sparse (only part of the solution needed), then same
thing applies to backward solve
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Complexity reduction achieved by sparsity and data sparsity of A
well known BUT reduction from sparsity of B never analyzed!

⇒ What asymptotic gain can we obtain by exploiting sparse RHS?
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RHS sparsity model

Consider a RHS with nnz nonzeros:
• If nnz = Θ(1), then the forward solve amounts to traverse Θ(1)
branches ⇒ its complexity is that of the critical path

The gain from exploiting RHS sparsity then is

GspRHS(N) =
Cfwd(N)
Ccfwd(N)

where
◦ Cfwd(N) is the complexity of the forward solve

◦ Ccfwd(N) is the complexity of its critical path

• Applications where nnz = Θ(1) are actually very common
(cf. our CSEM example, FWI, …)

⇒ Let us first assume nnz = Θ(1) (will generalize later)
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Complexity analysis

Consider a separator tree with L levels and nℓ separators of order
mℓ at level ℓ. Then

Cfwd(N) =
L∑
ℓ

nℓ × Cdense(mℓ)

Ccfwd(N) =
L∑
ℓ

��ZZnℓ × Cdense(mℓ)

where Cdense(mℓ) = Θ(mα
ℓ ) is the complexity of the dense solve.

In the 2D case (with cross separators), L = log2N, nℓ = 4ℓ, and
mℓ = Θ(N/2ℓ)
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Complexity analysis, cont’d

Cfwd(N) =
log2 N∑
ℓ=0

Θ(4ℓ × (N/2ℓ)α) = Θ(Nα

log2 N∑
ℓ=0

2(2−α)ℓ)

=

{
Θ(N2 logN) if α = 2

Θ(Nα)× 2(2−α) log2 N−1
22−α−1

= Θ(N2) if α < 2

Ccfwd(N) =
log2 N∑
ℓ=0

Θ(��SS4ℓ × (N/2ℓ)α) = Θ(Nα

log2 N∑
ℓ=0

2−αℓ)

= Θ(Nα)× 1− 2−α log2 N

1− 2−α︸ ︷︷ ︸
Θ(1)

= Θ(Nα)

Conclusion: G2D
spRHS(N) =

{
Θ(logN) if α = 2 (FR)
Θ(N2−α) if α < 2 (LR)
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Complexity bounds and interpretation

Same applies for 3D problems.

G2D
spRHS(N) G3D

spRHS(N)

FR (α = 2) Θ(logN) Θ(1)

BLR (α = 1.5) Θ(N
1
2 ) Θ(logN)

MBLR (α = ℓ+2
ℓ+1 ) Θ(N

ℓ
ℓ+1 ) Θ(N

ℓ−1
ℓ+1 )

Hierarchical (α = 1) Θ(N) Θ(N)

Asymptotic value of GspRHS(N) increases as α decreases
⇔

Gain from exploiting RHS sparsity increases with data sparsity

⇔
Gain from exploiting data sparsity increases with RHS sparsity

CLR
CLR+spRHS ≫ CFR

CFR+spRHS

⇔ CFR+spRHS
CLR+spRHS ≫ CFR

CLR
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Generalization to RHS with nnz(B) not in Θ(1)

If nnz(B) is not in Θ(1), the complexity of the forward solve
depends on the distribution of the nonzeros in the tree:

• Spread nonzeros: maximizes total flops for a fixed nnz. For
α < 2, GspRHS(N, α,nnz) = Θ

(
GspRHS(N,α,1)
nnzα/2−1

)
⇒ gain decreases

when nnz increases, but nonconstant GspRHS is maintained as
long as nnz = o(N2) (2D) or nnz = o(N3)

• Clustered nonzeros: more favourable case, and more realistic
of typical applications where sources are localized in the
domain. GspRHS(N, α,nnz) = Θ(GspRHS(N, α, 1)) is maintained
as long as nnz = O(Nα) (2D) or nnz = O(N2α) (3D)

Spread nonzeros Clustered nonzeros
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Results on synthetic problems

Poisson equation, one RHS with one nonzero (placed on a leaf)

SpRHS

SpRHS

 
2D Poisson problem

SpRHS

SpRHS

3D Poisson problem

G2D
spRHS G3D

spRHS
FR BLR FR BLR

Theoretical Θ(logN) Θ(N0.5) Θ(1) Θ(logN)
Experimental Θ(N0.3 logN) Θ(N1.2) Θ(N0.1) Θ(N0.6 logN)
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Results on real-life problems (CSEM application)
Flop results (×1012)

Small problem (2.9M) Large problem (17.4M)
FR BLR GBLR FR BLR GBLR

Dense RHS 70 35 2.0 777 405 1.9
Sparse RHS 8 3 2.6 73 4 18.7
GspRHS 8.7 11.1

22.5

10.7 103.8

199.2

Time results (EOS computer, 90 MPI)

Small problem (2.9M) Large problem (17.4M)
FR BLR GBLR FR BLR GBLR

Dense RHS 377 273 1.4 5449 3097 1.8
Sparse RHS 105 76 1.4 845 386 2.2
GspRHS 3.6 3.6

5.0

6.4 8.0

14.1

⇒ GspRHS is higher with BLR and GBLR is higher with sparse RHS
(and trend becomes more and more visible as problem gets larger)

Time results follow same trend as flops, but less pronounced
Cumulated gain from RHS sparsity and BLR very significant!
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Conclusion

Exploit three types of sparsity to accelerate AX = B:
• Sparsity of matrix A (e.g., nested dissection)
• Data sparsity of separators (low-rank matrix formats: BLR, H, …)
• Sparsity of right-hand side B (pruned tree)

⇒ Take-home message: Gain from exploiting RHS sparsity
increases with data sparsity, and vice versa

• Conclusions apply to forward solve only, except…

• Fourth type of sparsity: sparsity of solution X
If only part of X is of interest, our complexity bounds also apply
to backward solve and hence to the overall solve phase!

• Examples: augmented systems, Schur complement
approaches, inversion of selected entries, …
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