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The use of artificial neural networks is now becoming widespread across a wide variety of tasks. In this
context of very rapid development, issues related to the storage and computational performance of these
models emerge, since networks are sometimes very deep and comprise up to billions of parameters. For
all these reasons, the use of reduced precision is increasingly being considered although, until now, its
accuracy and robustness had been approached mostly from a practical standpoint or verified by software.
The aim of this work is to provide formal tools to better understand, explain, and predict the accuracy
and stability of neural networks when using floating-point arithmetic. To this end, we first extend to
neural networks some well-known concepts from numerical linear algebra, such as condition number
and backward error. We then apply a rounding error analysis based on existing tools in numerical linear
algebra to obtain both forward and backward error bounds. This includes both deterministic worst-case
bounds as well as probabilistic bounds that are sharper on average. These bounds both ensure the proper
functioning of neural networks once trained, and provide recommendations on architectures and training
methods to enhance the robustness of neural networks.

Keywords: floating-point arithmetic; error analysis; artificial neural networks; rounding errors; backward
error; probabilistic error analysis.

1. Introduction

In the context of Artificial Intelligence (AI), where algorithms process vast amounts of data and execute
complex computations in safety-critical tasks such as medicine with the detection of cancer [11] and
self-driving cars [46], maintaining numerical accuracy is crucial also because it is often a prerequisite
to ensure other properties such as explainability. Machine learning methods and their software
implementations, even the most advanced ones, are however subject to rounding errors resulting from
the use of finite precision arithmetic in calculations. The success of deep learning mostly stems from
the ability of modern computing platforms to handle and optimize an increasingly large number of
parameters in neural networks but also from the availability of larger and larger training datasets. This
leads to higher energy and computational costs for the training and use of deep learning models which
makes their use difficult when computing resources are limited such as in embedded devices. Therefore,
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in modern machine learning, low-precision arithmetics are becoming increasingly attractive due to
their higher speed and their lower memory and energy consumption [4, 23, 47]. Proposed solutions
demonstrate significant enhancements in power consumption, processing speed, and memory usage
by recommending the replacement of widely used 32-bit floating-point arithmetic by lower precision
arithmetics.

Rounding errors can have a considerable impact on the robustness of AI methods and tools, where
robustness is defined as the ability to maintain correct behaviour in the presence of disturbances. To be
able to deploy neural networks in critical systems, we have to ensure that these errors do not modify
their functioning, their operation and properties. Hence, the ability to measure the accuracy and stability
of these systems, to analyse the errors due to rounding in the computations, and therefore to estimate
which computations are more sensitive to changes of arithmetic is essential [10, 25]. The work on neural
networks error analysis available in the literature is mainly based on experimental approaches [29, 35,
38] and very few studies address a more theoretical framework [36]. Software such as CADNA [18, 30]
and FLUCTUAT [21] can be used to assess, with some precision, how reliable the result of an algorithm
is. The extension of these types of verifier for artificial neural networks is still in progress [41] and raises
many questions in terms of computation time as they are based on computationally expensive methods
such as SMT (Satisfiability Modulo Theories) solving [32] or mixed integer linear programming [44],
but also because of their own rounding errors [31].

The objective of this work is therefore to produce theoretical and experimental results enabling to
understand the impact of rounding errors in neural networks architectures when using reduced precision
floating-point arithmetic. To do so, we extend some error analysis concepts, which are commonly used
in numerical linear algebra, to artificial neural networks.

In numerical analysis, backward error is a particularly well-established tool [25, 45], as it enables
one to know if an inexact solution to a problem is in fact the exact solution to a nearby problem with
slightly perturbed input data. Then depending on prior knowledge on the problem, such as uncertainty
on the input data, one can say that said problem is backward stable if the backward error is close to these
uncertainties which essentially means that the algorithm has computed a solution which is as good as it
can be. Until now, the concept of backward error for artificial neural networks has only been partially
explored, from the adversarial perspective [5, 7].

As a first contribution, this work develops generic definitions of the backward error and condition
number for deep neural networks, as well as generic formulas for computing them numerically. This
theoretical framework provides us with tools to quantify and better explain how generic perturbations
affect artificial neural networks.

We then provide a deterministic and probabilistic rounding error analysis of artificial neural
networks, which consists in obtaining bounds on backward and forward errors. These bounds provide
a better understanding of how sensitive neural networks are to changes in arithmetic, depending on the
choice of architecture, training, and scaling.

This work is organized as follows. Section 2 provides a background on rounding error analysis.
In section 3 we first establish formulas and ways to compute the backward error of artificial neural
networks; existing work focuses on numerical linear algebra, therefore our goal is to extend it by
integrating activation functions, which induce nonlinearities. We also show how to compute the
condition number, which, in turn, helps in establishing bounds on the forward error once we have
determined bounds on the backward error. In section 4 we focus on producing a deterministic rounding
error analysis of neural networks, therefore finding bounds on the backward and forward error. We then
show how it can be extended to probabilistic bounds that are sharper in section 5. We then validate
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these bounds experimentally in section 6 on both random and trained neural networks. Finally, the work
concludes with a summary of the main findings and some perspectives of future works in section 7.

2. Background on rounding error analysis

This work will focus on the effects of the use of floating-point arithmetic on multilayered artificial
neural networks. In this section, we recall key notions and results that will serve as the basis for our
approach to quantify and predict the effects of rounding errors on artificial neural networks. We will
use a componentwise analysis as this metric enables to take into account the structure of matrices, such
as sparsity or scaling. Unlike normwise metrics, when using componentwise metrics, each element
of a perturbation on the data is measured relatively to a given tolerance, which can for example
be its absolute value. Therefore, divisions and inequalities between vectors in this work are meant
componentwise.

2.1. Backward error

Let ŷ be a computed result that is an approximation of y = f (x), with f : Rn → Rm. When the forward
error, defined for y ̸= 0,

εfwd(ŷ) = max
i

|ŷ− y|i
|y|i

(2.1)

is large, we cannot distinguish if either the mathematical problem is sensitive to perturbations or the
algorithm used to solve the problem behaves badly when perturbations exist on data or computations.
The backward error is a quantity that makes it possible to discriminate between these two cases.
Formally we can define the relative componentwise backward error as

εbwd(ŷ) = min{ε : ŷ = f (x+∆x), |∆x| ≤ ε|x|} . (2.2)

It is then said that if there is an uncertainty in the data or computations (physical measurements,
approximations, rounding errors. . . ), it is sufficient that the backward error is of the same order as
this uncertainty for the computed solution ŷ to be as good as one could expect.

2.2. Condition number

Forward error and backward error are linked by the condition number of the problem, which measures
how sensitive the solution to a problem is to perturbations in the data. The use of condition number
in numerical analysis is therefore particularly prominent [3, 14, 15, 24, 42] to understand and deploy
strategies to diminish the impact of perturbations on a system. The condition number of the problem f
at x is defined by Rice [39] and Lyubich [34], we have the relative componentwise condition number in

κ f (x) = lim
ε→0

sup
max

i
|∆xi|≤ε|xi|

(
max

i

| fi(x+∆x)− fi(x)|
| fi(x)|

/
max

i

|∆xi|
|xi|

)
. (2.3)

The link between forward, backward error and condition number is then given at first order by:

forward error ≤ condition number×backward error. (2.4)

This relation is considered as a rule of thumb. When it holds for a set of problems, it is then used to
predict the forward error on problems of the same class. In this work we will focus on providing a
backward error analysis of artificial neural networks, deriving bounds on the backward error, which, in
turn, lead to bounds on the forward error using inequality (2.4).
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2.3. Model of arithmetic

In the context of floating-point arithmetic, since a finite number of bits is used to represent numbers,
rounding errors occur during computations. Denoting fl(a op b) the result of a floating-point elementary
operation, we will use the following standard model for floating-point arithmetic:

Model 1 (Standard model for floating-point computations)

fl(a op b) = (a op b)(1+δ ), |δ | ≤ u, op ∈ {+, −, ×, /,
√},

where u is the machine epsilon, which is an upper bound on the relative approximation error due to
rounding.

2.4. Classical backward error analysis

Model 1 bounds the error introduced by one floating-point operation. Traditional error analysis in
numerical linear algebra typically involves sequences of several operations, which will therefore bring
up products of the form

n

∏
k=1

(1+δk).

These products are then simplified using the following lemma, which corresponds to Lemma 3.1
from Higham [25].

Lemma 1 (Deterministic error bound) If |δk| ≤ u and ρk =±1 for k = 1, . . . ,n, and nu < 1, then

n

∏
k=1

(1+δk)
ρk = 1+θn, |θn| ≤ γn.

The constant γn is defined as
γn =

nu
1−nu

, (2.5)

with nu < 1, n being the number of elementary operations considered, and u the machine epsilon [25].

2.5. Probabilistic backward error analysis

For large problems or computations in reduced precision, bounds obtained using classical rounding
error analysis, which are worst-case bounds, may be less useful because too pessimistic. Indeed, these
traditional bounds involve the number n of elementary operations performed. Recent approaches [12,
26, 27] enable to relax this constant by replacing n by

√
n, based on probabilistic assumptions about

the rounding errors. We will later derive bounds for artificial neural networks, which are based on the
results from Connolly et al. [12]. Their analysis is based on some probabilistic tools defined below. In
the following, E(X) denotes the expectation of a random variable X and E(X |Y ) denotes the conditional
expectation of X given Y .

Definition 1 (Martingale) A sequence of random variables E0, . . . ,En is said to be a martingale if it
satisfies for all k

E(|Ek|)<+∞,

E(Ek | E0, . . . ,Ek−1) = Ek−1.
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Lemma 2 (Azuma–Hoeffding inequality) If E0, . . . ,En is a martingale that satisfies |Ek −Ek−1| ≤ ck
for k = 1, . . . ,n, then for all λ > 0,

Pr

|En −E0| ≥ λ

(
n

∑
k=1

c2
k

) 1
2
≤ 2exp

(
−λ 2

2

)
.

Connolly et al. [12] use the following model of rounding errors.

Model 2 (Probabilistic model of rounding errors) Let δ1, . . . ,δn be random variables of mean zero
with |δk| ≤ u such that E(δk+1 | δ1, . . . ,δk) = E(δk+1) for any k = 1, . . . ,n−1.

Define

γ̃n(λ ) = exp
(

λ
√

nu+nu2

1−u

)
−1 = λ

√
nu+O(u2). (2.6)

The next result of Connolly et al. [12] proves that the deterministic constant γn can be replaced, with
high probability, by this relaxed constant γ̃n(λ ) provided that the probabilistic Model 2 holds.

Theorem 1 (Probabilistic error bound) Let δ1, . . . ,δn satisfy Model 2, then for ρi = ±1, i = 1, . . . ,n
and any constant λ > 0,

n

∏
i=1

(1+δi)
ρi = 1+θn, |θn| ≤ γ̃n(λ )

holds with probability at least

P(λ ) = 1−2exp
(
−λ 2

2

)
.

Note that another important result of Connolly et al. [12] is that Model 2 holds when stochastic
rounding [13] is used.

3. Backward error and condition number for artificial neural networks

First introduced by Beuzeville et al. [7], then built upon by Beerens and Higham [5] and further
investigated in Savostianova et al. [40], the concepts of backward error and condition number of neural
networks are the subject of a rising interest to better understand and explain the sensitivity of neural
networks to perturbations. The backward error represents the solution to a minimization problem, which
often means that closed formulas are not readily derived. On the other hand, the condition number can
be used to bound the forward error and will thus be of special interest in the context of rounding error
analysis. The goal of this section is therefore to explain how to establish explicit expressions of the
backward error as well as the condition number for artificial neural networks.

3.1. Neural network expression

Consider a feed-forward network of depth p∈N layers, each layer with its associated weight matrix Ai ∈
Rni×ni−1 and activation function φi applied entrywise that we will suppose differentiable. In the machine
learning context, activation functions are typically chosen so that they are differentiable, since their
gradient is necessary for the training phase. Several methods already exist for dealing with functions
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that are not differentiable at certain points, since gradients are needed during the training phase. The
most widely known example is ReLU, in which case one typically sets the value of the derivative to
zero at zero [6].

Note that a bias can easily be integrated as part of the matrix–vector product and thus, without loss of
generality, we will assume that one layer of the neural network corresponds to a matrix–vector product
and drop the bias for the sake of readability. For a given input x ∈ Rn0 we then have the following
expression for the output of this neural network:

y = m(A,x) = φp(Apφp−1(Ap−1 . . .A2φ1(A1x) . . .)). (3.1)

Our work focuses on producing a general theoretical framework to evaluate a neural network’s
sensibility to rounding errors. In order to get generic formulas, we will consider perturbations on the
parameters (Ai)i=1,...,p and input x. As shown in section 2 rounding errors are typically proportional
to the machine epsilon, we will thus use a first order approximation of the model with respect to the
perturbed parameters.

Consider a given neural network model, assuming perturbations on the model’s parameters and on
its input we have

ŷ = φp((Ap +∆Ap)φp−1((Ap−1 +∆Ap−1) . . .φ1((A1 +∆A1)(x+∆x)) . . .)).

A first order approximation leads to the following equality:

ŷ− y = φ
′
p(Apyp−1)∆Apyp−1 + . . .

+φ
′
p(Apyp−1)Apφ

′
p−1(Ap−1yp−2) . . .Ai+1φ

′
i (Aiyi−1)∆Aiyi−1

+ . . .+φ
′
p(Apyp−1)Apφ

′
p−1(Ap−1yp−2) . . .A2φ

′
1(A1x)∆A1x

+φ
′
p(Apyp−1)Apφ

′
p−1(Ap−1yp−2) . . .A2φ

′
1(A1x)A1∆x.

(3.2)

For the sake of readability let us define, for i = 1, . . . , p, the Jacobian of our neural network model m
computed with respect to the parameters Ai

Ji
m(A,x) = φ

′
p(Apyp−1)Apφ

′
p−1(Ap−1yp−2) . . .Ai+1φ

′
i (Aiyi−1)

and the Jacobian of the model with respect to the input

J0
m(A,x) = φ

′
p(Apyp−1)Apφ

′
p−1(Ap−1yp−2) . . .A2φ

′
1(A1x)A1.

Equation (3.2) can thus be rewritten

ŷ− y =
p

∑
i=1

Ji
m(A,x)∆Aiyi−1 + J0

m(A,x)∆x. (3.3)

This expression can then be rearranged, using the Kronecker product denoted by
⊗

, to have the form
of a linear system. Indeed, since for any given matrices A and X and any given vector b we have
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AXb = (bT ⊗A)
−→
X , where

−→
X is the vectorization operator applied on X , we can then say that

ŷ = y+
p

∑
i=1

(yT
i−1

⊗
Ji

m(A,x))
−→
∆Ai + J0

m(A,x)∆x. (3.4)

Let us then define the vector
−→
∆A as the concatenation of all the vectorized perturbations

−→
∆A =


∆x
−→
∆A1

...
−→
∆Ap

 (3.5)

and the Jacobian matrix of our model with respect to the input and parameters

Jm(A,x) =
[
J0

m(A,x), yT
0
⊗

J1
m(A,x), . . . , yT

p−1
⊗

Jp
m(A,x)

]
. (3.6)

We then can then rewrite equation (3.4) as the following linear system

ŷ = y+Jm(A,x)
−→
∆A. (3.7)

3.2. Backward error expression

We can define, using the above first order approximation, the componentwise relative backward error
as:

εbwd = min{ε ≥ 0 : ŷ = y+Jm(A,x)
−→
∆A, |−→∆A| ≤ ε|−→A |}, (3.8)

where Jm(A,x) ∈ RM×N . Since we defined the sizes of the weight matrices and of the output as in

equation (3.1), we have M = np, N =
p
∑

i=1
ni × ni−1 + n0 and therefore the system ŷ− y = Jm(A,x)

−→
∆A

is underdetermined. We hence have no closed formula to compute the componentwise backward error
for a general neural network. In that case, finding the backward error defined as in equation (3.8) is
equivalent to solving the following optimization problem

minimize−→
∆A

∥
−→
∆A∥∞

subject to ŷ− y = Jm(A,x)
−→
∆A.

(3.9)

Several methods [1, 9, 17, 43] focus on solving problems that are similar in form to the problem (3.9).

3.3. Condition number expression

Consider a given neural network model, assuming perturbations on the model’s parameters and on
its input, we can define the vector

−→
∆A as in equation (3.5) and the Jacobian matrix Jm(A,x) as in

equation (3.6). This leads to the first order expression of equation (3.7). We can then define the relative
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componentwise condition number in the same way as Gohberg and Koltracht [20], which gives the
following expression

κm(A,x) = ∥diag(m(A,x))−1Jm(A,x)diag(
−→
A )∥∞.

Note that, depending on which variables are considered to be perturbed, the expression of the
Jacobian matrix and the vector containing the perturbed variables varies. Therefore, in order to have
the following relation between forward error, backward error; and condition number,

εfwd ≤ κm(A,x)εbwd,

one must ensure that quantities are defined with the same appropriate metrics and perturbations.

4. Deterministic rounding error analysis for artificial neural networks

This section presents a rounding error analysis for artificial neural networks. The goal of such an
analysis is to provide bounds on the backward error in order to explain and quantify how the use of
a given arithmetic precision impacts the accuracy and stability of an algorithm. Using the backward
error over the forward error provides several advantages. Indeed, by focusing on backward error, the
analysis can offer insights into the root causes of instabilities in the neural network’s predictions and
behaviours. Moreover, once bounds on the backward error are found, bounds on the forward error can
be directly derived using the condition number of the problem.

The primary contribution of this section will be to explain in section 4.1 how to integrate
the nonlinear activation functions into the deterministic analysis of rounding errors. This requires
understanding how rounding errors produced by the computation of the function can be interpreted
as errors on the input of the function. Subsequently, we will integrate this analysis to obtain bounds for
the computations of a single layer neural network in section 4.2 and this will finally lead us to generalize
these bounds to the case of deeper neural networks in section 4.3.

4.1. Activation function

Here and for the remainder of this document we will assume that for all activation functions, similarly
to Model 1, the following model stands:

Model 3 (Floating-point arithmetic model for activation functions)

fl( f (x)) = f (x)(1+δ f ), |δ f | ≤ ℓu.

Knowing that for each activation function, the constant ℓ has to be evaluated for each framework.
As an example, for NVIDIA GPUs (Graphics Processing Units) the constant for activation functions
such as tanh or ReLU can be found on the Appendix E of the documentation [37].

To integrate activation functions into the backward error analysis, we need to know how the
rounding error obtained by applying the function, according to Model 3, can be interpreted back as
a perturbation on the data.
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Let us define f : Rn →Rn. Assuming that f is differentiable at the point x and that f (x) ̸= 0, at first
order, we have

f (x+δ ) = f (x)+δ f ′(x) = f (x)(1+δ
f ′(x)
f (x)

).

Let us define

K f (x) =
x f ′(x)

f (x)

and note κ f (x) = |K f (x)|, which represents the componentwise condition number of f at x, then

f (x+δ ) = f (x)(1+
δ

x
K f (x)). (4.1)

Here we want to use equation (4.1) to understand the impact of rounding errors, in terms of
perturbations on the input data x, when Model 3 stands. Let f be a given activation function,
differentiable at x, that satisfies this model. The computed solution ŷ then satisfies

ŷ = f (x)(1+δ f ) = f (x)(1+
δ f

x
K f (x)

x
K f (x)

).

Replacing δ in equation (4.1) by

∆x = δ f
x

K f (x)
,

we have

ŷ = f (x)(1+δ f ) = f (x+δ f
x

K f (x)
) = f (x+∆x),

with

|∆x| ≤ ℓu
κ f (x)

|x|.

This result shows that the relative perturbation on the input that is needed to get the computed
output ŷ is bounded by ℓu/κ f (x). Therefore, the perturbations are small when κ f (x) ≥ ℓu. This states
that the bigger the condition number of f is, the smaller the perturbation needed on the input will be to
attain a same output. This is consistent with the fact that functions with small condition number are less
sensitive to perturbations.

4.2. Entire layer

We now seek to combine bounds usually obtained for the matrix–vector product to the results of
section 4.1 to obtain rounding error bounds for a complete layer of artificial neural network.
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Consider an entire layer composed of a matrix–vector product followed by an activation function,
let y = φ(Ax) with x a given input vector. Each output component ŷi then satisfies:

ŷi = φ

(
n

∑
k=1

(aikxk)(1+ εk)
n

∏
j=max(k,2)

(1+δ j)

)(
1+δφ

)
= φ

(
n

∑
k=1

(aikxk)(1+ψk)

)(
1+δφ

)
where

ψk = (1+ εk)
n

∏
j=max(k,2)

(1+δ j)

accounts for the n rounding errors in the matrix–vector product, and δφ accounts for those in the
activation function. Note that ψk and δφ also depend on i but are not indexed to simplify the notation.

From section 4.1 we know how to take into account rounding errors introduced by the activation
function in terms of perturbations on the input data, which yields

ŷi = φ

(
n

∑
k=1

(aikxk)(1+ψk)

(
1+

δφ

Kφ (aT
i x)

))
(4.2)

= φ

(
n

∑
k=1

(aikxk)(1+Φk)

)
(4.3)

where

Φk = ψk +
δφ

Kφ (aT
i x)

+
ψkδφ

Kφ (aT
i x)

.

Our goal is then to bound the absolute value of Φk. From Lemma 1 we have |ψk| ≤ γn, and from Model 3
we have |δφ | ≤ ℓu. Therefore we obtain

|Φk|=
∣∣∣∣ψk +

δφ

Kφ (aT
i x)

+
ψkδφ

Kφ (aT
i x)

∣∣∣∣≤ nu
1−nu

+
ℓu

κφ (aT
i x)

+
ℓnu2

κφ (aT
i x)(1−nu)

.

Gathering all terms under the same denominator leads to

|Φk| ≤
κφ (aT

i x)nu+ ℓu(1−nu)+ ℓnu2

κφ (aT
i x)(1−nu)

,

which means that

|Φk| ≤
(n+ ℓ

κφ (aT
i x)

)u

1−nu
,

which can finally be further weakened to

|Φk| ≤
(n+ ℓ

κφ (aT
i x)

)u

1− (n+ ℓ
κφ (aT

i x)
)u

= γn+ℓ/κφ (aT
i x).
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Combining equation (4.3) for the m rows of A yields

ŷ = φ((A+∆A)x), |∆A| ≤ γn+ℓ/κφ (Ax)|A|. (4.4)

Note that the inequality is to be taken componentwise, where κφ (Ax) is a vector whose i-th component
is equal to κφ (aT

i x). This result shows that each relative perturbation on the input is bounded by
γn+ℓ/κφ (Ax). Hence, the perturbations are small when(

n+
ℓ

κφ (Ax)

)
u ≪ 1.

This can be interpreted as a combination of the known results on the matrix–vector product and the
obtained result of section 4.1. The bounds reflect the fact that n basic operations are done by the matrix–
vector product and then the ℓ errors due to the activation are amplified or reduced depending on its
condition number.

4.3. Multi-layer neural network

We have obtained in the previous section bounds on the backward error for a single layer of artificial
neural network; we now consider the case of a general neural network of p layers.

In order to better explain our approach, let us first develop how rounding error propagates on a
couple of layers. Let A ∈Rm×n, B ∈Rp×m and x ∈Rn. Assuming that we compute y = φ2(Bφ1(Ax)) by
first performing z = φ1(Ax) and then y = φ2(Bz), we thus have two layer applications in a row. Applying
equation (4.4) on the first layer yields

ẑ = φ1((A+∆A)x), |∆A| ≤ γn+ℓφ1/κφ1 (Ax)|A|.

and applying it to the second layer yields

ŷ = φ2((B+∆B)ẑ), |∆B| ≤ γm+ℓφ2/κφ2 (Bẑ)|B|.

Hence, overall,

ŷ = φ2((B+∆B)φ1((A+∆A)x)),

with
|∆A| ≤ γn+ℓφ1/κφ1 (Ax)|A|, |∆B| ≤ γm+ℓφ2/κφ2 (Bẑ)|B|.

This result reveals a pattern for bounds on the backward error when chaining multiple layers. Indeed,
for a given layer, the bound combines, first the aggregation of errors due to the matrix–vector product,
in the form of the number of columns of the weight matrix ni−1, and then the impact of the activation
function. Through induction, we can extend the previous result to a network with multiple layers, which
leads to the following key result.

Theorem 2 (Deterministic error bound for artificial neural networks) Consider a neural network
composed of p layers whose output can be expressed as follows y= φp(Apφp−1(Ap−1 . . .A2φ1(A1x) . . .)),
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with Ai ∈ Rni×ni−1 , for i = 1, . . . , p and x ∈ Rn0 . If y is evaluated in floating-point arithmetic satisfying
Model 1 and Model 3, the computed result ŷ satisfies

ŷ = φp((Ap +∆Ap)φp−1((Ap−1 +∆Ap−1) . . .(A2 +∆A2)φ1((A1 +∆A1)x) . . .)),

with
|∆Ai| ≤ γni−1+ℓφi/κφi (Ai ŷi−1)|Ai|, i = 1, . . . , p.

This bound is obtained by using both the standard model of arithmetic, given by Model 1, for
the matrix–vector computations, and the Model 3 for the computation of the activation function. The
bound quantifies the impact of activation functions in the context of computations performed by neural
networks in finite precision. This impact appears in the form of the constant ℓφi , which, for each
activation function φi, corresponds to the rounding errors introduced by the application of the function,
and this constant is then amplified or not depending on the condition number of the activation.

5. Probabilistic rounding error analysis for artificial neural networks

The goal of this section is to show how the bounds obtained on artificial neural networks in section 4.3
can be adapted to the probabilistic case. We will therefore focus on integrating activation functions in
the probabilistic setting. However, since activation functions are not standard numerical linear algebra
operations, as shown in section 4.2, we will demonstrate how this changes the approach and results
we had in Theorem 2. Two different ways of integrating activation functions in the probabilistic error
analysis can be distinguished. In section 5.1 we first make probabilistic assumptions only on the errors
due to linear algebra operations, such as matrix–vector product, and use only deterministic assumptions
for the errors due to the computation of the activation function. In section 5.2 we extend our probabilistic
model to also cover the activation functions. Finally in section 5.3 we summarize the different bounds
that we have obtained and discuss their significance.

As shown in section 4.2, the result of a neural network layer followed by an activation function
results in a product of rounding error terms of the following form, seen in equation (4.2):

n

∏
i=1

(1+δi)

(
1+

δn+1

Kφ (ĉ)

)
, (5.1)

where ĉ is the computed output of a matrix–vector product and δ1, . . . ,δn its associated rounding errors.
Since under Model 2, the rounding errors δ1, . . . ,δn are random variables, then ĉ, which is a function

of these rounding errors, is also a random variable. Then the value of ĉ and thus of κφ (ĉ) will fluctuate
with respect to the values of the rounding errors. In the following, we assume that there exists a ζ > 0
such that κφ (ĉ)≥ ζ , that is, that despite the randomness κφ (ĉ) never becomes too close to zero. For the
sake of readability, let us note for the remainder of this section Kφ = Kφ (ĉ) and κφ = |Kφ (ĉ)|= κφ (ĉ).

Theorem 1 can be used to directly replace the deterministic γn with its probabilistic equivalent γ̃n(λ )
for products of (1+ δi) terms. The goal of this section is therefore extend this result to the particular
case of a product of rounding errors of the form of equation (5.1).

5.1. Deterministic activation function’s rounding error

We first combine the probabilistic bound on the matrix–vector product error with the deterministic
bound on the activation error. This leads to the following mixed error bound for equation (5.1).
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Lemma 3 Let δ1, . . . ,δn be random variables of mean zero with |δk| ≤ u for all k such that E(δk+1 |
δ1, . . . ,δk) = E(δk+1) = 0 for k = 1, . . . ,n−1. Let |δn+1| ≤ ℓu. Then for any constant λ > 0,

n

∏
i=1

(1+δi)

(
1+

δn+1

Kφ (x)

)
= 1+Ψn,

|Ψn| ≤ γ̃n(λ )+
ℓ

κφ (x)
u(1+ γ̃n(λ ))

holds with probability at least 1−2exp
(
−λ 2/2

)
.

Proof Denoting 1+θn =
n
∏
i=1

(1+δi) we have

Ψn = θn +
δn+1

Kφ (x)
+θn

δn+1

Kφ (x)

and so

|Ψn| ≤ |θn|+
∣∣∣∣ δn+1

Kφ (x)

∣∣∣∣+ ∣∣∣∣θn
δn+1

Kφ (x)

∣∣∣∣ .
Using Theorem 1,

|Ψn| ≤ γ̃n(λ )+
ℓu

κφ (x)
(1+ γ̃n(λ )),

holds with probability at least 1−2exp
(
−λ 2/2

)
. □

Using Lemma 3 on the expression in equation (4.2), we obtain the following mixed error bound for
a general artificial neural network.

Theorem 3 (Mixed error bound for artificial neural networks) Consider a general neural network
composed of p layers whose output can be expressed as follows y= φp(Apφp−1(Ap−1 . . .A2φ1(A1x) . . .)),
with Ai ∈ Rni×ni−1 , for i = 1, . . . , p and x ∈ Rn0 . If the computation of y in floating-point arithmetic
generates rounding errors in the matrix–vector product that satisfy Model 2 and rounding errors in the
activation functions that satisfy Model 3, then the computed result ŷ satisfies

ŷ = φp((Ap +∆Ap)φp−1((Ap−1 +∆Ap−1) . . .(A2 +∆A2)φ1((A1 +∆A1)x) . . .))

with

|∆Ai| ≤
(

γ̃ni−1(λ )+
ℓφiu

κφi(Aiŷi−1)
(1+ γ̃ni−1(λ ))

)
|Ai|, i = 1, . . . , p,

with probability at least

Q(λ ,
p

∑
i=1

nini−1),

where Q(λ ,n) = 1−n(1−P(λ )).
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Proof The proof to obtain the bounds is almost identical to the work of section 4.3, replacing Lemma 1
by Lemma 3. For a given layer i the bound holds with probability at least Q(λ ,nini−1), by the same
logic as in [12]. Therefore, the bound fails to hold for a given i with probability at most 1−Q(λ ,nini−1),

hence it fails to hold for at least one layer i with probability at most
p
∑

i=1
(1−Q(λ ,nini−1))). This means

that the bound holds for any layer with probability at least

1−

(
p

∑
i=1

nini−1(1−P(λ ))

)
= 1− (1−P(λ ))

p

∑
i=1

nini−1 = Q(λ ,
p

∑
i=1

nini−1).

□

This result, which combines a probabilistic approach for errors arising from the matrix–vector
product and a deterministic approach for the accumulation of these errors with those of the activation
function, logically yields a bound reflecting the approach. Indeed, we obtain a bound that adds to the
usual bound on the matrix–vector product, γ̃n(λ ), a second term which reflects the addition of the errors
coming from the activation function, ℓu, which are amplified or not depending on the value of the
condition number.

Compared to the deterministic approach of Theorem 2, this approach only adds the assumptions of
the standard probabilistic Model 2 for the computations of the matrix–vector product (as mentioned in
section 2.5, these assumptions are notably satisfied if stochastic rounding is used in the matrix–vector
product [12]).

5.2. Probabilistic activation function’s rounding error

We now seek to further refine the previous analysis by integrating the activation function into our
probabilistic model. To do so, we need to make assumptions about the ℓ rounding errors in the term
δn+1. In general, the intermediate ℓ errors cannot be assumed to be mean independent between each
other without any specific information on how the activation function is computed. Therefore, we
will only assume that the global rounding error δn+1, which encompasses all ℓ intermediate errors,
is of mean zero and is mean independent of the errors δ1, . . . ,δn incurred in the matrix–vector product.
These additional probabilistic assumptions on the error δn+1 lead to the following model, which extends
Model 2.

Model 4 Let δ1, . . . ,δn+1 be random variables of mean zero with |δk| ≤ u for all k = 1, . . . ,n and
|δn+1| ≤ ℓu, such that E(δk+1 | δ1, . . . ,δk) = E(δk+1) = 0 for k = 1, . . . ,n.

The goal will now be to adapt the proof of [12, Theorem 4.6] (which corresponds to Theorem 1 in
this paper) to this new model.

Lemma 4 Let δ1, . . . ,δn+1 be random variables that satisfy Model 4. Let Kφ be a function of δ1, . . . ,δn

and assume that there exists ζ > 0 such that κφ ≥ ζ . Let Ek =
k
∑

i=1
δi for k = 1, . . . ,n, E0 = 0 and

En+1 =
n

∑
i=1

δi +
δn+1

Kφ

.
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Then for any constant λ > 0,

|En+1| ≤ λ

√
n+

ℓ2

ζ 2 u

holds with probability at least 1−2exp
(
−λ 2/2

)
.

Proof Since |δk| ≤ u for k = 1, . . . ,n, we have |Ek| ≤ ku, and since |δn+1| ≤ ℓu and ζ ≤ |Kφ | = κφ , we
have

|En+1| ≤ (n+
ℓ

ζ
)u.

Hence E(|Ek|)<+∞ for all k = 1, . . . ,n+1. Moreover, for k = 1, . . . ,n−1,

E(Ek+1 | E1, . . . ,Ek) = Ek +E(δk+1 | δ1, . . . ,δk) = Ek.

We also have

E(En+1 | E1, . . . ,En) = En +E(
δn+1

Kφ

| δ1, . . . ,δn).

Since Kφ depends only on δ1, . . . ,δn, Kφ is then fixed when δ1, . . . ,δn are fixed, therefore

E(
δn+1

Kφ

| δ1, . . . ,δn) =
E(δn+1 | δ1, . . . ,δn)

Kφ

= 0,

which implies that E(En+1 | E1, . . . ,En) = En and hence E0, . . . ,En+1 is a martingale. Moreover, |Ek+1−
Ek| ≤ u for k = 1, . . . ,n−1 and

|En+1 −En| ≤
ℓu
ζ
.

By the Azuma–Hoeffding inequality, given by Lemma 2, we therefore have for any λ > 0,

Pr

|En+1 −E0| ≥ λ

(
nu2 +

ℓ2u2

ζ 2

) 1
2

≤ 2exp
(
−λ 2

2

)

which means that

Pr

(
|En+1| ≥ λ

√
n+

ℓ2

ζ 2 u

)
≤ 2exp

(
−λ 2

2

)
and concludes the proof. □

We are now ready to derive a fully probabilistic error bound for equation (5.1).
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Lemma 5 Let δ1, . . . ,δn+1 be random variables that satisfy Model 4. Let Kφ be a function of δ1, . . . ,δn
and assume that there exists ζ > 0 such that κφ ≥ ζ . Then for any constant λ > 0,

n

∏
i=1

(1+δi)(1+
δn+1

Kφ

) = 1+θn, |θn| ≤ γ̃
act
n (λ )

holds with probability at least 1−2exp
(
−λ 2/2

)
, where

γ̃
act
n (λ ) = exp

λ

√
n+

ℓ2

ζ 2 u+
nu2

1−u
+

(
ℓu
ζ

)2

1− ℓu
ζ

−1 (5.2)

= λ

√
n+

ℓ2

ζ 2 u+O(u2)

extends the definition of γ̃n(λ ) to include the activation error.

Proof Let Ek =
k
∑

i=1
δi for k = 1, . . . ,n, E0 = 0 and

En+1 =
k

∑
i=1

δi +
δn+1

Kφ

.

From Lemma 4 we know that

|En+1| ≤ λ

√
n+

ℓ2

ζ 2 u,

holds with probability at least 1−2exp
(
−λ 2/2

)
.

We now will use the bound we found for En+1 to bound the product of rounding error terms of
equation (5.1). By taking the logarithm of this product we have

log

(
n

∏
i=1

(1+δi)

(
1+

δn+1

Kφ

))
=

n

∑
i=1

log(1+δi)+ log
(

1+
δn+1

Kφ

)
.

Using the Taylor expansion of log(1+δi), since |δi| ≤ u < 1, we have

−δi −
+∞

∑
k=2

δ k
i
k

≤ log(1+δi)≤ δi +
+∞

∑
k=2

δ k
i
k
.

These bounds can be further weakened to

−δi −
+∞

∑
k=2

δ
k
i ≤ log(1+δi)≤ δi +

+∞

∑
k=2

δ
k
i
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and then, taking the closed form of these geometric series, we have

−δi −
|δi|2

1−|δi|
≤ log(1+δi)≤ δi +

|δi|2

1−|δi|
, (5.3)

which then implies, since |δi| ≤ u, that

−δi −
u2

1−u
≤ log(1+δi)≤ δi +

u2

1−u
,

which, by adding the inequalities for i = 1, . . . ,n, then means

−En −
nu2

1−u
≤

n

∑
i=1

log(1+δi)≤ En +
nu2

1−u
. (5.4)

At this point equation (5.4) enables us to obtain bounds on the error terms coming from the n first
rounding errors, we now need to incorporate the error term that comes from the activation function.
Assuming that ℓu/ζ < 1, we have

log(1+
δn+1

Kφ

) =
+∞

∑
k=1

(−1)k+1 δ k
n+1

kKk
φ

and hence, as in equation (5.3), we get

−δn+1

Kφ

−
| δn+1

Kφ
|2

1−| δn+1
Kφ

|
≤ log(1+

δn+1

Kφ

)≤ δn+1

Kφ

+
| δn+1

Kφ
|2

1−| δn+1
Kφ

|

which implies

−δn+1

Kφ

−

(
ℓu
ζ

)2

1− ℓu
ζ

≤ log(1+
δn+1

Kφ

)≤ δn+1

Kφ

+

(
ℓu
ζ

)2

1− ℓu
ζ

. (5.5)

Adding inequalities from equation (5.4) and equation (5.5) we get

−En+1 −
nu2

1−u
−

(
ℓu
ζ

)2

1− ℓu
ζ

≤ log(
n

∏
i=1

(1+δi)(1+
δn+1

Kφ

))≤ En+1 +
nu2

1−u
+

(
ℓu
ζ

)2

1− ℓu
ζ

.

Then using the bound we computed for En+1 from Lemma 4 we can weaken the inequality to obtain

−λ

√
n+

ℓ2

ζ 2 u− nu2

1−u
−

(
ℓu
ζ

)2

1− ℓu
ζ

≤ log(
n

∏
i=1

(1+δi)(1+
δn+1

Kφ

))≤ λ

√
n+

ℓ2

ζ 2 u+
nu2

1−u
+

(
ℓu
ζ

)2

1− ℓu
ζ

which holds with probability at least 1− 2exp
(
−λ 2/2

)
. By exponentiating this inequality we finally

obtain
n

∏
i=1

(1+δi)(1+
δn+1

Kφ

) = 1+θn, |θn| ≤ γ̃
act
n (λ ).

□
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By applying Lemma 5 to the expression in equation (4.2), we finally obtain our last result, a fully
probabilistic error bound for a general artificial neural network.

Theorem 4 (Probabilistic error bound for artificial neural networks) Consider a general neural
network composed of p layers whose output can be expressed as follows

y = φp(Apφp−1(Ap−1 . . .A2φ1(A1x) . . .)),

with Ai ∈ Rni×ni−1 , for i = 1, . . . , p and x ∈ Rn0 . If the computation of y in floating-point arithmetic
generates rounding errors that satisfy Model 4, then the computed result ŷ satisfies

ŷ = φp((Ap +∆Ap)φp−1((Ap−1 +∆Ap−1) . . .(A2 +∆A2)φ1((A1 +∆A1)x) . . .))

with
|∆Ai| ≤ γ̃ni−1+ℓ2

φi
/κφi (Ai ŷi−1)2(λ )|Ai|, i = 1, . . . , p,

with probability at least

Q(λ ,
p

∑
i=1

nini−1).

5.3. Summary and discussion

TABLE 1 Summary of the dominant term in each of the bounds.

Theorem 2 Theorem 3 Theorem 4

Assumptions Models 1 and 3 Models 2 and 3 Model 4

Bound
(

n+ ℓφ

κφ (Ax)

)
u

(
λ
√

n+ ℓφ

κφ (Ax)

)
u λ

√
n+

ℓ2
φ

κφ (Ax)2 u

We provide in Table 1 a brief summary of the dominant term in the bounds that we obtained in
Theorems 2, 3, and 4. The probabilistic approach improves the deterministic bounds by reducing the
impact of n consecutive rounding errors from nu to

√
nu. This is the observed difference between the

bounds of Theorem 2 and of Theorem 3. The latter uses a probabilistic model only for the matrix–vector
product (Model 2), which is notably satisfied when stochastic rounding is used in the matrix–vector
product [12].

The bound of Theorem 3 can be even further refined to that of Theorem 4 by also modelling the ℓφ

rounding errors introduced by the activation function as random variables. Model 4 does not assume the
individual ℓφ errors to be mean independent but does require them to be globally of mean zero and to be
mean independent of the errors in the matrix–vector product. Whether these assumptions are realistic
will depend on the specific implementation of the activation function. Therefore, in situations where
Model 4 does hold, we can obtain the refined bound of Theorem 4, and otherwise we should revert
to the mixed bound of Theorem 3, which only requires Model 2 and is thus guaranteed to hold with
stochastic rounding.
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Moreover, all our bounds also assume that the condition number of the activation is strictly positive
at the computation point, since otherwise the term 1/κφ (Ax) makes the bounds meaningless. This
assumption should not be a problem, since if the conditioning is zero, then the function is constant,
in which case there are no rounding errors. These bounds however show that the activation function’s
condition number is a quantity that can dictate whether the backward error is large or not. Indeed, the
ℓφi rounding errors can be amplified or not by the condition number of φi.

We can interpret this in terms of adversarial attacks on the parameters. Since it has been shown,
in [7], that there is a direct link between backward error and adversarial attacks on a neural network’s
parameters, we can expect these two quantities to behave similarly when the condition number varies.
A small condition number is typically linked with more robust neural networks. This means that when
the condition number increases we expect adversarial attacks with small norm to become easier to find,
as demonstrated by Beerens and Higham [5]. The bounds in Theorem 4 show that for a fixed ŷ and a
given layer, if the condition number of the activation function increases then the backward error will
decrease and therefore the perturbations needed on the layer’s parameters will have smaller norm. This
is consistent with the fact that in this case, it will be easier to find adversarial attacks with smaller norm.

In terms of rounding error coming from the use of reduced arithmetic precision, our bounds suggest
that one should use higher precision for the activation functions. Indeed, it seems that the error terms
coming from the activation function can be arbitrarily large depending on the condition number. For
example, given a layer with tanh activation, if the result of the matrix–vector falls within the threshold
region of the hyperbolic tangent function, the condition number tends to zero, and using low precision
on the activation function would result in quickly pushing all outputs to one or minus one. In this
context, it would be appropriate to use higher precision to avoid this phenomenon. This finding seems
to align with results of Hubara et al. [28] which show that we expect neural networks with low precision
to behave better when adding more precision to its activation functions than to its parameters.

6. Numerical experiments

In this section, we will seek to validate the bounds obtained in sections 4 and 5 and summarized in
Table 1. To do so, we will use the formulas obtained in section 3 to compute the backward error and the
condition number for different neural networks. Once these quantities are obtained, we can compare
the computed value of the backward error with its different theoretical bounds based on deterministic
and/or probabilistic approaches. Additionally, we will compare the value of the forward error with its
corresponding bound, which is obtained by multiplying the condition number by the bound on the
backward error.

These experiments are carried out with Python 3.8. Computations are performed in single precision
while “exact” quantities are computed in double precision. Experiments are conducted Ntest = 10
times in order to compute the average, maximum, backward and forward errors to compare them
with their associated deterministic and probabilistic bounds, using the condition number κm(A,x). The
probabilistic bounds are computed using λ = 1, as in the experiments of Higham and Mary [26]. For the
tanh activation function, a value of ℓ = 2 was found and confirmed experimentally in our framework.
Note that κφ (Ax) is a vector since it is a componentwise condition number, we therefore choose to take
its smallest component in order to get the worst-case componentwise bound. The matrix–vector product
computations have been implemented in C using loops so that the code corresponds to the floating-point
Model 1 and to our analysis. If the matrix–vector product is implemented differently, using blocking [8]
for example, we typically expect our bounds to be more pessimistic.
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We showed that in order to compute the backward error of deep neural networks, an optimization
problem needs to be solved; this will be done using the CVXPY library [2, 16].

Three different bounds have been obtained for the backward error: a deterministic bound in
Theorem 2, a mixed bound in Theorem 3, and a probabilistic bound in Theorem 4 as shown in Table 1.
The aim of the initial experiments is to compare these bounds to better understand the relevance of
probabilistic approaches.

6.1. Backward and forward errors and their bounds on random neural networks

We will first perform some experiments on untrained neural networks randomly initialized with different
distributions, which allows us to easily vary some parameters, such as the size of the layers. We will
compare two different random distributions. The first is a Gaussian N (0, 1√

n ), where n is the number
of neurons of a given layer. This choice comes from both the observation that trained layers’ weight
values typically converge to this type of distribution and the Xavier’s initialization from Glorot and
Bengio [19] which is the most widely used type of parameters’ initialization before training the neural
networks. This type of distribution considers the number of parameters of each layer to determine the
scale of the random initialization. This allows the activation functions and gradients to work effectively
during both the forward phase and the backpropagation used during training. The other distribution that
we will test is a uniform distribution U (0, 1√

n ). This distribution is not centred in zero and hence allows
for observing different behaviours.

Figures 1 and 2 present the case of a one-layer neural network with tanh activation and varying size
n. The figures show the evolution of the backward and forward errors and their corresponding theoretical
bounds as a function of the number of neurons n. The network parameters and entries and randomly
drawn from the N (0, 1√

n ) distribution in Figure 1 and from the U (0, 1√
n ) distribution in Figure 2.

101 102

Layer size (n)

10−7

10−6

10−5

Bound (Theorem 2)

Bound (Theorem 3)

Bound (Theorem 4)

Backward error (max)

Backward error (mean)

101 102

Layer size (n)

10−5

10−3

10−1

101 κm(A, x)× Bound (Theorem 2)

κm(A, x)× Bound (Theorem 3)

κm(A, x)× Bound (Theorem 4)

Forward error (max)

Forward error (mean)

FIG. 1. Backward and forward errors and their bounds for a one-layer neural network of size n with random parameters and
entries taken from the N (0, 1√

n ) distribution.

Figures 1 and 2 clearly illustrate the differences between the various bounds obtained in this section.
The gain between the deterministic approach and the two bounds using probabilistic assumptions is
significant and is mostly due to the assumptions made about the matrix–vector product operations. The
full probabilistic approach allows for having slightly sharper bounds, especially when n decreases since,
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Bound (Theorem 3)

Bound (Theorem 4)

Backward error (max)

Backward error (mean)

101 102

Layer size (n)

10−7
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κm(A, x)× Bound (Theorem 2)

κm(A, x)× Bound (Theorem 3)

κm(A, x)× Bound (Theorem 4)

Forward error (max)

Forward error (mean)

FIG. 2. Backward and forward errors and their bounds for a one-layer neural network of size n with random parameters and
entries taken from the U (0, 1√

n ) distribution.

in that case, errors introduced by the matrix–vector product get smaller while errors introduced by the
activation function do not depend on n and therefore remain the same.

We observe that the probabilistic bound captures almost exactly the behaviour of the error for
input data and parameters taken from a uniform positive distribution (in Figure 2) while being more
pessimistic for the Gaussian distribution (in Figure 1). This can be explained by the analysis of Higham
and Mary [27], who showed that when floating-point computations are performed on random data
centred on zero, then the probabilistic backward error bound of order

√
nu can be further refined to a

constant of order u independent of n. In the absence of any assumptions regarding the distributions of
the parameters and entries, the probabilistic bounds cannot be further enhanced.

The analysis of Higham and Mary [27] also explains the observed increase of the forward error
when random values are taken from a mean zero distribution. In this case, the condition number grows
at least proportionally to

√
n, but can be arbitrarily larger when the output of the matrix–vector product

falls close to zero. The relative forward error may consequently be much larger in case of mean zero
distributions.

Next, Figures 3 and 4 show the evolution of the errors and their bounds as the number of layers
increases in a fully connected neural network with tanh activation function.

In Figure 3, which considers a normal distribution of data, we observe a slight decrease in the
backward error while the condition number and forward error increase as the number of layers grows.
The diminishing backward error is not captured by the bounds, which might come from the fact that
we consider the maximum bound over all the layers, which may decrease with more layers if the
perturbations are more equitably spread across layers.

In Figure 4, which considers a uniform positive distribution of data, after a few layers the
accumulation of positive values will result in an output of the tanh activation function close to one.
In this case, the condition number decreases towards zero, which leads to a smaller forward error and
a correspondingly larger backward error. Indeed, when the input values are large enough, it requires
higher perturbations to get an output smaller than one. We chose a U (0, 1

nα ) distribution, with α = 0.6,
to better highlight the effect of a decrease in condition number. For smaller values of α this decrease
would be faster and lead to a steeper increase in backward error and since the model utilized to derive
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FIG. 3. Backward and forward errors and their bounds for neural networks of increasing number of layers, each layer is of size
50 with tanh as activation function, with random parameters and entries taken from the N (0, 1√

n ) distribution.
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FIG. 4. Backward and forward errors and their bounds for neural networks of increasing number of layers, each layer is of size
50 with tanh as activation function, with random parameters and entries taken from the U (0, 1

nα ) distribution.

bounds on the backward error depends on the condition number not approaching zero, the bounds’
accuracy should diminish.

6.2. Backward and forward errors and their bounds on trained neural networks

To better assess the robustness of the obtained bounds, we will apply our results to trained networks.
Our experiments consist in training a network and, for each training step, evaluating the backward
error, forward error, conditioning, and associated bounds on Ntest = 10 images from the testing dataset.
Errors are evaluated on the output vector before the classification decision, which usually consists in
associating the input to the class k when the output’s k-th component contains the maximum of its
components.

The trained neural networks architectures are provided in Table 2. They are initialized with Xavier’s
initialization and trained on FashionMNIST [48], a dataset which allows for a more challenging
classification task than MNIST while maintaining the same input sizes. Networks are trained using
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a cross entropy loss and Adam optimizer with a default learning rate of 10−3 and batch size 128. Both
networks attain approximately 90% accuracy on the testing dataset.

TABLE 2 Neural networks architectures details.
Fully connected model Convolutional model

Layer Shape Layer Shape

linear1-tanh 784×500 conv1-ReLU 1×6×25
linear2-tanh 500×500 max-pooling 2×2 (stride 2)
linear3-tanh 500×500 conv2-ReLU 6×12×25
linear4-ReLU 500×10 max-pooling 2×2 (stride 2)

linear3-tanh 192×500
linear4-tanh 500×120
linear5-tanh 120×60
linear6-ReLU 60×10

Figure 5 presents the backward and forward errors and their respective bounds for the fully
connected network given on the left side of Table 2.
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FIG. 5. Backward and forward errors and their bounds during the training of a small connected network on FashionMNIST.

Bounds on the backward error provide information that is in good agreement with the errors’
behaviour. However, they seem to be rather pessimistic. Since these neural networks are trained
using Glorot and Bengio [19] initialization, and that their parameters typically converge to a zero-
mean Gaussian distribution, we are in the case where the sharper bounds of Higham and Mary [27] are
applicable. In Figure 5 we assess whether these sharper bounds are indeed valid by integrating a bound
that is proportional to cu, where c is independent of n. In order to estimate the constant c, we use Higham
and Mary [27, Theorem 3.3]. Since in our case parameters typically follow a normal distribution, let say
N (0,σ), then with very high probability we know that these parameters are bounded by 2σ . Moreover,
the absolute value of these parameters then follow the folded normal distribution of mean

√
2/πσ [33].

This implies that c will typically be of the same order as 2σ/
√

2/πσ =
√

2π . The resulting bounds are
much sharper with respect to both the computed forward and backward error.
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FIG. 6. Backward and forward errors and their bounds during the training of a convolutional network on FashionMNIST.

Figure 6 provides similar experiments for the convolutional neural network given on the right side
of Table 2. These results show that the convolutional layer has an approximately ten times lower
backward error, compared to the fully connected network of Figure 5, while maintaining the same
order of magnitude for the forward error. This means that the condition number of this neural network
is approximately ten times larger than for the fully connected one, suggesting that convolutional layers
typically lead to networks that are more sensitive to perturbations on their input and/or parameters.

Note that the backward error bound involves the number n of columns of a given layer’s weight
matrix in the case of a fully connected network. In case of a convolutional layer the weight matrix
is sparse and at most k coefficients are non-zero in each row, k being the kernel size. Therefore,
for convolutional layers, the number n is replaced by k = 5 in our case. This means that we expect
convolutional layers to have much smaller backward errors than fully connected ones. However, since
the neural network used in Figure 6 also comprises fully connected layers, the bounds do not benefit
from these observations.

7. Conclusion

The goal of this work was to provide formal tools to better understand, explain, and predict the accuracy
and stability of neural networks when using floating-point arithmetic. We have achieved this goal in
three steps. First, we have identified key quantities, the backward error and condition number of a
neural network, and established formulas to compute these quantities in section 3. Then, in sections 4
and 5, we carried out rounding error analyses to derive several theoretical bounds on the backward
error, based on different deterministic or probabilistic models for rounding errors. Finally, in section 6,
we confirmed experimentally that these bounds are both valid and sharp, thanks to the probabilistic
approach.

The derived bounds on the backward error provide insight on the identification of layers or building
blocks that have the most impact on a neural network stability and sensitiveness to small perturbations
such as rounding errors. This allows for a better understanding and control on the design or choice of
neural network architectures and training setup. Indeed, our results suggest that the use of zero-mean
and rightly scaled initialization, such as proposed by Glorot and Bengio [19], in addition to maintaining
the magnitudes of the activation functions from one layer to another during the propagation phase, can
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also lead to significant rounding errors reduction. Moreover, our results also suggest that while fully
connected layers are fairly resilient to changes in precision, activation functions should be given more
priority in terms of precision, particularly when applied to values that induce a condition number close
to zero.

Concerning the computation of backward errors for neural networks, this work started from
existing approaches in numerical linear algebra and thus employed a formulation of layers as matrix–
vector products. This establishes a foundation upon which to work, both from the perspective of the
computation of the error itself and from the rounding error analysis. Indeed, most existing layers base
their computations upon such formulations; in the other cases, the formulas and bounds obtained will
need to be adapted, building upon existing work.

The cost of using verification tools such as CADNA or FLUCTUAT, to ensure correct behaviour of
algorithms when using finite precision, can be prohibitively large. Recent research of Graillat et al. [22],
presenting the PROMISE algorithm, aims at using CADNA to produce mixed-precision quantization
of neural networks that ensure a given accuracy. By providing tools that can identify the most sensitive
blocks of a given network, the rounding error analysis performed in this work could help in guiding
such software so that they only target robust layers and therefore gain significant computation time.
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